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CHAPTER  30:
Sources of Magnetic Fields

Photo and info courtesy of Mr. White

Cern’s single-
walled coil 
operates at 
7600 amps and 
produces a 2.0 
Tesla B-fld. 
http://atlas-
magnet.web.ce
rn.ch/atlas-
magnet/info/pr
oject/ATLAS_
Magnet_Leafle
t-ds.pdf

http://atlas-magnet.web.cern.ch/atlas-magnet/info/project/ATLAS_Magnet_Leaflet-ds.pdf


In 1820, Hans Christian Oersted, observed that a compass near a current-
carrying wire will react.  Conclusions: B-flds are produced by charge in motion,
and B-flds circle around current carrying wires.

B-flds Produced by Charge in Motion
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The sense of circulation can be deduced 
using what I call the right-thumb rule:

from above

B-fld into page

Grasp the wire with the right hand with the 
thumb in the direction of current.  Your 
fingers will curl in the direction of the B-fld.

photo courtesy of Mr. Whitefrom side

B-fld out of page i

 i icurrent out
of page

B-fld circles
counterclockwise

i



Oersted (1820) (courtesy of Mr.  White)

If the wire is grasped with the right hand, with the thumb 
in the direction of current flow, the fingers curl around the 
wire in the direction of the magnetic field. 
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Obscure observation from Fletch:  
Notice that if the current-carrying wire is 
straight and you draw a vector from any 
point on the wire to a point of interest, 
the direction of the magnetic field at that 
point will be perpendicular to the plane 
defined by that vector and the direction 
of the current (treated like a vector).

define B-fld
with compass

The magnitude of B is the same everywhere on a circular 
path perpendicular to the wire and centered on it. 
Experiments reveal that B is proportional to I, and 
inversely proportional to the distance from the wire.

vector defining 
current “i”

any vector 
from wire

B-fld

Plane of “any vector” 
and “i” is plane of 
page—B-fld is 
perpendicular to that



Example 1 (courtesy of Mr. White)

Predict the orientation of the compass 
needles.

I  
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Example 1
Determine the direction and magnitude of the magnetic field at “x” if the wire 
carries current “i” and “x” is “r” units from the wire. 

x

5.)   



Solution
x
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Example 2
Determine the direction and magnitude of the magnetic field at “p” if the left 
wire carries current “i,” the right wire carries current “2i” the wires are “x/2” 
units apart and “x” is “x” units from the 2i wire. 

Where will the net magnetic field be zero?

p
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Determine the direction and magnitude of the magnetic 
field at “x” if the left wire carries current “i,” the right wire 
carries current “2i” the wires are “x/2” units apart and “x” is 
“x” units from the wire. 

Where will the net magnetic field be zero?

x

To the left of the ”i” wire - the fields will be opposite in direction, and it’s farther 
from the 2i wire.
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Determine the net magnetic field at the origin
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Determine the net magnetic field at the origin

19.48 on class Website is a 
good one to practice with!
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Solenoids
A long coil of wire with many loops (or turns) is called a solenoid.

The magnetic field inside the solenoid can be fairly large when current flows 
through the wire as each loop adds to the overall magnetic field strength.

The magnetic field within the solenoid is fairly uniform and  runs in one 
direction, down the middle of the coils, resulting in the coil acting like a magnet 
with a north and south pole.

If a piece of iron is placed in the core of the loop, this becomes an 
electromagnet.

– Why iron? What happens?

11.)   



Coulomb’s Law observed 
that the electric field generated by 
a point charge was proportional to 
the magnitude of the field 
producing charge and inversely 
proportional to the square of the 
distance from the field producing 
charge and the point of interest.  

Extending this, if you have an 
extended charge, the technique is 
to determine the magnitude of the 
E-fld for a differentially small 
piece of the charge dq, then 
integrate to get the net electric 
field.

The Law of Biot-Savart
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Notice the cross product gives a 
direction that is perpendicular to 
the plane defined by    and i at ds
as advertised earlier.    

Biot-Savart does a similar thing for magnetic fields, with the exception that 
it incorporates the direction of the B-field into the calculation. 
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d
!
B= µo

4π
⎛
⎝⎜

⎞
⎠⎟ I
d!sxr̂
r2

Specifically, it observes that the 
differential magnetic field dB at Point P
due to the current in the differentially 
small section ds of wire is:

ds  

P   

r   

r   ˆ

dB out   

θ   

graphic courtesy 
of Mr. White

where:

 
µo = permeability of free space
    = 4πx10−7  T i m/A
ds is a section of current-carrying wire

 
!r  is a vector from ds to the point of interest

 d
!s is a vector in the direction of the current at ds 

 ̂r is a unit vector in the direction of !r

 θ is the angle between r̂  and d!s  
!r

I is the current in the wire



The Biot-Savart Law  (courtesy of Mr.  White)

magnetic field at a point P 
perpendicular to segment of 
wire ds & perpendicular to 
unit vector r from ds to P.

  

€ 

d
 
B = km

I  d s × ˆ r 
r2

km= 10-7 T•m/A 
km= µo /4π , where 
µo = permeability of free space
µo =4π x10-7

steady 
current in 
direction 
ds

element of 
wire

determines 
direction of 
field

ds  

P   

r   

r   ˆ

dB out   

θ   
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the cross product that 
bit produces becomes:

Example 2: (problem courtesy of Mr. White):  

Determine the magnitude and direction of the B-fld
at the point O in the diagram. (Current I flows from 
top to bottom, radius of curvature = R.)

To do this, you need to break the current paths 
into segments that either have the same r value or 
have a cross product that is zero.

Defining a differential length ds a the unit vector     in one of the sections that 
moves directly toward or away from the point (see sketch), 

point O θ
R

I
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15.)



and 
noticing how ds is related to      (see insert), 

Again, defining the differential length ds and 
the unit vector    for the curved sections,           

With no B-flds being generated at Point O due to 
the sections of wire that have current moving 
directly toward or away from the point, we turn 
to the only other section in the system:

Point O θ
R

I
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point O

dθ
R  d

!s2 = Rdθ

How ds is related 
to R and      .   dθ

r̂1
dθ

Also, crossing                   yields a direction INTO the page, which is 
exactly what the right-thumb rule would have given you!

 d
!s2  into r̂2

the cross product becomes:



Note that ds = dx and the general 
geometry.  That is,
and                     

Example 3: Derive an expression for the B-fld generated by an infinitely long, 
current-carrying wire a distance a units from the wire.
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Double the sum of the differential B-flds
from infinity to zero, we can write:
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 i

With that:

point
Define x.  
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Solving:

1 0

2

And the cross product           yields a B-fld direction OUT OF the page at the point. d
!s x r̂



There is only one way to get 
the magnitude of the force, but there 
are TWO ways to get the direction.  
We’ll do it all.

Magnetic Forces Between Wires
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Example 4: Derive an expression for the 
magnitude and direction of force on a current-
carrying wire bathed in the B-fld generated by a 
second current carrying wire a units away. 

graphic courtesy of Mr. White 
with slight modification

A more standard way to present a current 
coming into or out of the page;

 i

For the magnitude: The direction of the 
magnetic field due to the left-side wire can be 
determined using the right-thumb rule and is 
as shown.

B1 =
µo
2π

⎛
⎝⎜

⎞
⎠⎟
i1
a

a

a

i1 i2

i1 i2

B1
The magnitude of it’s B-fld is:



Executing          yields a vector direction to 
the right, AWAY from the left wire. 
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 i

Because the force relationship between a current-carrying wire and the B-fld the 
wire is bathed in is known, we can write:

 

!
F2 = i2

!
Lx
!
B1

    = i2L
µoi1

2πa
⎛
⎝⎜

⎞
⎠⎟

 
!
B1 at wire

Now for the fun—finding the direction of the force 
on the right-hand wire:  Start with the cross product.

 
!
F2 = i2

!
Lx
!
B1

 
!
F2is out of the page (in the direction of the 

right-hand wire’s current), and we’ve 
already determined the direction of the B-
fld due to the left-hand wire in that region 
(it’s downward at the right-hand wire).

 
!
Lx
!
B1

 
!
L
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But there’s a cooler way to do this which requires an interesting observation.

Consider two north poles juxtaposed against 
one another.  You know from experience that 
these two magnets will repulse one another.  
Notice that the direction of the magnetic field

The rule: If the magnetic field lines between two field-producing objects are 
parallel to one another, the two objects will magnetically repulse one another.  If 
they are anti-parallel, they will magnetically attract one another. 

lines generated by the two in this case are parallelish. 

If, on the other hand, the poles are 
opposites, their magnetic field lines will be 
anti-parallelish and the two magnetis will 
attract one another.  

N

N N

S



shows that their 
field lines are parallel between one another 
. . . which means the two wires will repulse 
one another.  That means the force on the 
right-hand wire should be away from the 
left-hand wire, as determined using the 
mathy approach.
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 i

So going back to the direction of the force 
on the right-hand wire:

A quick determination (using the right-
thumb rule) of the direction of the B-flds
set up by the two wires in the region 
between the two wire

B-flds suggest repulsion

 
!
F2



As a preamble: The circulation of a vector field around a closed path is 
defined as the summing of the dot products of that vector with all the differential 
lengths of the path around the circuit.
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circulation = 
!
E i d
!
l"∫

So if you had an electric field, for instance, and
and you did all the 

dot products around the path, 

d
!
l1

!
E1

!
E2

d
!
l2

So in this case, the dot product gives you the 
component of E along the line of dl, times dl, summed
over the entire closed path.  And as some of these mini-dot products can be 
positive (           ) and some negative (           ), circulations can be zero or non-
zero, depending upon the vector field involved.

!
E2xd

!
l2

!
E1xd
!
l1

a closed path (defined in red), 
the “circulation of 

E” would be:



Think back to what Gauss’s Law did for you.  
Gauss observed that if you have a net charge in a 
closed surface, the straight-arrow electric field lines 
generated by the charge would either exit or enter the 
surface (depending upon whether the charge was 
positive or negative), creating an electric flux through 
the surface.  That flux, he reasoned, was proportional to 
the charge enclosed.  By the time the dust settled, he 
had posited Gauss’s Law, or:

Ampere’s Law 
(the magnetic counterpart to Gauss’s Law)
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!
E i d
!
A

S"∫ = qenclosed
εoChoose a reasonably symmetric surface, and voila, 

you have a useful mathematical tool for deriving 
electric field functions.

Q

imaginary Gaussian surface

 d
!
A
 
!
E



Magnetic fields set up by current-carrying wires are not “straight arrow 
vectors,” they are fields that circle around wires.  So Ampere reasoned that if he 
defined a closed PATH around a wire and determine the circulation of the field 
around that path (this is a mathematical operation consisting of dotting the B-fld
into a differential path length     , then summing all those dot products around 
the closed path to get the “total circulation”), that sum would have to be 
proportional to the current passing through the face of the path.  In other words, 

25.)

 
!
B i d
!
l"∫  α ithru  the face

The proportionality constant that makes this into an equality is the 
permeability of free space, or     , making Ampere’s Law:µo

 
!
B i d
!
l"∫  = µoithru

Note: The book uses      as their differential path length, but they also use      
for their differential section of current in Biot-Savart.  Using the same symbol 
for two different situations seems confusing, so I prefer      when dealing with 
Amperian paths.

 d
!
l

 d
!s

 d
!
l

 d
!s



 d
!
l1
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Example 5: Assume a current-carrying wire 
produces a B-fld, and the wire is far enough away
so that the field lines generated by the wire look as 
shown to the right.  If a small circular path is 
defined as shown, what is the circulation of the 
field around the path?

B

If we define a differentially small section along the 
path, we can execute the mathematical operation           
and end up with a positive dot product (the angle 
between the two vectors is less than       ).

 
!
B i d
!
l1

900

 d
!
l1

 d
!
l2

Define a second differentially small section along the path and we get a 
negative dot product (the angle between the two vectors is greater than       ).

d
!
l2

900

Bottom line: The net circulation will have positive parts and negative parts, and 
will ultimately sum to zero.

But we should have seen this coming.  There is NO CURRENT PASSING 
THROUGH THE FACE OF THE PATH, so according to Ampere there should be 
NO NET CIRCULATION.



The current through the face is easy—it’s just i, but the angle between     
and the B-fld evaluated at      is different than the angle between       and 
the B-fld evaluated at       .  That’s going to make the integral nasty.

YES, Ampere’s Law always works (just like Gauss’s 
Law always works, even when a geometry makes its 
integral impossible to solve).  
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Example 6: A current carrying wire has current 
directed out of the page as shown.  For the dotted path 
shown, is the net circulation equal to       ?

 d
!
l1

 i  d
!
l1

 d
!
l2

r2
r1

The real question is whether using Ampere’s Law is a reasonable thing to try to 
do in this case . . . and the answer to that question is NO! 

Why?  Look at the symmetry.

i

 d
!
l2

 d
!
l2

 d
!
l1

Consider the problem 
exploiting symmetry:

 i
 d
!
l

R
i

is the same at 
every point on 
the path, so:  

!
B i d
!
l"∫  = µoithru

  ⇒   B dlcos00"∫ = µoi

  ⇒   B 2πR( ) = µoi  ⇒   B= µoi
2πR

 
!
B

BAM! The B-fld for a current-carrying wire.

µoi
B

1



To get a feel for the power of Ampere’s Law, let’s assume we are looking at an 
infinite series of wires.  How might we derive an expression for the magnetic 
field due to one current carrying wire, then extrapolate for the whole?
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Example 7: Consider an infinite sheet of current with the current coming out of 
the page.  Assume you know the current density j (the amount of current-per-unit-
length) in the sheet.  What is the net B-fld generated by the current R units away?

dB=
µo di( )
2πr R

x

dx
di = jdx

to infinity

θ

di

Consider the differential B-fld generated by our differential bit of current x units
from the system’s origin.

	r



From symmetry, though, a second differential bit of current flow produces the 
additional field shown below, with the sum of the two fields producing a y-
component that adds to zero.
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Additional geometry yields:
θ

r

x

θ

tan θ = x
R

   ⇒    x = R tanθ
   ⇒    dx = R sec2 θ( )  dθ
sec  θ = 1

cos  θ

cos  θ = R
r

   ⇒   r = R
cos  θ

= Rsecθ

R

dBx = 2
µo j dx( )

2πr
cosθ

dBx =    2 µo j
2πr

             dx( )            cosθ

      = 2µo j
2π Rsecθ( ) Rsec2 θ( )dθ⎡⎣ ⎤⎦

1
secθ

⎛
⎝⎜

⎞
⎠⎟

So:

dBx = 2
µo j dx( )

2πr
cosθ
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Simplifying, then summing (integrating) from                                          , (we’ve 
already taken care of the other half in eliminating the y-component of the B-fld), 
we get:

dBx =
2µo j

2π Rsecθ( ) Rsec2 θ( )dθ⎡⎣ ⎤⎦
1

secθ
⎛
⎝⎜

⎞
⎠⎟

      = µo j
π

dθ

   ⇒    B =
µo j
π

dθ
θ=0

π /2

∫
   ⇒    B =

µo j
π

θ 0
π /2

   ⇒    B =
µo j
π

π
2

⎛
⎝⎜

⎞
⎠⎟

   ⇒    B =
µo j
2

θ

dB

x

rR

θ = 0 to θ = π
2  radians



 

                                
!
B• d
!
l"∫                               = µo    ithru

     
!
B i d
!
l1L∫    +      

!
B i d
!
l2w∫     +      

!
B i d
!
l3L∫    +      

!
B i d
!
l4w∫      = µo j( )L⎡⎣ ⎤⎦

By dl1 cos0o

L∫ + By dl2 cos90o

w∫ + By dl3 cos0o

L∫ + By dl4 cos90o

w∫ = µo j( )L⎡⎣ ⎤⎦

                            ⇒     BL + 0 + BL + 0 = µo j( )L⎡⎣ ⎤⎦      

                                  ⇒           B= µo j
2

0 011

--The current thru the Amperian face is           , 
where j is the number of wire per unit length, so:

Constrast this with Ampere’s Law.
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--For Ampere’s Law, we need a path along 
which the magnitude of is either constant or 
such that the dot product of     and is zero (a 
rectangle will do the job).

 
!
B

 
!
B  d

!
l

--Note that B is constant along the horizontal, 
in opposite directions on either side of the sheet.

Amperian path

i = jL

. . . a lot easier!

B
B

B B

dl1

dl4
dl3

dl2

L

w



 

!
B• d
!
l"∫ = µoithru

   ⇒   B dlcos0o"∫ = µo Ni( )
   ⇒   B 2πr( ) = µo Ni( )

        ⇒   B= µoNi
2πr

1

--Because the B-fld for a toroid circles along 
the toroid’s axis,  
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Example 8: Derive an expression for the B-fld
inside an N-turn toroid (a coil with N winds that 
curves back on itself)

--Noting that N wires pass through the 
Amperian path, the current through the face is 
Ni and we can write:

the Amperian path that is 
applicable here is a circle of radius r.

from above:

i

r

B

--Notice that B varies with r.

from the side:

i

i

 d
!
l

Amperian
path
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A solenoid, also referred to as a coil, is 
exactly that.  A long wire tightly coiled 
helically.  They are typically characterized 
by the number of winds per unit length n.

--Solenoids are typically tightly wound, but an spread out version (courtesy of 
Mr. White) allows us to see their microstructure.

Solenoids

--Between the winds the fields 
add to zero;
--Outside the winds the field is 
weak and drops to zero fairly 
quickly;
--Down the axis, the field is 
intense;
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There is still another 
right-hand rule that can be 
used to determine the 
direction of the magnetic field 
due to current through a coil.  
It’s easy (and fun!).

Trickery

iLay your right-hand on the 
coil with your fingers pointing 
in the direction of the current.
The direction your thumb points is the direction of the B-fld down the axis of the 
coil.
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Example 9: Determine the B-fld down the axis of a 
current-carrying coil (a solenoid), where n is the number 
of turns per unit length in the coil (see cross-section).

--The paths perpendicular to the coil will 
experience zero B-fld;

 i  i  i  i  i  i  i  i  i  i  i  i

--The path outside the coil is far enough 
out so the B-fld is essentially zero;
--The path inside the coil experiences a 
non-zero B-fld.

dl1

dl2

dl3

dl4

 

                                
!
B• d
!
l"∫                               = µo    ithru

     
!
B i d
!
l1S1

∫    +
!
B i d
!
l2S2

∫ +
!
B i d
!
l3S3

∫ +
!
B i d
!
l4S4

∫ = µo nL( )i⎡⎣ ⎤⎦

Baxis dl1 cos0o

L∫ +   By dl2h∫ +  Bwayout dl3L∫ +  By dl4h∫ = µo nL( )i⎡⎣ ⎤⎦

                            ⇒     BaxisL = µo nL( )i⎡⎣ ⎤⎦      
                           ⇒           Baxis = µoni

01 0 0

Baxis
(ignoring 
end effects)

We need a rectangular Amperian path.  Why? 

The current
through the 
face is:
ithru = nL( )i
where nL is the 
number of wires 
thru the face.  So:

i

L
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Use Ampere’s Law when:

Deciding When to Use Ampere’s Law 
versus Biot Savart

--You can define a path upon which the magnitude of B is constant over the 
entire path (this will normally be a circular path); or 
--You can define a combination of paths some of which will have a magnitude 
of B that is constant over the section(s), some will have B equal to zero over the 
section(s) and/or some will have the evaluation of           equal to zero over the 
section(s) . . . (these multiple paths are usually rectangular).

 
!
B i d
!
l

Use Biot Savart when:

--You can’t use Ampere’s Law.  (In other words, Ampere’s Law should be your 
first choice.)
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Because a coil sets up a magnetic field 
down its axis, as shown in the sketch, a 
tightly wound coil will act like a bar magnet 
in the sense that it will have one end that 
acts like a north pole and one end that acts 
like a south pole.

Electromagnetics

NS

And because a ferromagnetic material 
(iron, steel, etc.) has within it magnetic 
domains that can align themselves to an 
external magnetic field, it is possible to 
make a very strong electromagnet by 
slipping a piece of iron (for instance) down 
the axis of a coil, then sending a current 
through the coil.  That, in fact, is how 
electromagnets are made.

NS piece of iron
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In the section on Gauss’s Law, we started the 
discussion by defined electric flux in general through 
any simple surface as:

Subtleties—Magnetic Flux

From this, Gauss extended the idea to how 
charge inside a closed surface was/is proportional 
to the electric flux through the surface, and 
Gauss’s Law was born as:

θ  

θ  
Ε  

Α  

 
ΦE =

!
E i
!
A

     = EAcosθ

Q

imaginary Gaussian 
sphere

 
!
E

 
ΦE =

!
E i d
!
A

S"∫ = qencl
εo

graphic courtesy of 
Mr. White
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At the time all of this was introduced, it was pointed 
out that the idea of flux can be applied to any vector field, 
which means we can define magnetic flux as:

 
ΦB =

!
B i
!
A

     = BAcosθ

θ  

θ  
Ε  

Α  

B

Although we will do a quick flux problem next, the full significance of 
magnetic flux won’t become evident until we get into induction and Faraday’s Law.

Because magnetic field lines either circle current carrying wires or are 
generated in pairs (a north and south pole together), the magnetic flux through a 
closed surface will always equal zero.  In other words:

 

!
B i d
!
A = 0

S"∫
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Example 10: Derive an expression for the 
magnetic flux through the face of the rectangular path 
shown due to the B-fld set up by the current-carrying 
wire (a very cool, classic problem). 

 

dΦB =
!
B i d
!
A

       = µoi
2πx

⎛
⎝⎜

⎞
⎠⎟ bdx( )cos0o

       = µoib
2π

⎛
⎝⎜

⎞
⎠⎟

dx
x

i

ac

b

x
dx

The difficulty here is in the fact that the B-fld from 
the current carrying wire isn’t constant over the face 
of the area, as                           shows.Bwire =

µo
2π

⎛
⎝⎜

⎞
⎠⎟
i
x

is evaluated constant, then sum all those           over the entire face.  Starting:

We have to determine the differential magnetic flux         
through a differentially small surface area           where the B-fld

dΦB

dΦB's
b dx( )

ΦB = dΦB∫
       = µoib

2π
⎛
⎝⎜

⎞
⎠⎟

dx
xx=c

c+a

∫ = µoib
2π

⎛
⎝⎜

⎞
⎠⎟ lnx x=c

c+a

       = µoib
2π

⎛
⎝⎜

⎞
⎠⎟ ln c + a( )− lnc⎡⎣ ⎤⎦ =

µoib
2π

⎛
⎝⎜

⎞
⎠⎟ ln c + a

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⇒
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As stated, Ampere’s Law maintains that the circulation of B-fld around a 
closed path is proportional to the current that passes through the face of the path.  
Faraday noticed a bit of a twist to the situation that adds an unexpected wrinkle.

A Little Problem with Ampere’s Law

Consider the current carrying wire that 
leads to a capacitor as shown to the right.  
Notice also the path defined for use with 
Ampere’s Law.

With the “face” of the path shown 
as green, the current through the 
“face” is the conventional current     
in the wire and we can write:

 

!
B i d
!
l"∫ = µoithru

    ⇒   B 2πr( ) = µoic

    ⇒   B= µoic

2πr

ic

Amperian path

capacitor

ic

face



capacitor

ic

Amperian path
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What Faraday noticed was that we don’t need 
to define the “face” of the path as previously 
shown but, rather, could identify it alternately 
as a billowing surface (the green) whose 
boundary is edged by the Amperian path.

In that scenario, the path would still 
look like that shown in the sketch to 
the right.

The complication this generates is that 
we have an Amperian path—the same as 
before—and we have a surface we are 
associating with its “face,” but because 
the face passes between the plates of a 
capacitor, and because current does not
pass through a capacitor, there is no actual current through the face of our 
Amperian path.  Yet common sense suggests that the magnetic field we determine 
using Ampere’s Law in the first setting shouldn’t disappear simply because we are 
using a different face, so how do we reconcile the problem?

face



Having executed that 
operation, Gauss’s Law maintains that the net flux through that closed surface will 
be:
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capacitor

ic

Amperian path

Faraday’s solution was to claim that 
Ampere’s Law only works in the form 
you’ve seen if the electric field 
producing the current is constant.  If the 
electric field is changing with time, an 
alternate version of Ampere’s Law must 
be used.  That is where the 
displacement current comes in.  

The displacement current is defined 
as:

Does this make sense?

To see we need to look at Gauss’s Law, and to do that we need to close the
original circular face of the path to create a closed surface.  

Id = εo
dΦE

dt

ΦE = qencl

εo

   ⇒    qencl = εoΦE

closed surface
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capacitor

ic

So .  But in this case,        is 
the charge on one plate of the capacitor.  
If we calculate the rate at which that 
charge is changing (the rate at which the 
capacitor is charging), we get the current 
in the circuit.  In other words:

Caps don’t have charge move through them, but the electrostatic repulsion between 
their plates creates the illusion that current is flowing through the cap.  Faraday, 
apparently, deduced that that virtual current (my words, not his) was the 
displacement current needed for Ampere’s Law to work.  In any case, the complete 
form of Ampere’s Law is: 

qencl = εoΦE

ic =
dqcap

dt

  =
d εoΦE( )

dt
  = εo

dΦE

dt

 

!
B i d
!
l"∫ = µoithru + µo εo

dΦE

dt
⎛
⎝⎜

⎞
⎠⎟

where it’s YOUR CHOICE which 
term on the right you evaluate, 
depending upon the circumstances.

qencl

Amperian path


