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CHAPTER  28:
Complex DC Electrical Circuits



The battery outputs MORE 
CURRENT so                  and     , in theory, should remain unaffected.

All the battery’s voltage drop happens 
across the resistor     , and the current 
through the ammeter is just    , so: 

a.) What does the ammeter read when the 
switch is open?

2.)

Vbattery

A

V

EMF and Terminal Voltage
Example 1: Consider the circuit to 
the right.  If the resistors represent light bulbs:

R1

R2

switch

io

i1

i2

Vbat = i1R1 = ioR1   ⇒    io =
Vbat

R1

i1

b.) In an ideal world, what should happen to the 
current through      when the switch is thrown?R1

Nothing, and this is tricky.  If you think of the current from the battery as 
fixed, you’ll conclude        current will drop as some current will now be 
needed for      .  But au, contraire.  Current through      is governed by the 
voltage across it and its resistance, neither of which changes when you 
throw the switch.  So what happens?

R2 R1
R1's

io = ii + i2 R1

R1

(step 1—redraw without the meters)



The problem lies in the internal workings of power 
supplies.  There are actually two parts to a p.s.:

c.) Here’s the rub: if you carry this experiment out 
in the real world, the light bulb associated with    
will actually dim suggesting that the current 
through      has diminished.  So what’s going on?

3.)

A

Vterminal

R1

R2

switch

io

i1

i2

R1

R1

1.) There is the part of the battery that creates the 
electric field that motivates charge to move through 
the wires.  This part has the units of volts and is 
called the electromotive force, or EMF (symbol    );

2.) Although it is possible to “rectify” a power supply to compensate for 
this, a power supply in its natural state also has internal resistance   .  

ε
riε

power supply

ri

Including the voltage drop due to   , this means a VOLTMETER will read 
what is called the terminal voltage (i.e., the voltage as measured at the 
terminals of the p.s.) equal to: Vterminal = ε − iori

Soooo, if you increase    by throwing the switch,             does DOWN across 
the resistors and the bulbs will dim!

Vterminalio

io

ri



Example 2: Derive an expression for the 
equivalent resistance (the single resistor that can 
take the place of the resistor combination) for the 
series combination shown to the right.  Assume an 
ideal power supply with no internal resistance.

4.)

The idea behind         is to find the single resistor that can 
take the place of all the resistors in the system.  In other 
words, the single resistor that, when put across      will draw    
.   

 Vo   =  ΔVi + ΔV2 + ΔV3

ioReq = ioR1 + ioR2 + ioR3

     ⇒    Req = R1 + R2 + R3

R1

Series Resistor Combinations

Requ

Vo io

Vo

R2 R3

Vo

Requ

Using the idea that the sum of the voltage drops across all 
the resistors will equal the voltage drop across the power 
supply, and including Ohm’s Law in the mix, we can write:

io

io

ΔV1 ΔV2 ΔV3



Characteristics of a Series Combinations

5.)

--Each element in a series combination is 
attached to its neighbor in one place only.

R1 R2 R3

--There are no nodes (junctions—places where current can slit up) internal to series 
combinations.

--Current is common to each element in a 
series combination.

--The equivalent resistance for a series combination is: Req = R1 +R2 +R3 + ...

--This means the equivalent resistance is larger than the largest resistor in the 
combination;
--This means that if you add a resistor to the combination,       will increase 
and the current through the combination (for a given voltage) will decrease.  

Req

Example 3: What’s the equivalent resistance of a                                
resistor in series?

5 Ω,  6 Ω and 7 Ω
Req = 5Ω( ) + 6Ω( ) + 7Ω( )
     = 18 Ω



Parallel Resistor Combinations
Example 3: Derive an expression for the 
equivalent resistance (the single resistor that can 
take the place of the resistor combination) for the 
parallel combination shown to the right.  Assume 
an ideal power supply with no internal resistance.

6.)

 io   =  ii + i2 + i3

Vo

Req

= Vo

R1

+ Vo

R2

+ Vo

R3

     ⇒    1
Req

= 1
R1

+ 1
R2

+ 1
R3

R1

Vo

R2

R3

What’s common in a parallel combination is the 
voltage drop across each element.  

io

Vo

Requ

io

i1
i2

i3

io

Also, in this case, the sum of the currents through the parallel 
combination must equal the current drawn from the power 
supply.  Using that and Ohm’s Law, we can write:  



Characteristics of a Parallel Combinations

7.)

--Each element in a series combination is attached to its 
neighbor in two place.

--There are nodes (junctions—places where current can slit 
up) internal to parallel combinations.

--Voltage is common to each element in a parallel 
combination.

--The equivalent resistance for a parallel combination 
is:

1
Req

= 1
R1

+ 1
R2

+ 1
R3

+ ...

--This means the equivalent resistance is SMALLER than the smallest resistor 
in the combination;
--And, if you add a resistor to the combination,       will decrease and the 
current through the combination (for a given voltage) will increase.  

Req

Example 3: What’s the 
equivalent resistance of three one-
ohm resistors in parallel?

R3

R2

R1

1
Req

= 1
1Ω( ) +

1
1Ω( ) +

1
1Ω( )

   ⇒ 1
Req

= 3  ⇒   Req = .333 Ω



Run and Shoot Problems

There is essentially no resistance between Point a and the high voltage 
terminal of the p.s., so their voltages are the same point being               .

Redraw the circuit without the meters.  They aren’t doing anything in the 
circuit except identifying a branch or resistor for which you want a current.

a.) What is the first thing you would do if asked to work with this circuit?

8.)

ε = 10V

Example 4:  An ideal power supply 
has EMF              powering it.  Any blue letters 
that show up designate points on the circuit. 
Assume the low voltage terminal of the p.s. is 
at zero volts.  Assume the resistor values are 
the same as the resistor subscripts. io

b.) What is the absolute electrical potential at Point a?

R1

A

V

R2

R3

R4

a b

g

Va = 10v
c.) What will the ammeter read?

Some amount of current is being drawn from the power supply.  Being in 
the same branch as Points a, b and g, it will be the same for all three points.  
It will also be the current through the ammeter.  So how do we get that?  

ioε = 10V



Req = R1 +
1

R2

+ 1
R3 + R4

⎛
⎝⎜

⎞
⎠⎟

−1

     = 1 Ω( ) + 1
2 Ω( ) +

1
3 Ω( ) + 4 Ω( )

⎛
⎝⎜

⎞
⎠⎟

−1

     = 2.56 Ω

c.) ammeter?

9.)

Using the       circuit:

io

R1

R2

R3

R4

a b

c

d

e

fg

ioHere is the circuit with the meters 
removed.  The trick here is to find the 
equivalent resistance for the circuit, then use 
Ohm’s Law.

This circuit is      in series with      in 
parallel with       and       in series.  That is:

R1 R2

R3 R4

Req

Vo
Req

io

Vo = ioReq   ⇒   io =
Vo

Req

                              = 10 V( )
2.56 Ω( ) = 3.9 AThe ammeter will read 3.9 amps.

ε = 10V



d.) How much power does      dissipate?

10.)

R1

R2

R3

R4

a b

c

d

e

fg

io
We know the absolute electrical potential 
(the voltage) at Point a is 10 volts.  

ΔV1 = ioR1

      = 3.9 A( ) 1 Ω( ) = 3.9 V
Vb = Va − ΔV1

    = 10 V( )− 3.9 V( )
   ⇒    Vb = 6.1 V   = Vc( )

V2 = i2R2

   ⇒    6.1 V( ) = i2 2 Ω( )
   ⇒    i2 = 3.05 A   

The power dissipated by      is, 
then:⇒  P2 =    i2( )2       R2

         = 3.05 A( )2 2 Ω( )
         = 18.6 W   

Because the absolute electrical potential at Point 
d is zero, the voltage across       equals                
and:

We know current goes from high voltage to 
low voltage, so the voltage change across 
must be a voltage DROP equal to: 

R1

Logic dictates that the absolute electrical potential 
at Point b is: 

R2

io

R2 Vc = 6.1 V

R2

ε = 10V



In this case, you could determine the current through the far-right branch (so 
you could use Ohm’s Law on      to get what the voltmeter would read) by using 
the same approach we used to get the current in the central branch in Part c 
(you’d just be using Points e and f instead of Points c and d in the process).  

e.) What does the voltmeter read?

11.)

R1

R2

R3

R4

a b

c

d

e

fg

You should begin to see a pattern here.  
Every question, whether it be asking for an 
ammeter reading or voltmeter reading or 
power calculation or current through an 
element or voltage cross an element, they 
all require you to determine the CURRENT

io

through the branch in which the element exists.  That, in general, is what you 
will always be doing—trying to derive expressions for current values. 

R3

i2
i3

node h

Look at node h 
io = i2 + i3
⇒ i3 = io − i2
        = 3.9A− 3.05A
         = .85A

Vmeter = i3R3

        = .85A( ) 3 Ω( )
        = 2.55 V   

Or . . . 
So

 i

ε = 10V



12.)

Example 5:  A power supply with         
of internal resistance is used to power a circuit.  
If the current through      is .23 amps, what is 
the current through     ?

Start with what is obvious.

R4=7Ω

ε=25V

20 Ω

ri =20 Ω

R3=5Ω

R2=7ΩR1=10Ω

R4
R1

The current through      in the bottom 
branch will equal all the currents in the 
parallel combination put together, or

i1 = i2 + i3 + i4
We know the current through      (given) and      
(same size resistance with same voltage across 
it), so all we need is the current through     .

R2R4

R3

The voltage across each of the parallel resistors is the 
same, and equal to:

V4 = i4R4

    = .23A( ) 7 Ω( )
    = 1.61 V   The the current through      is:R3      V3     = i3    R3

1.61 V( ) = i3 5 Ω( )
  ⇒  i3 = .32 A   So: i1 = .23A+ .32A+ .23A

  = .78A

R1
i1
i2

i3=.23A

io
i1=.23A



13.)

Example 6:  The current from the battery 
is 3 amps.  How much current goes through the 
upper branch of the parallel combination?

This is another use-your-head question.

If the upper branch has half the 
resistance of the lower branch, it should 
draw twice the current.  

12 Ω

6 Ω

24 Ω

42 V

i12

i24

i6
With 3 amps coming in, that means 2 
amps should pass through the upper 
branch.

Note: AP questions often have easy, non-mathematical, use-your-head solutions 
like this.  That is why I’m showing you screwball problems like this.  We will get 
into a more formal approach for analyzing circuit problems shortly.



Assuming the voltage at Points a is zero (this is tricky as you don’t know what     
is—you can define it anyway you want, though), the voltage changes will be due to 
the increase due to the battery in the right branch and the drop due to the 6 ohm 
resistor.  That is:

14.)

Example 7:  Consider:  

a.) What does the voltmeter read?

R

24 V

i3

i2
i1 = 2.75 A

ε
a

b

A

V6 Ω

b.) What is the voltage difference 
between Points a and b?

V = i1R
        = 2.75A( ) 6 Ω( )
        = 16.5 V   

Vab = 24 − 2.75A( ) 6 Ω( )
     = 7.5 V   

c.) What does the ammeter read? Vab = i2R3

7.5V = i2 6 Ω( )
   ⇒      i2 = 1.25 A   

This is just the current through the 3 ohm resistor, or:

3 Ω

d.) How is    generated?i1
which permeates the entire circuit.  The fields superimpose on one another, creating 
a net field.  That net field is what motivates charge to move in each branch.

Each battery produces an E-fld,



Some Definitions

15.)

A branch: A section of a circuit in 
which the current is the same everywhere.

--elements in series are a part of a single 
branch (look at sketch).
--in the circuit to the right, there are three 
branches.

A node: A junction where current can split up or be added to.

--elements in parallel have nodes internal to the combination.
--in the circuit above, there are two nodes.

A loop: Any closed path inside a circuit.

--in a circuit, loops can be traverse in a clockwise or counterclockwise 
direction.

branch branch

br
an

ch

Loop 1 Loop 2

Loop 3

--in the circuit above, there are three loops.

node

node
 i

 i



For Your Amusement

16.)

For the circuit to the 
right:

a.) How many branches are there?
six

R3

R2

R1

R4

R5

ε

b.) How many nodes are there?
four

c.) How many loops are there?
seven

R3

R2

R1

R4

R5

ε

 i

 i i

 i

And that last little nubbin is supposed to be a tooth, cause this looks like a face to 
me!



Kirchoff’s Laws—the Formal Approach

Kirchoff’s First Law: The sum of the currents 
into a node equals the sum of the currents out of a 
node.  Mathematically, this is written as:

17.)

ε

With the definitions under your 
belt, Kirchoff’s Laws are simple (and you’ve 
been inadvertently using them in the seat-of-
the-pants evaluations).  They are:

R1

R2

R3

R4

iinto node =∑ iout of node∑    

Kirchoff’s Second Law:  The sum of the voltage changes around a closed path (a 
loop) equals ZERO.  Mathematically, this is written as: ΔV∑ = 0  

Example from the circuit’s Node 
A:

io = i2 + i3

io i2
i3

Node A

Examples: starting at Node A:

Loop 2

R1io − ε +R2i2 = 0
Loop 1 traversing counterclockwise:

−R3i3 −R4i3 +R2i2 = 0
Loop 2 traversing clockwise:

Note:  Current moves from hi to lo voltage, so traversing against the current through 
a resistor produces a       that is positive; traversing with current makes it negative.  

Loop 1

ΔV



Kirchoff’s Laws—Using the Approach

18.)

ε

Example 8: Determine the meter 
reading in the circuit to the right using 
Kirchoff’s Laws.  Assume the power supply 
is ideal with an EMF of 10 volts, and assume 
the resistor values are the same as their 
subscripts (this is essentially Example 4).  

R1

R2

R3

R4

Step 1:  Define one current for each 
branch.  

io i2
i3

Node A

A

V

Step 2.  Write out node equations for as

Node A:
many nodes as you can (see note below).  Be sure to identify 
which node you are working with.  For this problem:

io = i2 + i3
Important note:  If  you had written out the node equation for the node at the 
bottom, you would have gotten                  .  This is the same equation as above.  
There will always be fewer independent node equations than actual nodes in a 
circuit.  In this case, there were two nodes and only one independent node equation. 

i2 + i3 = io

Step 0: Remove the meters.  



Step 3.  Identify and label the loops you will use.  Use an arrow in each to show 
the direction you intend to traverse that loop.

Note 1:  If there is a power supply in 
the loop, I prefer to start at the low 
voltage terminal and proceed through 
the supply.  That way, the voltage 
change through the supply will be 
positive.  With that in mind:

19.)

ε

R1

R2

R3

R4

io i2
i3

Node A

Loop 1

Additional note:  You have three branches 
and three unknown currents, which means 
you will need three equations to solve.  You 
have one node equation, which means you 
will need two more equations, presumably 
from your loops.  Kindly note: there are three 
loops in this circuit, but you can only get 
TWO INDEPENDENT LOOP EQUATIONS
from them.  Any two of those equations will do, and any two will produce the 
third, which means that if you try to do this problem using nothing but loop 
equations, you’ll end up with mush.  (Try it if you don’t believe me!) 

ε −R1io −R2i2 = 0
Loop 1:

Loop 2

R2i2 −R3i3 −R4i3 = 0
Loop 2:

Note 2:  Put resistance terms first 
as they’ll usually be assumed 
known whereas currents will not 
be.



Solving 3 Equations with 3 Unknowns

Putting in the numbers to make life easier:

20.)

We have three equations and three unknowns.  The ammeter is in the branch 
whose current is    .  So how to solve for    ?  There are three approaches.

ε − R1io − R2i2 = 0     (equ. A) R2i2 − R3i3 − R4i3 = 0     (equ. B)

io = i2 + i3       (equ. C)

Our equations:
io

Approach 1—Brute force algebra:

10 − io − 2i2 = 0     (equ. A) 2i2 − 3i3 − 4i3 = 0     (equ. B)
   ⇒    2i2 − 7i3 = 0

io = i2 + i3       (equ. C)

I’ll lay this out on the next page, just to convince you it’s not the way to go.

io



21.)

10 − io − 2i2 = 0        (equ. A)

   ⇒    i2 =
10 − io

2
= 10

2
− 1

2
io

2i2 − 7i3 = 0     (equ. B)
    ⇒     i3 =

2
7

i2      

io = i2 + i3       (equ. C)

⇒   io = i2 + i3     

         = i2 +
2
7

i2 =
9
7

i2

as

but

       io =
9
7

i2 =
9
7

10
2
− 1

2
i0

⎛
⎝⎜

⎞
⎠⎟

        ⇒     io =
90
14

− 9
14

i0

⇒    14io = 90 − 9i0

          ⇒    io = 90
23

          ⇒    io = 3.91 A

Like I said, NASTY!

so



--Begin by rewriting each equation so their     term is in the first column, its    
term is in the second column, etc., and its voltage term (if there is one) is on 
the right side of the equal sign.

Approaches 2 and 3: Matrices:

22.)

ε − R1io − R2i2 = 0     becomes    R1io + R2i2 + 0i3 = ε   

Our equations become:

io i2

R2i2 − R3i3 − R4i3 = 0     becomes     0io + R2i2 − R3 + R4( )i3 = 0

io = i2 + i3       becomes      io − i2 − i3 = 0 

--Put the 
information 
into a matrix: R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

io

i2

i3

=
ε
0
0

  

io
column

i2
column

i3
column column

voltage



io =

10 2 0
0 2 −7
0 −1 −1

1 2 0
0 2 −7
1 −1 −1

  

--Using numbers:

23.)

1 2 0
0 2 −7
1 −1 −1

io

i2

i3

=
10
0
0

  

Noting that the left-hand 3x3 matrix is 
called the determinate, solving for, say,     , 
requires the evaluation of two matrices, one 
divided into the other.  Specifically, the 
determinate divided into the determinate with 
the     column replaced by the voltage column 
(the far column to the right).  That is:

--You have two options at this point, depending upon your abilities with a 
calculator and whether there are any variables in your relationship.  The first 
approach is a manual evaluation of the matrices and will always work.

io

R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

io

i2

i3

=
ε
0
0

  becomes

io



23.)

--How to evaluate a matrix?  Start by reproducing the first two columns at the end 
of the matrix.

io =

ε R2 0

0 R2 − R3 + R4( )
0 −1 −1

R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

  

--With numbers:

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

  

ε
0
0

R2

R2

−1

R1

0
1

R2

R2

−1

  



io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

 = 
10( ) 2( ) −1( )− −7( ) −1( )⎡⎣ ⎤⎦ + ...

etc.

23.)

--The first part of the 
execution is shown below:

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

  

x

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 = 7
1 −1 −1

1
0
1

2
2
−1

 = 
10( ) 2( ) −1( )− −7( ) −1( )⎡⎣ ⎤⎦ + 2( ) −7( ) 0( )− 0( ) −1( )⎡⎣ ⎤⎦ + ...

etc.

x

--The second part:



io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

26.)

--Once you get the hang of the pattern, you can do these in your head without 
writing much of anything down:

= 
10( ) −2( )− 7( )⎡⎣ ⎤⎦ + 0 + 0

1 −2 − 7( )⎡⎣ ⎤⎦ + 2 −7( )− 0⎡⎣ ⎤⎦ + 0
= −90
−23

= 3.91 A

--The other alternative has to 
do with matrix manipulation on 
a calculator.  Specifically, if you 
multiply everything by the 
inverse determinate, you end up 
with a 1x3 matrix whose 
elements are the solution for the 
three unknowns.

D E T

−1

D E T
io
i2
i3

=
Vo
V2
V3

D E T

−1

= 1

⇒   
io

i2

i3

=
Vo

V2

V3

D E T

−1



27.)

--the alternate alternate is to have your calculator execute an rref (reduce row 
echalon format) operation.  The following is courtesy of Mr. White.

io + 2i2 + 0i3 = 10   
0io + 2i2 − 7i3 = 0
io − i2 − i3 = 0 

1 2 0 10
0 2 −7 0
1 −1 −1 0

a. Math -> Matrix -> Edit -> A   (for name of matrix) . . . note that some calculators 
just have a “matrix” key you can use (versus starting with “math”)
b. 3 [Enter] 4 [Enter]  (this gives you a 3x4 matrix)
c.  Enter coefficients and values into Matrix; exit, then go back to “matrix” and:
d.  In “math,” use “rref” A  (reduced row echelon form)
e.  You’ll end up with 1’s and the last row will give you the current values.

1     2      0    10
0    2   − 7     0
1  −1    −1    0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ⇒

1     0    0    3.91
0    1    0    3.04
0    0     1     .87

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 
⇒    io = 3.91 A 
⇒    i2 = 3.04 A 
⇒    i3 = .87 A 

⇒

Using your calculator:



how much current 
must go through     ?  Must be           .  So why not just call it that (instead of    )?  
Doing so eliminates one unknown, which makes the solving a lot easier.  

and current     goes out of node A and through      , 

28.)

ε

Example 9: Example 8 using a 
clever shortcut.  Again the power supply is 
ideal with an EMF of 10 volts, and assume 
the resistor values are the same as their 
subscripts.  

R1

R2

R3

R4
Step 1:  Define one current for each 
branch.  

io i2

Node A

A

V

And here is the clever move.  

io − i2

Consequence:  You only need to write two loop equations (you’ve already used 
the node information in defining the currents).

Step 0: Remove the meters.  

Think about it.  If current     comes intoio
i2 R2

R3 i3
node A, 

io − i2



29.)

ε

R1

R2

R3

R4

io i2

Node A

io − i2

Loop 1

ε − R1io − R2i2 = 0
   ⇒    io + 2i2 = 10

Loop 1:

Loop 2R2i2 − R3 io − i2( )− R4 io − i2( ) = 0
   ⇒    2i2 − 3 io − i2( )− 4 io − i2( ) = 0
   ⇒    − 7io + 9i2 = 0

Loop 2:

⇒    io =

10 2
0 9

1 2
−7 9

 = 90 − 0
9 − −14( )

           = 3.91A 

Solving:



Capacitors—Charging Characteristics

30.)

Example 10:  Consider a resistor, an 
uncharged capacitor, a switch and a power 
supply all hooked in series.  Note also that 
when the switch is thrown, the voltage across 
“a” and “b” is equal to both the battery 
voltage and the sum of voltages across the 
resistor and capacitor.  That is:  

As the cap initially has no charge on its 
plates, it will provide no resistance to 
charge flow.  That means no voltage drop 

a.) At t = 0, the switch is closed.  What initially happens in the circuit?

ΔVC ≡ VC ΔVR ≡ VR

Vo   

RC

Voa b

Vo = VC +VR

    = ioR

   ⇒    io =
Vo

R

0 VC = 0 Vo = ioR

Vo   

RC

across the capacitor with 
all the voltage drop 
happen across the resistor 
. . . which means:

Vo = VC +VR

at t=0+    a bio



31.)

As the cap begins to charge, some of the 
voltage drop happens across the resistor 
and some across the capacitor leaving us 
with a Kirchoff expression of:

b.) What happens as time proceeds?

The problem?  There are two different types of q in this expression.  One refers 
to the amount of charge on one capacitor plate.  The other refers to charge 
flowing through the circuit (current is defined as the time rate of charge flow).  

Although this won’t always be the case, in this instance the rate at which 
charge accumulates on the cap plates will equal the rate at which charge 
passes by per unit time, and we can write:

VC =
q(t)

C
VR = i(t)R

Vo   

RC

i(t)
+ −

Vo −
qplates

C
− iR = 0   

   ⇒    dq
dt

+
qplates

RC
= Vo

R
   

i = dq dt =
dqplate

dt

a b



31.)

This means Kirchoff’s Law can be written as:

Vo   

RC

a b

+ −

dq
dt

+
qplates

RC
= Vo

R
   

   ⇒    
dqplate

dt
+

qplates

RC
= Vo

R
   

Note that as time proceeds toward infinity, the charge on the capacitor plates 
reaches maximum, all the voltage drop happens across the capacitor, current in 
the circuit drops to zero and there is no voltage drop across the resistor.  In that 
case:

Vo = VC +VR

    = Qmax

C
   ⇒    Qmax = VoC

0

VC =
q(t)

C
VR = i(t)R

i→ 0



32.)

Solving:

 

dq
dt

+ 1
RC

⎛
⎝⎜

⎞
⎠⎟

q =
Vo

R

   ⇒    
dq
dt

= 1
RC

⎛
⎝⎜

⎞
⎠⎟

VoC− q( ) = 1
RC

⎛
⎝⎜

⎞
⎠⎟

Qmax − q( )

   ⇒    
dq

q −Qmax( ) = − dt
RC

   ⇒    
dq

q −Qmax( )0

q( t )

∫ = − dt
RCt=0

t

∫     ⇒    ln q −Qmax q=0
q( t ) = − t

RC

   ⇒    ln q(t)−Qmax − ln −Qmax = − t
RC

   ⇒    ln Qmax − q(t)( )− ln Qmax( ) = − t
RC

   ⇒    ln
Qmax − q(t)( )

Qmax( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= − t

RC
      ⇒    e

ln
Qmax−q( t )( )

Qmax( ) = e
− t

RC

   ⇒    
Qmax − q(t)( )

Qmax( ) = e
− t

RC    ⇒    Qmax − q(t) = Qmaxe
− t

RC    ⇒    q(t) = Qmax 1− e
− t

RC
⎛

⎝⎜
⎞

⎠⎟

because a − b = b − a( )
    if  b > a.



Time Constant for a Capacitor

34.)

A graph of the charging characteristic of a charging capacitor is shown below.

q0=0

no charge on 
capacitor initially

In theory, 
capacitor fully 
charged at t = 

q t( )=Qmax 1− e
− t /RC( )

charge on 
 capacitor

time

q = Qmax

∞



35.)

It would be nice to get a feel for how fast a capacitor/resistor combination will 
charge or discharge.   

q t( )=Qmax 1− e
− t /RC( )q = .87Qmax

τ = RC 2τ = 2RC

charge on 
 capacitor

time

q = .63Qmax

q = Qmax

To that end, how much 
charge would the cap have 
accumulated after a time equal 
to RC?   

q(t=RC) = Qmax 1− e
−RC

RC⎛
⎝⎜

⎞
⎠⎟

             = Qmax 1− e−1( )
             = Qmax 1− 1

e
⎛
⎝⎜

⎞
⎠⎟

             = Qmax 1− .37( ) = .63Qmax

This time is defined as one time constant   .  It is the amount of time it takes 
the capacitor to charge to 63% of its maximum.  Two time constants will charge it 
to 87% of its maximum (try the calculation if you don’t believe me).

τ



36.)

c.) What is the current as a function of time?

VC = q(t)
C    VR = i(t)R   

Vo   

RC

a bi(t)

+ −

i(t) =
dqplate

dt

     =
d Qmax −Qmaxe

− t/RC( )
dt

     = −Qmax − 1
RC

⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = 1
R

⎛
⎝⎜

⎞
⎠⎟

Qmax

C
⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = Vo

R
⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = ioe
− t/RC



37.)

A graph of the current characteristics for a charging capacitor/resistor 
combination:   

i t( )=ioe− t/RC

i=.13io

τ = RC 2τ = 2RC

current for
 charging 
 capacitor

time

i=.37io

io=
Vo
R

Note that after one time 
constant, the current is:

i(t=RC) = ioe
−RC

RC

             = io

e
             = .37io

After one time constant, the capacitor’s current will have dropped 63% 
and will be at 37% of its maximum.  After two time constants, it will be at 13% of 
its maximum.



Capacitors—Discharging Characteristics

38.)

Example 11: At t = 0, the switch is thrown and a 
charged capacitor begins to discharge.  

R Ca.) How are current through the circuit and charge on 
the capacitor plates related?

When a capacitor is discharging, the rate of change 
of charge on the plate is negative (charge is leaving) 
and:

i = dq dt = − dqplate
dt

⎛
⎝⎜

⎞
⎠⎟

switch closed at t = 0

qo = Qmax

+

−

i(t)

Using this with Kirchoff’s Law 
(tracking along the direction of 
current flow) yields:

−iR +
qplates

C
= 0

  ⇒   −      dq
dt

      + 1
RC

qplates = 0

  ⇒   − −
dqplates

dt
⎛
⎝⎜

⎞
⎠⎟
+ 1

RC
qplates = 0



39.)

Solving:
switch closed at t = 0

qo = Qmax

− −
dqplate

dt
⎛
⎝⎜

⎞
⎠⎟
+ 1

RC
⎛
⎝⎜

⎞
⎠⎟ qplates = 0   

  ⇒    
dqplate

dt
= − 1

RC
⎛
⎝⎜

⎞
⎠⎟ qplates

      ⇒    
dqplate

qplate

= − 1
RC

⎛
⎝⎜

⎞
⎠⎟ dt

   ⇒    1
qplate

⎛

⎝⎜
⎞

⎠⎟
dqplateQmax

q t( )
∫ = − 1

RC
⎛
⎝⎜

⎞
⎠⎟ dt

t=0

t

∫

               ln q( ) Qmax

q(t ) = ln q(t))− ln(Qmax )[ ] = − t
RC

   ⇒    ln
q t( )
Qmax

⎛
⎝⎜

⎞
⎠⎟
= − t

RC
      ⇒    e

ln q t( )
Qmax

⎛
⎝⎜

⎞
⎠⎟ = e

− t
RC

      ⇒    
q t( )
Qmax

= e
− t

RC      ⇒    q t( ) = Qmaxe
− t

RC

i(t)

R C



40.)

A graph of the charge on plate characteristics for a discharging 
capacitor/resistor combination:   

q t( )=Qmaxe
− t/RC

q=.13Qmax

τ = RC 2τ = 2RC

charge on 
 one plate

time

q=.37Qmax

Qmax=CVo

Note that after one time 
constant, the charge is:

q(t=RC) = Qmaxe
−RC

RC

             = Qmax

e
             = .37Qmax

After one time constant, the capacitor’s charge will have dropped 67% and will 
be at 37% of its maximum.  After two time constants, it will be at 13% of its 
maximum.



41.)

c.) What is the current as a function of time?

i t( ) = −
dq t( )plate

dt

      = −
d Qmaxe

− t
RC⎛

⎝⎜
⎞
⎠⎟

dt

      = − − 1
RC

⎛
⎝⎜

⎞
⎠⎟ Qmaxe

− t
RC

      = 1
R

Qmax

C
⎛
⎝⎜

⎞
⎠⎟ e

− t
RC

      = 1
R

Vo( )e− t
RC

      = ioe
− t

RC

switch closed at t = 0

qo = Qmax

i(t)

R C



42.)

A graph of the current characteristics for a discharging capacitor/resistor 
combination:   

i t( )=ioe− t/RC

i=.13io

τ = RC 2τ = 2RC

current for
 charging 
 capacitor

time

i=.37io

io=
Vo
R

Note that after one time 
constant, the current is:

i(t=RC) = ioe
−RC

RC

             = io

e
             = .37io

After one time constant, the capacitor’s current will have dropped 67% and will 
be at 37% of its maximum.  After two time constants, it will be at 13% of its 
maximum.

And yes, it’s the same as for a charging circuit.



Summary of Graphs

43.)

Graphs of capacitor charging and discharging characteristics.

i t( ) = ioe
− t
RC

current vs. time 
(both charging and discharging)

q t( ) = Qmaxe
− t
RC

 q(t) = Qmax 1− e
− t

RC⎛
⎝⎜

⎞
⎠⎟

charge vs. time 
(discharging) charge vs. time 

(charging)

Qmax

io

Qmax

t

q

t

q

t

i



Example 11: A one microfarad cap is in series 
with a 10 k-ohm resistor, a battery whose voltage is 100 
volts and a switch.

a.) The capacitance value tells you something that is 
always true no matter what the voltage across the cap 
happens to be.  What does it tell you?

b.) What is the initial current in the circuit?

c.) What is the circuit’s current after a long time?

44.)

It will go to zero.

The capacitance tells you the amount of charge one plate can hold per volt across the plates.

   Vo      = Vcap +    Vres

100 V( ) =  0   + io(104  Ω)
   ⇒    io = 10−2  A

With no charge initial on the cap (and, hence, no 
voltage across the cap), we can write:

d.) How much charge will the cap hold when fully charged?

When fully charged, all the voltage drop will be 
across the cap (no current in the circuit, so no 
drop across the resistor), and

   Vo      = Vcap   + Vres

100 V( ) = Qmax

C
+  0

100 V( ) = Qmax

10−6  f( ) +  0

   ⇒    Qmax = 10−4  C



e.) How much energy does 
the cap hold when fully 
charged?

f.) Where is the energy stored?

g.) You are told the system’s time constant is        seconds. What does that tell you?

45.)

It tells you how long it will take for the cap to charge up to or discharge by 63%.

U = 1
2

CV2

   = 1
2

(10−6  f)(102  V)2

   ⇒    U = .5x10−2  joules

In the electric field between the plates.

10−2

h.) Where is the charge alluded to found?  
On one plate of the cap.



THINGS TO NOTICE ABOUT CAPACITORS
1.)  Caps in series have common charge on their plates.

46.)

3.)  Close S1 with S2 open and C1 charges to Q. Keep S1 
closed and close S2.  C1 is still across the battery so it keeps 
Q on it, but C2 is now also across the battery so more charge 
is drawn from the battery.  Because the battery is still 
connected, the total charge in the system is not fixed.

2.)  Caps in parallel have common voltage across their plates.

4.)  Different scenario:  Close S1 with S2 open and C1 charges to Q. 
Open S1 and C1 is now isolated (disconnected from the battery).  
Close S2 so that C1 and C2 are now in parallel.  Because the battery 
is no longer in the circuit, the charge in the system is fixed.  That 
means the charge on C1 has to redistribute itself which it will do 
until the voltage across each cap is the same (and if the charge that 
flows from C1 to C2 is q, then the charge left on C1 is (Q – q)). 

5.)  Second circuit: S starts out closed so C1 charges to Q.  S is 
opened so the caps are now in series.  What changes?  Because the 
battery voltage is now distributed between the two caps, C1‘s voltage 
goes down but the charge on the two caps has to be the same. 



Example 12: You charge up two 
unequal capacitors that are in series.  You 
disconnect the battery by opening     , then 
reconnect the two caps by closing     .

a.) What is initially common to the two caps?

c.) So what should happen when both switches are thrown?

47.)

The the caps now in parallel, their voltages have to be the same so charge will have to 
rearrange itself necessitating current to momentarily flow.

Caps in series have the same amount of charge on 
their plates.

S1
S2

b.) When you throw both switches, how are the 
caps related (series or parallel)?

They are now connected in two places, which is characteristic of a parallel combination.



Example 11: (courtesy of Mr. White):  Examine 
the circuit here, where C1 > C2 and both have been charged 
to the same potential V.

C1   

C2   

+Q1  -Q1  

-Q2  +Q2  

a   b   

Q1/C1

a.) What is the potential between points a across b before 
the switches are closed?

b.) What happens to the charges after the switches are thrown?

c.) What is the potential across a and b a long time after the switches have been 
closed?

48.)

This is going to take some room:

Q1 > Q2  as C1 > C2( ),  so excess Q1 will flow until V1 = V2  again 
  (but now with the right polarity)

This is a screwball problem in the sense that the voltages initially have the same 
magnitude, but their polarities are reversed.  That means that when the switches are 
thrown, charge will flow between the caps.  Specifically:



C1   

C2   

+Q1  -Q1  

-Q2  +Q2  

a   b   
c.) What is the potential across a and b a long time after 
the switches have been closed?

49.)

The total charge in the system is:

VC1 = VC2
q
C1

=
C1 −C2( )V− q

C2
   ⇒     qC2 = C1 C1 −C2( )V−C1q
   ⇒    qC2 + qC1 = C1 C1 −C2( )V  
   ⇒    q C1 +C2( ) = C1 C1 −C2( )V
   ⇒    q =

C1 C1 −C2( )V
C1 +C2( )

Q1 −Q2 = C1V−C2V

Letting the new charge on      be q, the new charge on      
will be: Q1 −Q2( )− q = C1V−C2V( )− q

C1 C2

With the new voltages the same, we can write:

Knowing q, we can write:

VC1 =
q
C1

=

C1 C1 −C2( )V
C1 +C2( )
C1

=
C1 −C2( )V
C1 +C2( )



C1   

C2   

+Q1  -Q1  

-Q2  +Q2  

a   b   

Uinitial =
1
2
C1V

2 + 1
2
C2V

2 = 1
2
(C1 +C2 )V

2

U final =
1
2
Cequivalent ′V 2 = 1

2
(C1 +C2 ) V

C1 −C2

C1 +C2

⎛
⎝⎜

⎞
⎠⎟

2

U final =
C1 −C2

C1 +C2

⎛
⎝⎜

⎞
⎠⎟

2

Uinitial

d.) What is the energy stored in the system before and 
after the closing of the switches?

50.)



The Galvanometer

51.)

A galvanometer is an ammeter built to a 
very specific specification.  All galvanometers 
swing maximum deflection when            amps 
flow through them.  Although they are usually 
discussed in the chapter on magnetism (they are 
built using a coil in a magnetic field), it is 
possible to use a galvanometer to build an 
ammeter designed to handle larger currents, and 
to build voltmeters.  

5x10−4



Example 12: Design a 2-amp ammeter 
assuming the galvanometer’s resistance is         .  

52.)

2 A
Rg =12 Ω

Rs=?

ig=5x10
-4A

is =1.9995 A

For the galvanometer to go full 
deflection--something you want it to 
do when 2 amps flow into it--you 
need to shunt some of the current 
away from the galvanometer.  The 
current that does not flow into the 
galvanometer flows through the shunt 
resistor.  In this case, that will be: 

2 - .0005 = 1.9995 amps. 
With the shunt resistor in parallel with the galvanometer and the voltage across 
each being the same, we can write:

igRg = isRs

   ⇒    5x10−4 A( ) 12 Ω( ) = 1.9995 R( )
   ⇒    R ≈ 3x10−3Ω

12 Ω



53.)

You want the galvanometer to go full deflec-
tion when 12 volts is across its terminals.  
Unfortunately, 12 volts will produce a HUGE 
current, so you need to cut the down current.  
You can do that by adding a resistor in series.  
As the current in a series combination is the 
same everywhere, we can write:

Example 13: Design a 12-volt voltmeter 
assuming the galvanometer’s resistance is         .  12 Ω

Rg =12 Ω

ig =5x10-4  A

R

2 volts

V = igRg + igR

   ⇒    2= 5x10−4 A( ) 12 Ω( ) + 5x10−4 A( ) R( )
   ⇒    R ≈ 4x103Ω



54.)

--The galvanometer-engineered ammeter 
consists of a           galvanometer in parallel with 
(in this case) a                 resistor (that is, 
essentially a wire).  As the equivalent resistance 
of a parallel combination is smaller than the 
smallest resistor in the combination, that means 
that the equivalent resistance of the ammeter is 
REALLY SMALL—exactly as expect.

Observations:

Rg =12 Ω

ig =5x10-4  A

R

2 volts

12 Ω
3x10−3Ω

2 A
Rg =12 Ω

Rs=?

ig=5x10
-4A

is =1.9995 A

--The galvanometer-engineered voltmeter consists 
of galvanometer and, in this case, an additional                    
resistor in series.  As the equivalent resistance of a 
series combination is larger than the largest resistor 
in the combination, that means that the equivalent 
resistance of the voltmeter is REALLY Big—again, 
exactly as expect.

40,000 Ω


