THE PROBLEM

along with some Preliminary Information

There are times when analyzing a situation is most easily done using straight
math, but there are also times when that is horrifically difficult and being
“clever” works better. What you are about to experience is one of those clever
approaches. Here’s the set-up. A mass with an attached magnet sits on a
frictional surface. It has springs attached to each end and is initially in a state of
static equilibrium. An aluminum strip is positioned along the mass’s path. The
situation is shown below:
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1.) According to K ! m k
Newton'’s Second Law, the /—\/\/\/\\r :
net force acting on a body I
>

in a particular direction X
(in this case, in the “x”
direction) will be proportional to the acceleration of the body, where the
proportionality constant between the two quantities is the mass “m” of the
body. In other words,

F..=ma,

net,x

2.) Dropping the subscript (everything is happening in one dimension), the
forces in play on the mass along the direction of motion will be generated by
the springs and by the drag force produced by the eddy currents created as the
magnet and aluminum strip interact. To that end:

3)

Here is the problem: If the mass is off-set by some distance x and released, how
does the mass’s velocity act over time? The dynamic situation is shown below.

spring 1
(k)

spring 2
(k)

What follows is a rundown of the physics involved with this situation:

2)

3.) The spring force K Y K
produced by an ideal spring  1——/A\/\/\y : R AM E
is proportional to the I

displacement x of the spring X
(relative to the equilibrium
position at x = 0). To make this into an equality, we have to multiply by the
spring’s spring constant k (the spring constant essentially measures the
stiffness of the spring). That is:

F . =-kx

spring

(Minor note: the negative sign is needed because when the displacement is to the left
with an x-coordinate being negative, the force is back toward equilibrium to the right,
which is in the positive direction. For the right and left side of the equation to be equal,
the effective signs have to match up, hence the need for the added negative sign.)

4)




4.) The damping force K l—> m k
produced by the eddy /—\/\/\/\\r : R J\N\,—E
currents in the aluminum I

strip is proportional to the x:!0 X

velocity of the mass. Taking

the velocity to be v, the proportionality constant needed to make these two
parameters into an equality is called the damping constant. For our purposes,
we will symbolize it with a D. As such, we can write:

=—-Dv

Fdamping -

(Again, a minor note: the negative sign here is required as the damping force will always
be in a direction opposite the direction of the velocity vector.)
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b.) The second derivative of a function gives you a new function that identifies
the rate at which the first derivative changes. In physics, second derivatives in
time are denoted as:

5

o
-~

or f or £

dt’

c.) Example:

the time-derivative and its second time-
function (i.e:, f(t)’s slope derivative (i.e., the slope
function) is f(t) =2t of £(t))is f(t)=2

If the time-dependent
function was f(t)=t",

(1) (1)

f(t)=2t f()=2

7.)

5.) A quick rundown of Calculus:

a.) The derivative of a function gives you a second function that identifies the
rate at which the original function changes.

i.) On a graph, the evaluation of a function’s derivative at a point yields a
second function that defines the slope of the graph at the point of interest.

ii.) It is perfectly possible to be interested in how a function changes as
one moves through space. This is called a spatial derivative. They are
generally denoted as df/dx.

iii.) It is also reasonable to consider how a function changes in time.
These are called time derivatives.

iv.) In physics, time derivatives can be denotes in several ways. They are:

df
dt

or f or f!

6.

d.) When it comes to physical parameters (i.e., variable that pertain to motion):
i.) The first derivative of a position function x(t) yields a velocity function v(t).
That is: dx

X=—
dt
=v
ii.) The first derivative of a velocity function v(t), which is also the second

derivative of the position function x(t), yields an acceleration function a(t).
That is:

dv_dzx

dt df?
v=X
=a

iii.) These are all the ways the position, velocity and acceleration functions are
related and characterized.
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d.) An integral denotes a summation of tiny bits of a whole.

i.) Observation: Let’s say an object is moving
with constant velocity 3 m/s. How far will it
travel in 7 seconds (a graph of the motion is

v

3 m/s
shown to the right).

ii.) A quick use of the old distance equals rate

(velocity) times time formula yields an answer
of 21 meters. Simply and easy.

iii.) What’s important to note here is that 21
happens to be the area under the velocity
versus time graph over a 7 second period.

1 1 t

At=17 sec

a.) Don’t believe me? Look at the graph. The “height” is 3. the “width” is

7, and product of the two is 3x7=21.

THE MORAL? There will be times when the area under a curve will have relevance.
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iii.) This summing process is called integrating.
In its indefinite form it is denoted as:

J-v dt
This process yields a second function x(t) the
evaluation of which yields the distance traveled

between any two points in time.

iv.) For our example, then, when v =2t (m/s)

we can write:

x(t)= J.(Zt) dt

2

=t

At

v.) How do we know that the integral of 2t equals t°? Not important here.
What’s important is that you understand that a derivative is associated with the
rate of change of a function, and an integrals is a summing process associated

with the area under a graph.
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d.) (cont’d) So what’s the deal with integrals?

i.) Example: Consider an object moving with velocity v=2t (m/s). How far

will it travel over a given period of time?

v(t
ii.) Again, we know that distance equals ®
rate (i.e., velocity) times time, so all we
have to do is multiply v and At and we
have it . .. except v isn’t a constant here.
So what to do? v

Solution: We break the time interval into
differentially small pieces of time of

length dt (this is like At, but really, really
small) determine the product v dt for all

/

this areais v dt

of the little pieces, then sum them all up.

iii.) In a situation like this, the summation
sign doesn’t look like Y, it looks like J .

At

10.)

6.) So back to our spring

problem and Newton’s Second Y, ‘
Law. k : m

a.) If we assume the mass is I : R

moving to the right so the —>

damping force is negative, x=0

summing the forces on the mass yields:

ZF:

Fspnngl + FspringZ + Fdamping =ma
= [-k®)]+[-kx)]+[-D(V)]= ma
= —2kx -Dx =mX

(a3
= X+|— |x+| — |x=0
m m

(or alternately

d’x (D)dx (2k
dt m ) dt m

b.) This looks NASTY, but it is a solvable second-order differential equation.
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7.) But what would our k i > m k
previous analysis look like if it  T——/\/\V\¢ :
was done it in terms of the !

, S X
mass’s velocity? x=0

a.) In that case, remembering that x = Jv dt, Newton’s Second Law would yield:

e

Fspring] + Fspring2 + Fdamping =ma
= [-k@®)]+[-kx)]+[-D(v)] = ma
= (—Zk)J.th + [-Dv] =mv
= V+[ij+(§).|‘vdt:0

m m
(or alternately

d D 2k
—V+(—jv+{—jjvdt:0 )
dt \m m
b.) This is an equivalent equation, but in not nearly as solvable a form.

13)

ELECTROMECHANICS

along with more Preliminary Information

So let’s talk a little about electricity and magnetism and the devices designed to
take advantage of the physics wrapped up in those topics.

1.) a VOLTAGE difference between two points:

a.) the voltage at a point is defined as the amount of potential energy per unit

charge available at that point. It is a modified potential energy quantity.

b.) if you have a voltage difference between two points, an electric field (a
modified force field) is set up that motivates charge to move.

c.) a 6 volts battery has a 6 volt voltage difference between its positive and
negative terminals. If a wire connects its terminals, it will generate what is
called a DC current. This is a current that flows in only one direction.

d.) there are power supplies (like your wall socket) that provide a voltage that
changes in magnitude and direction. This produces what is called an
(alternating, or) AC current.

15.)

7.) The point here is that the
solution to the question, k

“How does the velocity act in /—\/\/\/\\r
this situation?” is wrapped up
in the solution of either: boxT

V+(DJV+[2kjjvdt: 0 (which is ﬂ+(2)v+(§)_’.vdt= 0)
m m dt m m

or
g 2
x+(D)x+(2ij:o (which is d—§+(2)%+(§)x=0)
m m dt m /) dt m

WOULDN'T IT BE COOL IF WE COULD CIRCUMVENT ALL OF THIS
MATH AND GET THE SOLUTION BY BEING CLEVER?

TO THATEND. ..

14

2.) a CURRENT is formally defined as the amount of charge q that passes by a
point per unit time At. (This is most easily visualized in a DC circuit.)

Mathematically, it is defined either as % or %‘: .
t

a.) Its symbolis “i.”
b.) As weird as this is going to seem, given what you know, the direction of a
DC current is defined as the direction positive charges would move in a
circuit, assuming they could move in a circuit. (In these circuits, current is
assumed to flow from the high voltage terminal to the low voltage terminal.)

c.) Given the fact that AC voltages alternate back and forth, both charge flow
and the direction of an AC current alternates back and forth.

—_—

DC power source AC power source

=i —o—

high /- low
voltage voltage
terminal terminal

voltage alternates
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3.) Resistors:

a.) Resistors are circuit elements that do two things:

i.) they dissipate energy (this is why they heat up when current flows
through them, and.

ii.) they regulate current flow (for a given voltage, a large resistor will see
a small current through its circuit; a small resistor will see a large current).

b.) Ohm’s Law maintains that the voltage difference across a resistor is
proportional to the current through the resistor. The proportionality constant
is the resistance R of the resistor. Mathematically, Ohm’s Law is written as:

. d
V. =iR OR sz(q)R
dt
c.) Resistors act the same in AC and DC circuits. R
The circuit symbol for a resistor is shown to the _/\/\/\—

right.
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5.) Inductors: L

a.) Physically, an inductor is a coil. Its symbol, —/XX\—

somewhat inelegantly shown to the right, reflects this:

b.) In any circuit, a CHANGE of current di/dt through the coil will induce a
voltage across the inductor. The size of the induced voltage V, is
proportional to the rate at which the current is changing di/dt. The
proportionality constant between the two is called the inductance L of the
inductor. Mathematically, this can be characterized as:

di
v =L
’ dt
. d’q
In terms of charge flow, this is the same as V, =L TR
2

c.) As a side note, inductors, being made of wire, also have resistor-like
resistance associated with them.

19)

4.) Capacitors: c

a.) Physically, a capacitors is a circuit element that is made up
of an insulating material separating two insulated, metallic
plates. Its symbol, shown to the right, reflects this make-up:

b.) In a DC circuit, positive charge accumulates on one plate electrostatically
repulsing an equal amount of positive charge of the other plate leaving it
electrically negative. The ratio of the amount of charge Q on one plate is
proportional to the voltage V. across the plates with the proportionality
constant being the capacitor’s capacitance C. Mathematically, this can be
written as:

q=CV, or c=1
V,

C

Written a little differently, the voltage across a capacitor will equal:

1
VC:Eq

18)

V.

o
6.) An RLC circuit: Let’s do something
exotic and clever.

a.) By throwing the switch in the

circuit to the right, the battery will
place a voltage across the capacitor C
plates charging it up.

b.) By opening the switch, the battery C R
will be removed and the capacitor +
will produce a current by discharging
through the inductor and resistor.

c.) As the discharge happens, a
voltage will develop across all three
elements (remember, the charge on
the plates produces the capacitor’s voltage, the current through the resistor
produces the resistor’s voltage and the change in current produces the
inductor’s voltage).
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d.) Kirchoff’s Law states that the sum
of the voltage changes around any
circuit loop must equal to zero (think
about it, the voltage difference
between a point and itself will always
be zero). That means we can write:

Vo+Ve+V, =0
- 9%
C dt
e.) On the surface, this may not look hopeful. If we write this out in g, where
g is the charge on the capacitor, the rate at which charge is flowing through
the circuit will be -dg/dt and we can write:

1
Zq—(=q)R+L{j=0
cd (-q)R+Lg

= "+(Ej'+(ij =0
a+ T LC q=

Why is i = - dg/dt? Ask your teacher! It has to do with the relationship between the the charge on

the capacitor plates, defined as g, and the current (the rate at which charge flows in the circuit).
21.)

R 1 D 2k
7.) Assignment 1: Knowing that q+(f)q+(—jq:0 and X+(—j>‘<+(—jx:0:
L LC m m

1.) Mass is a measure of an object’s resistance to changing it’s motion (i.e.,
it’s inertia).
a.) Which of the electrical components is the mass counterpart for our
mechanical system?

b.) What does this tell you about the electrical element as it acts in this
electrical circuit?

2.) Damping is a measure of external drag on a moving object in the sense
that if the drag is great, the object’s motion is limited greatly (and if it is
small the object’s motion is less limited).
a.) Which of the electrical components is the damping counterpart for our
mechanical system?

b.) What does this tell you about the electrical element as it acts in this
electrical circuit?

23)

e.) So here is where the fun starts.
This equation:

(ol
)1 e )T

Is the same differential equation that
we determined for our spring system.
That relationship looked like:

L (5)
X+| — [x+| — |x=0
m m

f.) It appears that we might be able to build an electrical circuit with just the
right size inductor, capacitor and resistor, so that the “motion” of charge in the
circuit exactly mimic the “velocity” of the spring system we are interested in. All
we have to do is determine the right parameters for the electrical system, charge
up the capacitor, discharge it and look to see what the current does.

CLEVER, eh?
22))

3.) Velocity is a measure of an object’s change of position (i.e., the number
of meters per second it covers at a given point in time).

a.) Which of the electrical components is the velocity counterpart for our
mechanical system (this is a little obscure—be careful and BE COMPLETE)?

b.) What does this tell you about the electrical element as it acts in this
electrical circuit?

4.) Position is a measure of a moving object’s position at a given point in time.

a.) Which of the electrical components is the position counterpart for our
mechanical system?

b.) What does this tell you about the electrical element as it acts in this
electrical circuit?

5.) The spring constant is a measure of the stiffness of the restoring force on
the moving object.

a.) Which of the electrical components is the spring constant counterpart
for our mechanical system?

b.) What does this tell you about the electrical element as it acts in this

electrical circuit?
24.)




8.) So let’s take a look at a
few other electrical o v
situations. ,—{ — ¢

a.) A charged capacitor \ C
discharging through a | I

single resistor has a | I
discharge function that t

looks like the graph. /\/\/

b.) Noting that because the cap is Vet Ve =0

discharging, i = - dg/dt, it’s differential g_(_E)R -0

=
equation is shown below. C dt

1
= q+—q=0
A+ ped

Note that the solution of this differential equation is an exponential, or q = quef'mc
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9.) Assignments 2: Use the information provided in Part 8a to identify a
physical systems that might be modeled using an electrical system
consisting of a discharging capacitor and resistor. You should draw a sketch
of each system and write out the differential equations that define the
system.

10.) Assignments 3: Use the information provided in Part 8b to identify a
physical systems that might be modeled using an electrical system
consisting of charging capacitor and resistor. You should draw a sketch of

each system and write out the differential equations that define the system.

27.)

C
b.) A charging capacitor V.
in series with a single
resistor has a charging
function that looks like R
the graph.
_i t
VO

b.) Noting that because the cap is charging, i = +dq/dt, it’s differential
equation is shown below.

o

S m_(ij_L)zo

C dt C

V, + V, + V. =0
(t

X 1 Ana
t)+—q(t) = 2me
= q(y) ch() RC

Note that the solution of this differential equation is an exponential, or q =q, . (1 - e’”RC)
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