CHAPTER 3o0:
Sources o ‘Magnettc Fields

Cern’s single-
walled coil
operates at
7600 amps and
produces a 2.0
Tesla B-fld.
http://atlas-
magnet.web.ce
rn.ch/atlas-
magnet/info/pr
oject/ ATLAS
Magnet_I eafle

t-ds.pdf

Photo and info courtesy of Mr. White
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CB-f[cfs Produced By Cﬁm’ge in ‘Motion

In 1820, Hans Christian Oersted, observed that a compass near a current-

carrying wire will react. Conclusions: B-flds are produced by charge in motion,
and B-flds circle around current carrying wires.

The sense of circulation can be deduced
using what I call the right-thumb rule:

Grasp the wire with the right hand with the
thumb in the direction of current. Your
fingers will curl in the direction of the B-f/d.
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OerSted (1 820) (courtesy of Mr. White) =

If the wire is grasped with the right hand, with the thumb
in the direction of current flow, the fingers curl around the
wire in the direction of the magnetic field.

The magnitude of B is the same everywhere on a circular .
path perpendicular to the wire and centered on it.
Experiments reveal that B is proportional to /, and
inversely proportional to the distance from the wire.

OBSCH?’Q OBSQTVOLtiOHfTOTn T[QtCﬁ.’

Notice that if the current-carrying wire is
straight and you draw a vector from any
point on the wire to a point of interest,
the direction of the magnetic field at that
point will be perpendicular to the plane
defined by that vector and the direction
of the current (treated like a vector).
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Example 1 (courtesy of Mr. White)

Predict the orientation of the compass
needles.
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Examja[e 1

Determine the direction and magnitude of the magnetic field at “x” if the wire

€99
1

carries current and “x” 1s “r” units from the wire.
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Solution
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fxamjo[e 2

Determine the direction and magnitude of the magnetic field at “p” if the left
wire carries current “1,” the right wire carries current “21”” the wires are “x/2”

€e, % €6, %

units apart and “x” 1s “x” units from the 21 wire.
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Where will the net magnetic field be zero?
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Determine the net magnetic field at the origin
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19.48 on class Website is a
good one to practice with!
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Solenoids

A long coil of wire with many loops (or turns) is called a solenoid.

The magnetic field inside the solenoid can be fairly large when current flows
through the wire as each loop adds to the overall magnetic field strength.

The magnetic field within the solenoid is fairly uniform and runs in one
direction, down the middle of the coils, resulting in the coil acting like a magnet
with a north and south pole.

If a piece of iron is placed in the core of the loop, this becomes an

electromagnet. g
— Why iron? What happens? h a ! I

"r'w.jkar

R""*‘--.._____lltrtrtri';,..&’
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The Law @C Biot-Savart

C OM[OWLE 's L aw observed

that the electric field generated by
a point charge was proportional to
the magnitude of the field
producing charge and inversely
proportional to the square of the
distance from the field producing
charge and the point of interest.

Extending this, if you have an
extended charge, the technique 1s
to determine the magnitude of the
E-fld for a differentially small
piece of the charge dg, then
integrate to get the net electric
field.
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‘Biot-Savart does a similar thing for magnetic fields, with the exception that

it incorporates the direction of the B-field into the calculation.

Syecﬁca[fy, it observes that the

differential magnetic field dB at Point P
due to the current in the differentially dB out ‘P
small section ds of wire 1s: =

dB = ( H, )Idsj‘r
47 r
Wﬁere:

- >

I 1s the current in the wire

L, = permeability of free space
=47nx10” Tem/A
ds 1s a section of current-carrying wire
ds is a vector in the direction of the current at ds

graphic courtesy
of Mr. White

Notice the cross product gives a
direction that is perpendicular to
the plane defined by 1 and 1 at ds
as advertised earlier. 13.)

r is a vector from ds to the point of interest
r is a unit vector in the direction of 1

0 is the angle between r and ds




The B IOt— S aVart LaW (courtesy of Mr. White)
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— i d S XT— irection of
_— dB =k m ] 2 field
magnetif: field at a point P r element of
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wire ds & perpendicular to :
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direction dB P
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k=107 Tem/A
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u, = permeability of free space

U, =4m x10°7




fxam’}?[é 2. (problem courtesy of Mr. White):

Determine the magnitude and direction of the B-fId
at the point O in the diagram. (Current / flows from
top to bottom, radius of curvature = R.)

To do this, you need to break the current paths

into segments that either have the same » value or
have a cross product that is zero.

@eﬁ’ning a differential length ds a the unit vector 1, in one of the sections that

moves directly toward or away from the point (see sketch), the cross product that
bit produces becomes:

(U, \I |5 xT,
2
\ 47[ ) (rwhatever)
(o, \Ids1 sin(°
- 2
\ 475/ (rwhatever)

dB,| =

15.)




With no CB-f[o[s being generated at Point O due to
the sections of wire that have current moving
directly toward or away from the point, we turn
to the only other section in the system:

Again, cfefining the differential length ds and
the unit vector t, for the curved sections, and
noticing how ds is related to dO (see insert),
the cross product becomes:

il o B I|d§2xf2|_ 1, ;ds,sin90°
‘ 1‘_ ATC (R)2 - ATC (R)2 How ds is related
u to R and df .
= B=|dB =(4n§2)1jds2
( 0
_ “02)1 R d6 ao__-
\ 4mR 0 point O’—/—/::“':)——R_—_
I
_[( M je
41tR

Also, crossing ds, into T, yields a direction INTO the page, which 1s
exactly what the right-thumb rule would have given you! 16.)




fxam}o(e 3. Derive an expression for the B-fld generated by an infinitely long,

current-carrying wire a distance @ units from the wire.

Start Ey defining ds, r and 6. Define x.
_tpoint
Note that ds = dx and theageneral r=(x2 492 )%/ ///
geometry. That is, sin@ = % i a
and r=(x2+a2)}25 (X2+a2) 2 f/{/ﬂ
0
With that: — >
= (U, ).dssin® I ds |
o= ()i e
q sin@ = a = 4
_(uo)idx(ﬁ)_(uoiajdx () T
in) 1’ im )1’

Double the sum of the differential B-flds — B=2 .|dB|
from infinity to zero, we can write: )
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Sofving:

B=[dB

Moia)J' dx

/4(“ x +a 3
_(uoia) 1 0
\ 2, a’ X +a2)% x=ee

e Ephigred|
5

And the cross product ds x t yields a B-fld direction OUT OF the page at the point.

18)




‘Magnetic ‘Forces ‘Between Wires

fEXOLle?[e 4. Derive an expression for the

magnitude and direction of force on a current- [T\ i
carrying wire bathed in the B-fld generated by a i @ é ;
(] 2
< >
a

second current carrying wire a units away.

Tﬁere 1S OTL@ one way to get

the magnitude of the force, but there
are TWO ways to get the direction.

We’ll do it all. A more standard way to prese
coming into or out of the page;

graphic courtesy of Mr. White
with slight modification

t a current

For the magnimofe: The direction of the
magnetic field due to the left-side wire can be
determined using the right-thumb rule and 1s
as shown. The magnitude of it’s B-fld is:

Blz(uo)i_l
2T ) a
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Because the force re[ationsﬁijo between a current-carrying wire and the B-fld the
wire 1s bathed in 1s known, we can write:

| =i,|xB,

— lzL( ““011 )
2Ta

Now for the fun—finding the direction of the force
on the right-hand wire: Start with the cross product.

B, =i,[xB,

L is out of the page (in the direction of the
right-hand wire’s current), and we’ve
already determined the direction of the B-
fld due to the left-hand wire in that region
(it’s downward at the right-hand wire).

Executing ]:XEI yields a vector direction to
the right, AWAY from the left wire.
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But there’s a cooler way to do this which requires an interesting observation.
Consider two north Joo[es juxtaposed against

one another. You know from experience that

these two magnets will repulse one another.

Notice that the direction of the magnetic field

lines generated by the two in this case are parallelish.

flf, on the other hand, the poles are

opposites, their magnetic field lines will be
anti-parallelish and the two magnetis will ”< \_

attract one another.

’fﬁe (8 ufe: If the magnetic field lines between two field-producing objects are

parallel to one another, the two objects will magnetically repulse one another. If
they are anti-parallel, they will magnetically attract one another.
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So going back to the direction of the force
on the right-hand wire:

‘A oluicﬁ determination (using the right-
thumb rule) of the direction of the B-flds
set up by the two wires in the region
between the two wire shows that their
field lines are parallel between one another
... which means the two wires will repulse
one another. That means the force on the
right-hand wire should be away from the
left-hand wire, as determined using the
mathy approach.

B-flds suggest repulsion
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‘As OL’}OT eamﬁfez The circulation of a vector field around a closed path is
defined as the summing of the dot products of that vector with all the differential
lengths of the path around the circuit.

Soin fﬁiS case, the dot product gives you the )
component of E along the line of dl, times dl, summed

over the entire closed path. And as some of these mini-dot products can be

positive (szdL) and some negative ( E 1del), circulations can be zero or non-
zero, depending upon the vector field involved.

So ?fyou had an electric field, for instance, and
a closed path (defined in red), and you did all the

dot products around the path, the “circulation of

E” would be: o
circulation = CJ}E odl
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Ampere’s Law
(the magnetic counterpart to Gauss’s Law)

Tﬁlﬂé back to what Gauss’s Law did for yOu.

Gauss observed that if you have a net charge in a
closed surface, the straight-arrow electric field lines
generated by the charge would either exit or enter the
surface (depending upon whether the charge was
positive or negative), creating an electric flux through
the surface. That flux, he reasoned, was proportional to
the charge enclosed. By the time the dust settled, he
had posited Gauss’s Law, or: s -

q imaginary Ga}ués/ian surface N
i e /
CJSSE°dA:M // \\\ .
ﬁ 8.0 . / \E
Choose a reasonably symmetric surface, and voila, | 2
dA
. 3 3 \
you have a useful mathematical tool for deriving \ ]
. . \
electric field functions. N S/
AN /

~— Y —
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‘Magnetic fie [C[:i set up by current-carrying wires are not “straight arrow

vectors,” they are fields that circle around wires. So Ampere reasoned that if he
defined a closed PATH around a wire and determine the circulation of the field
around that path (this is a mathematical operation consisting of dotting the B-fid
into a differential path length dl, then summing all those dot products around
the closed path to get the “total circulation”), that sum would have to be
proportional to the current passing through the face of the path. In other words,

@B ¢ dl o 1thru the face

The yroyortionafity constant that makes this into an equality is the
permeability of free space, or |1, making Ampere’s Law:

g’.ﬂé .dl = oL,

Note: The book uses d§ as their differential path length, but they also use ds
for their differential section of current in Biot-Savart. Using the same symbol
for two different situations seems confusing, so I prefer d1 when dealing with

Amperian paths.
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EXOLMJO&Z 5. Assume a current-carrying wire

produces a B-fld, and the wire is far enough away
so that the field lines generated by the wire look as
shown to the right. If a small circular path is
defined as shown, what is the circulation of the
field around the path?

Qf we ofeﬁ’ne a differentially small section d] along the
path, we can execute the mathematical operation B dTl
and end up with a positive dot product (the angle
between the two vectors is less than 90°).

@eﬁne a second differentially small section dTZ along the path and we get a
negative dot product (the angle between the two vectors is greater than 90°).

Bottom line: The net circulation will have positive parts and negative parts, and
will ultimately sum to zero.

‘But we should have seen this coming. There 1s NO CURRENT PASSING

THROUGH THE FACE OF THE PATH, so according to Ampere there should be
NO NET CIRCULATION.
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EXOLMJO&Z O: A current carrying wire has current
directed out of the page as shown. For the dotted path
shown, 1s the net circulation equal to |1 1?

YES, Ampere’s Law always works (just like Gauss’s
Law always works, even when a geometry makes its
integral impossible to solve).

The real question is whether using Ampere’s Law is a reasonable thing to try to
do in this case . . . and the answer to that question 1s NO!

Wﬁy? Look at the symmetry.

The current through the face 1s easy—it’s just 7, but the angle between dTl
and the B-fld evaluated at d| is different than the angle between dl, and

the B-fld evaluated at de . That’s going to make the integral nasty.

Consz.cf.er the problem Lo (JSE od] = TR

exploiting symmetry: v/ i@/} di B g’s dl cpsﬁo — i
‘E‘ is the same at (\ R , WL i
every point on N /// = B(21R)=p,i = B= 2mR

the path, so: BAM! The B-fld for a current-carrying wire.
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fxamy[e /. Consider an infinite sheet of current with the current coming out of

the page. Assume you know the current density j (the amount of current-per-unit-
length) in the sheet. What is the net B-fld generated by the current R units away?

To get a fee[ for the power of Ampere’s Law, let’s assume we are looking at an
infinite series of wires. How might we derive an expression for the magnetic
field due to one current carrying wire, then extrapolate for the whole?

Consider the differential B-fld generated by our differential bit of current x units
from the system’s origin.

to infinity
<— ° ° ° ° °

\ dx /

AN s 28.)




From symmetry, though, a second differential bit of current flow produces the
additional field shown below, with the sum of the two fields producing a y-

component that adds to zero.

Additional geometry yields:

taneZE
R

= x=Rtan0
= dX:R(secze) do

1

sec 0= \ I/
0
R 000000 ©000
cos 0= ? \\
\
= r= RO:RseCG :
COS -
So:  dB, = 2%0089
r
dB, = 25—7‘3 (dx) cos6
r

o 2] ) I
- 2n(RsecO)[(RseC e)de}(secej
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Simplifying, then summing (integrating) from 6 =0 to 6 = Ty radians , (we’ve
o 2
already taken care of the other half in eliminating the y-component of the B-fld),

we get:

20,]

1
95, :Z/n(/l(se;c/ﬁ) [(’Ksﬁe)de](sgﬁej «—k”

< AN
/ P> N\
uoj // 0 \T \\
— do // R N \\
U I \ \
. OO0 000000
R 90, 0000000 000000
= B= do \ ~ /
T J0=0 \\\ ///
— B — L";.(C)J e 3/2 \\\ \\\\\\ ////
N Bjﬂd(ﬁj
T\ 2
— B= H,J

2

— —
— _—
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Constrast this with Ampere’s Law.

--Note that ‘B is constant along the horizontal, Amperian path
in opposite directions on either side of the sheet.

--For Ampere’s Law, we need a path along
which the magnitude of ‘E‘ 18 either constant or
such that the dot product of B and dI is zero (a
rectangle will do the job).

: : >
—~The current thru the Amperian face isj = jiL , dl; \
L

where j 1s the number of wire per unit length, so:

C.’SB.dT ol LS P
JBdL + [ Bed, + [ Bedl + | Bedi, =1, [ ()L ]

Bjdl/o/O°+B | a ccyﬁijdl M@B | a co/@€° w, [(GL]
= BL+0+BL+0=p,[(j)L]

po bl

— )
o) ... a lot easier!
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fT’OTYL aﬁove:

fxamyfe 8: Derive an expression for the B-fld

inside an N-turn toroid (a coil with N winds that
curves back on itself)

--Because the CB-f[cf for a toroid circles along

the toroid’s axis, the Amperian path that is
applicable here 1s a circle of radius Amperian

--Q\foting that N wires pass through the
Amperian path, the current through the face 1s
Ni and we can write:

CJSE edl= Mol iy 1 from the side:
= B dlcos0° =p, (Ni) )

= B(2m) =, (N f

2
r | | 1\

--Notice that B varies with 7.
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Solenoids

‘A SO[éHOiC[, also referred to as a coil, 1s

exactly that. A long wire tightly coiled ([ ——————
hellcally. They are typlcally CharaCterlzed . AN WSS T )
by the number of winds per unit length 7.

--Solenoids are tyyica[[y tightly wound, but an spread out version (courtesy of
Mr. White) allows us to see their microstructure.

--Between the winds the fields
add to zero;

--Outside the winds the field is
weak and drops to zero fairly
quickly;

--Down the axis, the field is
intense;

33)




T ricﬁery

There is still another

right-hand rule that can be
used to determine the
direction of the magnetic field
due to current through a coil.
It’s easy (and fun!).

Lay yOMT right-hand on the

coil with your fingers pointing
in the direction of the current.
The direction your thumb points is the direction of the B-fIld down the axis of the
coil.
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fxamjafe 9. Determine the B-fld down the axis of a dg
current-carrying coil (a solenoid), where 7 1s the number
of turns per unit length in the coil (see cross-section).
We need a rectangular Amperian path. Why? dl, A\ V dl,
~-The Joatﬁs yeryencfieu[m to the coil will i

experience zero B-fld;

~-The ]oatﬁ outside the coil is far enough

B {l

out so the B-fId is essentially zero; BT

—-The Joatﬁ inside the coil experiences a end effects)

non-zero B-fld. o, d

1

The current L
through the CJSB edl =Ky Ly
face 1s: B.dl B4 B.AT BT _ :
L) JBedl vf, B 8112 +]. B 0d13 + ], Bedl, =p, [(nL)i]
where nL isthe B, . | dl, cos0° + di,+ B .| dl;+ jl dl, =pn, | (nL)1
number of wires L /B/yjh 2 /Bﬂ y JL 3. /BZY " " [( ) :I
thru the face. So: Baxis)/: Ko [(H}AIJ

=
- Baxis — uoni
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@eciofing When to Use ﬂmjaere’s Law
versus ‘Biot Savart

‘Use ﬂmpere’s L aw when:

--You can ofeﬁne a path upon which the magnitude of B is constant over the
entire path (this will normally be a circular path); or

--You can ofeﬁne a combination of paths some of which will have a magnitude
of B that is constant over the section(s), some will have B equal to zero over the
section(s) and/or some will have the evaluation of Bedlequal to zero over the
section(s) . . . (these multiple paths are usually rectangular).

‘Use ‘Biot Savart when:

--You can’t use Ampere’s Law. (In other words, Ampere’s Law should be your
first choice.)
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f&zctromagnetics

‘Because a COi[ sets up a magnetic field

down its axis, as shown in the sketch, a
tightly wound coil will act like a bar magnet
in the sense that it will have one end that
acts like a north pole and one end that acts
like a south pole.

QZU’LO[ 68C61US€ a ferromagnetic material

(iron, steel, etc.) has within it magnetic
domains that can align themselves to an
external magnetic field, it is possible to
make a very strong electromagnet by
slipping a piece of iron (for instance) down
the axis of a coil, then sending a current
through the coil. That, in fact, is how
electromagnets are made.
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Suﬁtﬁzties—ﬂ\/lagnetic Flux

n tﬁe Sectiomn on Gauss’s Law, we started the
discussion by defined electric flux in general through
any simple surface as:
®, =E-A
=EAcos0

From fﬁiS, Gauss extended the idea to how

charge inside a closed surface was/is proportional
to the electric flux through the surface, and

Gauss’s Law was born as:

_f EoqaA = Yenat
®, = B-dA= ‘

(0)

/ graphic courtesy of
Mr. White

imaginary Gaussian
sphere
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At the time all of this was introduced, it was pointed

out that the i1dea of flux can be applied to any vector field,
which means we can define magnetic flux as:

®, =B-A 7
>

= BAcos0 /

‘Because magnetic field lines either circle current carrying wires or are

generated in pairs (a north and south pole together), the magnetic flux through a
closed surface will always equal zero. In other words:

qSSB-dAzo

Qzl[l' ﬁougﬁ wWe Wl[[ do a quick flux problem next, the full significance of

magnetic flux won’t become evident until we get into induction and Faraday's Law.
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fxamy[e 10: Derive an expression for the >l >

magnetic flux through the face of the rectangular path A
shown due to the B-fld set up by the current-carrying
wire (a very cool, classic problem). [

. 1
The cﬁ’ﬁ(icufty here is in the fact that the B-fld from
the current carrying wire isn’t constant over the face
of the area, as B - ( L, j 1 shows. v
wire 275

N
X X 1

We have to determine the differential magnetic flux dd, — dx

through a differentially small surface area b( dx)where the B-fld
is evaluated constant, then sum all those d®'s over the entire face. Starting:

d@le;a-dg O, = [do,
= [ £ |(bdx)cos0° [ Hoib peradx _ (p,ibY e
\27|:X p— - J- — lnX X=C
\ 2T JIx=¢ X 2T

( .
Hlb dx TR .
S L b L 1b c+a
T ) X = on )[ln(c+a)—lnc]:( - ){ln( ; ﬂ
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A Little Problem with ?lmjoere’s Law

‘As Stateaf, Ampere’s Law maintains that the circulation of B-fld around a

closed path 1s proportional to the current that passes through the face of the path.
Faraday noticed a bit of a twist to the situation that adds an unexpected wrinkle.

Consider the cu.rrem“ carrying wire t.hat capacitor
leads to a capacitor as shown to the right.
Notice also the path defined for use with
Ampere’ s Law.

With the “face" of the path shown
as green, the current through the
“face” is the conventional current i_
in the wire and we can write:

CﬁE ° dT — u”oithru
= B(2nr)=p,i,
Wi, Amperian Joatﬁ

= B=
2Tr
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What F amcfay noticed was that we don’t need capacitor
to define the “face” of the path as previously
shown but, rather, could identify it alternately
as a billowing surface (the green) whose
boundary 1s edged by the Amperian path.

In that scenario, the path would still
look like that shown in the sketch to
the right.

The comjofication this generates 1s that
we have an Amperian path—the same as
before—and we have a surface we are
associating with its “face,” but because
the face passes between the plates of a
capacitor, and because current does not
pass through a capacitor, there is no actual current through the face of our
Amperian path. Yet common sense suggests that the magnetic field we determine
using Ampere’s Law in the first setting shouldn’t disappear simply because we are
using a different face, so how do we reconcile the problem?

42)




Tamcfay’s solution was to claim that
Ampere’s Law only works in the form
you’ve seen if the electric field
producing the current is constant. If the
electric field is changing with time, an
alternate version of Ampere’s Law must
be used. That is where /e
displacement current comes in.

cajoacitor

The cfisy[acement current 1s defined

as. d(DE
° dt

I, =¢

A ’ th
mjaeman]oa c[osecfsurface

Does this make sense?

To see we need to look at Gauss’s Law, and to do that we need to close the
original circular face of the path to create a closed surface. Having executed that

operation, Gauss’s Law maintains that the net flux through that closed surface will
be:

_ Yenal _
(I)E — Eenc = qencl _ 8O(I)E

(0




So q.,, = €&,P.. Butin this case, (., is capacitor
the charge on one plate of the capacitor.
If we calculate the rate at which that
charge i1s changing (the rate at which the
capacitor 1s charging), we get the current
in the circuit. In other words:

d
iC — qcap
dt
— d(goq)E)
dt
dd,
° o dt
Caps don’t have charge move through them, but the electrostatic repulsion between
their plates creates the illusion that current is flowing through the cap. Faraday,
apparently, deduced that that virtual current (my words, not his) was the

displacement current needed for Ampere’s Law to work. In any case, the complete
form of Ampere’s Law is:

@E.di - Hoithru +““0 (80 dq)E

=& Amperian Joatﬁ

term on the right you evaluate,

depending upon the circumstances.

where it’s YOUR CHOICE which
o
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