
Partial Derivatives and the Del Operators 

Let’s say you have a multivariable function like:  z = f x,y( ) = (y2 + x3) / 5

We’d like to know 
something about how the 
function changes spatially.  
That is, how does the 
function’s value vary as we 
traverse in a particular 
direction in the 3-d space.  
Put altogether differently, 
how do we determine the 
derivative of the function 
with respect to a particular 
direction? 

(look at 3-d depiction) 
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The problem is that at any given 
point (see yellow dot on sketch), 
there are an infinite number of 
slopes (three are shown). •

•

•

So how do we denote the slope 
in, say, the x-direction? 
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This is termed “the partial derivative of f with respect to x.”  It essentially 
directs the user to treat the function as though x is the only active variable 
with all other variables held constant.   

For our problem, the rate at which the function changes with changes in 
x is: 
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What we need is an operation that takes the derivative of the function in a 
particular direction while keeping all other variables constant.  The 
derivative that does that is given a special name and symbol.  It is called a 
partial derivative, and it’s notion is shown below: 
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Why is this useful?  If have an electric field E and you travel some 
distance dx in the direction of the field, you will observe a change of 
voltage dV that is related to E and dx by the relationship: 
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Ex = !
dV
dx

If this is true, it must also be true that: 

In other words, the x-component of the electric field is related the rate at 
which the voltage field changes as you traverse in the x-direction (give 
or take a minus sign).  And if we wanted to write that out using unit 
vectors, we would come up with: 

Ex( ) î = !
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This is all fine for a one-dimensional world, but what if we want E in a three 
dimensional world?  In that case, we have to do the derivative operation for 
each direction, then multiply by the appropriate unit vector.  Additionally, 
when we take those derivatives we also have to keep the other variables 
constant so that the only variability is in the direction of interest.  In other 
words, we need to use partial derivatives.  Doing that yields:   
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As is often the case when a mathematical operation is used over and over 
again within the world of physics, a special notation has been defined to 
allow us to shorthand it (think dot and cross products).  It makes use of 
what is called in the world of multi-dimensional Calculus the del operator 
(symbol    ), and it looks like: 
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E = Ex( ) î + Ey( ) ĵ+ Ez( ) k̂!" #$
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Minor note: The del operator acts on vectors and scalars in a specific, 
mathematical way.  It has no meaning intrinsic, unto itself.  It is an 
operation.  In any case, as applied to the electric field/electric potential 
situation, we can write: 
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So let’s say our f(x,y) function had been a voltage function such that: 

V = (k1y
2 + k2x

3) / 5

where the k terms are constants whose units make each entity’s units 
volts. 

What electric field belongs to this potential function? 
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ĵ+
' (k1y

2 + k2x
3)

5
!

"
.

#

$
/

'x

(

)

*
*
*
*

+

,

-
-
-
-

k̂

!

"

.

.

.

.

.

#

$

/
/
/
/
/

   %    
!
E = &           3k2x

2

5
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Nifty, eh? 

Consider now the following: 
Two equal charges are 
symmetrically placed on an axis 
as shown.  Using the del 
operator approach, derive an 
expression for the electric field 
at (x,0), where x is an arbitrary 
point down the x-axis? 
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Note that if nothing else, the electric field components in the y-direction should add to 
zero leaving only a net x-component for the field. 
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Using the 
del operator 
to determine 
the electric 
field vector, 
we get: 
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The relationship                                    seems reasonable (at least the units 
work out).  
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There is a rub, though, and it is 
easily seen if we alter the 
problem just a bit.  Let’s now 
assume the charges are equal 
but opposite. 

The electric field is clearly non-
zero, but the electrical potential 
at (x,0) IS zero.  So what to 
do? 
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What it all comes down to is the fact that we didn’t determine a general 
expression for the electrical potential function (that is, one that is good for 
any arbitrary point in space).  Technically, that should have had its 
derivative taken.  That voltage function would looks like:f 
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Going completely wild, we can use the del operator on this getting? 
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If we take our final relationship for E and evaluate it at (x, 0), we get: 
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î + Q
k

!a
x2 + a2( )3/2 !

a
x2 + a2( )3/2

"

#
$
$

%

&
'
'

ĵ
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This is exactly what we’d expect: an electric field whose units turn out to be 
inverse square in meters and that is in the –j direction. 

                                    Dang! WE ARE GOOD!!! 

And what was the deal with the electrical potential being zero at (x,0)?  Not 
such a shock.  The electric field isn’t related to the electrical potential at a 
point, it’s related to the rate of change of electrical potential at a point.  The 
point in question can have V=0, but if there is a non-zero value just below 
or above that point, then dV/dy is not zero and there IS an electric field in 
that direction. 
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