
Ch 30 - Sources of Magnetic 
Field



Currents produce Magnetism?
1820, Hans Christian Oersted: 
moving charges produce a magnetic 
field. The direction of the field is 
determined using a RHR.



Oersted (1820)
If the wire is grasped with the 
right hand, with the thumb in the 
direction of current flow, the 
fingers curl around the wire in 
the direction of the magnetic 
field. 
The magnitude of B is the same 
everywhere on a circular path 
perpendicular to the wire and 
centered on it. Experiments 
reveal that B is proportional to I, 
and inversely proportional to the 
distance from the wire.



Example 3
Predict the orientation of 
the compass needles. I  



The Biot-Savart Law

magnetic field at a point 
P perpendicular to 
segment of wire ds & 
perpendicular to unit 
vector r from ds to P.
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Example 1
Determine the magnitude 
and direction of the 
magnetic field at the point O 
in the diagram. (Current I 
flows from top to bottom, 
radius of curvature = r.)

ds   
θ   
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For straight segments, ds× r = 0.
For curved segment, ds× r = ds, because s and r are ⊥.
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Example 2
Determine the direction and 
total magnitude of the 
magnetic field at the point P 
shown here, near a long, 
thin, wire.
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The magnetic field for an infinitely long straight wire is
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Magnetic Force between wires
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Ampère’s Law

B   
ds    

If we evaluate the dot-product "
in a circle around this wire, and sum this 
product over the entire path of the circle,  
we get

This result is valid for any closed path that 
encloses a wire conducting a steady current, 
and is known as Ampère’s Law:
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B • d s ∫ = µoI

Line integral, 
taken around a 
closed path that 
surrounds the 
current.
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Gauss & Ampère
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Example 3
Use Ampère’s Law to 
calculate the magnetic field 
at a distance r away from a 
current-carrying wire.
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R   

r   

€ 

B • ds = µoI∫
B ds∫ = µoI

B(2πr) = µoI

B =
µoI
2πr

 (for r > R)
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Example 5
Find the magnetic field B for a 
thin, infinite sheet of current, 
carrying current of linear density 
J in the z direction.
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B • ds = µoI∫
B ds∫ = µo(J)

B(2) = µo(J)

B =
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Example 4
Use Ampère’s Law to calculate to 
calculate the magnetic field inside 
a toroid of N loops, at a distance r 
from the center.
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B • ds = µoI∫
B ds∫ = µoI

B(2πr) = µoNI

B =
µoNI
2πr

 

To determine magnetic field inside 
torus, draw Amperian line inside coil. 
The wire passes around that Amperian 
line N times.

Assumptions: r of torus is large compared to 
cross-sectional radius, so B is ~ uniform 
within torus.
Also, for an ideal torus (closely spaced turns 
of wire), the external magnetic field is close to 
0.



Electromagnets & Solenoids
A solenoid is a long wire 
wound in the form of a 
helix.
If the turns are closely 
space and the solenoid is 
finite in length, the field 
lines from a solenoid look 
very similar to those of a 
bar magnet.
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B Field for a Solenoid
Inside = strong B field
Outside = weak B field
Between coils = 0 field



Example 6
Use Ampère’s Law to calculate 
the magnetic field of a solenoid I  
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Electric Flux (Review)
Brief review of Electric Flux:
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Φ = EAcosθ

“The net electric flux through any closed 
surface is equal to the net charge inside the 
surface divided by o.”
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Magnetic Flux
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Example 7
Find the total magnetic flux 
through the loop shown here.
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Gauss’s Laws

Magnetic field lines are 
continuous, and form closed loops. 
Magnetic field lines created by 
currents don’t begin or end at any 
point.Therefore, the net magnetic 
flux through any closed surface is 
always zero! 
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Electric field intensity depends only on the net internal 
charge.
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Difficulty w/Ampère’s Law

Two problems: 
What if current is 
changing?
What if Amperian path 
doesn’t enclose current?
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Ampère’s Law (redux)
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Ampère-Maxwell Law

  

€ 

 
B • d s ∫ = µo(I + εo

dΦE

dt
)


