
The Island Series:

1.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem: You are given a small spotlight, the outline of a bat that can 
go over the lamp’s face, two copper serving platters, some wire and a car 
battery.  You find that if you hook the battery to the lamp, it doesn’t shine very 
brightly.  You need it to shine brightly, but only for a second (you want to 
project the bat-signal onto a cloud so Batman will come rescue you).  What 
clever thing might you do to light up the lamp for just a moment? 

Solution:  Set the two plates close without touching and parallel to one another 
(they have to be rigidly separated).  Hook one lead from the battery to one of the 
plates and the second lead to the other plate.  This will allow the plates to charge 
up, acting like a capacitor.  Disconnect the lead.  Hook one lamp lead to one of the 
plates. When you hook the other lead to the other plate, the cap will discharge very 
quickly through the lamp, providing a burst of energy that should light it up nicely.  



2.)

CHAPTER  26:
Capacitors

discharging capacitor:



3.)

Electric fields: exist in presence of charge 
configurations; are modified force-fields

General Review

Gauss’s Law: used to generate electric field 
functions for symmetric charge configurations

Electrical potentials: voltage fields that exist in 
the presence of charge configurations; are 
modified potential energy functions; the 
potential difference between two points equals 
work-per-unit-charge available to a secondary 
charge due to presence of field-producing charge
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4.)

A physical capacitor is quite literally two metal, 
parallel plates sitting next to one another, completely 
insulated from one another.

Capacitors

A battery generates an artificially created electrical 
potential difference between it’s terminals.  The + 
terminal is at higher voltage (the + terminal is the 
longer, red line in the sketch).  The “voltage” of the 
battery is the electrical potential difference between 
the terminals.

Connecting a battery across an uncharged 
capacitor will effect an interesting situation.  

space

Initially, there will be a voltage difference between the battery’s + terminal and 
the capacitor’s uncharged green plate, motivating charge to move between the 
two plates.  If we assume it is positive charge that is moving (controversial, but 
we’ll talk about that later), the green plate will begin to charge up positively.

+ −
ΔV = Vbattery

initially 
at zero 
voltage



5.)

As the green (left) plate charges up, two things happen:

Electrostatic repulsion will motivate a like-amount 
of positive charge off the yellow plate, leaving it 
electrically negative; and

ΔV = Vbattery

+ −The voltage build-up on the green plate will 
diminish the voltage difference between it and the 
battery’s + terminal, and the current will decrease 
(ultimately to zero once the cap is fully charged).

What we end up with in our charged capacitor is an 
electrical device that has charge stored on it, that 
has an electric field between its plates, and that has 
energy stored in that electric field.  

In other words, in an DC (direct current) electrical circuit, capacitors store 
electrical energy.  

+ −



6.)

Furthermore, the charge Q on ONE PLATE will 
always be proportional to the magnitude of the voltage 
difference across the plates, with the proportionality 
constant being the cap’s capacitance. Mathematically, 
then:

Qon one plate = C ΔV( )across plates + −

This, in turn, means the capacitance of a capacitor is a 
constant that tells you how much charge per volt the capacitor 
has the capacity to hold.

Usually written in truncated form as:

Q = CV

this also means that the 
capacitance is defined as: C = Q

V

+Q −Q

ΔV

Its unit of coulombs per volt is given a special name—the farad.

It’s not uncommon to find capacitors in the range of: millifarad (mf =          ), or 
microfarad (Mf or      =          ), or nanofarad (nf =         ), or picofarad (pf =          ).

10−3f
10−6 f 10−9 f 10−12 fµf



ΔV = −VcapBut       in                is the POSITIVE voltage-change across 
the plates, meaning: 

--microfarad (Mf or     ) range: this is

--millifarad (mf) range: this is

7.)

+ −

+Q −Q

ΔV

1.) A 1 farad capacitor is a HUGE capacitor.  It is much more 
common to run into capacitors in the:

2.) When traversing between capacitor plates along the electric 
field lines, the voltage goes from high to low.  That is why the 
negative sign is needed in                    .

10−3  farads

 ΔV = −
!
E i
!
d

Vcap

µf

Picky but Important Points

10−6  farads
--nanofarad (nf) range: this is 10−9  farads
--picofarad (pf) range: this is 10−12  farads

 
!
E

 Vcap = −ΔV = +
!
E i
!
d

This observation is going to be important shortly!

Q = CVcap



Example 1 (courtesy of Mr. White)

What is the capacitance of this 
system, where each conductor has a 
charge of +/- 3 Coulombs, and a 9-
Volt potential exists between the two 
conductors?

8.)

C =
Qon one plate

Vacross plates

   = 3 C
9 V

   = .33 farads



Example 2 (courtesy of Mr. White)

Two conducting plates have a charge of 1.2 mC on 
each, with a 6.00-V potential difference between 
the two of them. What is the capacitance of this 
system?

9.)

	

C=
Qon	one	plate

Vacross	plates
			 = 1.2x10

−3 	C
6	V

			 =2x10−4 	farads					(=.200	mf	or	200	µf)

The only thing tricky about this problem is that 
everything has to be in MKS—electrical potential 
in volts and charge in coulombs.  Sooo . . . 

Note:  Clearly you need to become familiar with the prefixes (and symbols) 
for milli, micro, nano and picofarads.

d  

-Q   +Q   

A  



Demo :Parallel Plate Capacitor

Physlet 
I.26.1

10.)



Series Combinations
In a series combination of circuit elements, each 
element is attached to its neighbor on one side only.  
What is common to all series combinations is current
(i.e., the amount of charge that passes through the 
element per unit time).

11.)

Think back to how uncharged capacitors work in electrical

C1 C2

ΔV

circuits.  A battery provides a voltage difference across its terminals which 
generates a voltage difference between its + terminal and the left plate (in the 
circuit above) of      .  As such, charge begins to accumulate on that plate 
electrostatically repulsing like charge off its right plate.

C1

In a series combination, the repulsed charge from the right plate moved to the 
next capacitor, depositing itself on that cap’s left plate, electrostatically repulsing 
like charge off its right plate . . . which proceeds back to the battery (hence a 
complete circuit).
What’s common in the series combo of caps, then, is “the charge” on each cap.



Capacitors in Series
We know the total voltage-change across the 
battery, and hence across the capacitors, is      . 
Logic additionally dictates that: 

12.)

C1 C2

ΔVWe know, though, that:

In other words for a series combination of 
capacitors:

ΔV

ΔV = ΔVC1 + ΔVC2

C = q
ΔV

 ⇒  ΔVC1
= q

C1

If we had a single, equivalent capacitance       that could take the 
place of the series combination (i.e., a cap that would draw the 
same charge q for the same battery voltage       ), we could write:

Ceq

ΔV

Ceq

ΔV

ΔV = q
Ceq

ΔV = ΔVC1
+ ΔVC2

q
Ceq

=  q
C1

 + q
C2

   ⇒    1
Ceq

= 1
C1

+ 1
C2

ΔVC1 ΔVC2

Bottom line: 1
Ceq

= 1
C1

+ 1
C2

+ ...



Capacitors in Parallel

13.)

C1

C2

ΔV

What is common in a parallel combination is the voltage 
drop across each element.

Using                                 and our 
equivalent capacitance circuit, we can 
write:

qtotal = qon C1
+ qon C2

= qon Ceq

So in the parallel combination of capacitors shown, charge will leave 
the battery and distribute itself between the two initially uncharged 
capacitors in such a way that the voltage across each cap is the same.  
If        is the total charge drawn from the battery over a period of time:

Ceq

ΔV

qtotal

  qtotal  =  qon C1
+  qon C2

CeqΔV = C1ΔV+C2ΔV
   ⇒    Ceq = C1 +C2

Unlike series combinations, each element in a 
parallel combination attaches to its neighbors in two places.

C = q
ΔV⇒  q = CΔV

Bottom line: Ceq = C1 +C2 + ...



Example 7: Derive an expression 
for, then determine the equivalent 
capacitance of the capacitor combination 
shown to the right.  Assume all the 
capacitors are                  

14.)

--This is essentially a series combination—
three caps in series with a parallel 
combination (remember, what makes a 
series combo—each element is connected to 
its neighbor at one place).

C = 4 µf.
C

C C C

C

--For the three series caps: Technically, we should write:

C

1
Ceq,1

= 1
C1

+ 1
C2

+ 1
C3

== 1
C
+ 1

C
+ 1

C

      ⇒   1
Ceq,1

= 3
C

          ⇒    Ceq,1 =
C
3

   

BIG NOTE: When you have equal-
sized caps C in series, the equivalent 
capacitance equals C divided by the 
number of caps in the combination 
(look at our problem for confirmation!).
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--Redrawing:

C

C C
3

C

--To continue, we need the equivalent 
capacitance for the parallel combination.  
As parallels just add, we get:

1
Ceq

= 1
Ceq,1

+ 1
Ceq,2

      = 1
C

3( ) +
1

3C
= 3

C
+ 1

3C
= 9

3C
+ 1

3C

 ⇒     1
Ceq

= 10
3C

      ⇒     Ceq =
3C
10

=
3 4x10−6 F( )

10
= 1.2x10−6 F

Ceq,2 = C1 +C2 +C2
     = C+C+C
     = 3C

--Redrawing: 3C C
3

--For the final 
series combination:



Deriving a Capacitor’s Energy Content

16.)

Wfld

q
= −ΔV

C = q on a plate( )
Vcap

ΔVcap

q −q
Consider a partially charged capacitor.  How much work 
would be required to move a differential bit of charge +dq from 
the – plate to the + plate?  

Noting that the work you do 
will be minus the work the field 
does, and writing everything in 
differential form, we can write:

Noting that the definition 
of capacitance yields:

We can re-write that first 
differential equation as:

dWyou = + dq( )ΔVcap = dq( )qC = 1
C

⎛
⎝⎜

⎞
⎠⎟ qdq

Summing (integrating) to get 
the total work to assemble all the 
charge on the plates yields:

W = dWyou∫ = 1
C

⎛
⎝⎜

⎞
⎠⎟ qdq

q=0

q

∫  

⇒    dWyou = + dq( )Vcap

⇒  Vcap =
q

C

= 1
2
q2

C
q = CV

=  1
2

CV2

This is the energy stored in a capacitor.



Deriving a Capacitor’s Capacitance Using  
Physical Parameters

Example 3:  Derive an expression for the capacitance of a 
conducting sphere of radius a.  (I’ve never understood why 
textbooks think this obscure problem is interesting enough to do, 
but ours does so I’m covering it.)

17.)

The assumption: the sphere is the inner plate of a capacitor whose outer 
spherical plate is located at infinity (obscure enough for you?).  With that:

1.) Start by assuming there is Q’s worth of positive charge on one plate and 
–Q’s worth of charge on the other plate (the one at infinity).  (In some cases, 
you might need to define a charge density, depending upon the geometry). 
2.) Derive an expression for the electrical potential difference between the 
plates.  This will often require you to use Gauss’s Law between the plates to 
determine the E-fld function, then use                                     . 

3.) Then use the definition of capacitance                                to determine 
the capacitance C for the geometry. 

 
Vcap = −ΔV = +

!
E i d!r∫

C =
Qon one plate( )

Vcap



 

Vcap = −ΔV = +
!
E i d!r∫

      = Q
4πεo

1
r2 r̂

⎛
⎝⎜

⎞
⎠⎟r=a

∞

∫ i dr r̂( ) = Q
4πεo

dr
r2 cos0o

r=a

∞

∫
      = Q

4πεo

−1
r

⎛
⎝⎜

⎞
⎠⎟ r=a

∞ = Q
4πεo

− 1
∞

⎛
⎝⎜

⎞
⎠⎟ − − 1

a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

      = Q
4πεoa

Executing all that, we have:

18.)

1.) Assume Q’s on plates: Q

2.) Gauss’s Law to determine 
E-fld between plates:

 

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E 4πr2( ) = Q

εo

      ⇒    E = Q
4πεor

23.) Derive an expression for the 
electrical potential difference (      ) 
between the plates:

Vcap

(Or you could have just noticed 
that V at infinity would be zero, 
and V at a would be                , 
and that the difference would 
just be Q

4πεoa

Q
4πεoa( )

Gaussian surface

r



19.)

C =
Qon one plate

Vacross plates

   = Q
Q

4πεoa
⎛
⎝⎜

⎞
⎠⎟

   = 4πεoa

4.) Using the definition of capacitance:

Q

Learn the approach.  You will be using it!



Example 4:  Derive an expression for the 
capacitance of a parallel plate capacitor of plate area 
A whose distance between its plates is d.  

20.)

d

A

 

Vcap = −ΔV = +
!
E i d!r∫

      = σ
εo

r̂
⎛
⎝⎜

⎞
⎠⎟r=0

d

∫ i dr r̂( ) = σ
εo

dr cos0o

r=0

d

∫
      = σ

εo

r( ) r=0
d = σ

εo

d   

1.) Assume charges (in this case, in the form of an area 
charge densities    ):

2.) Noting that all the charge will 
migrate to the inside surfaces, use a 
Gaussian plug and Gauss’s Law to 
derive an expression for the E-fld
between plates.

 

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E A = σA

εo

      ⇒    E = σ
εo

3.) Derive an expression for the 
electrical potential difference (      ) 
between the plates:

Vcap

σ −σ

σ

1



21.)

d

A

Vcap =
σ
εo

d

      =
Q

A( )
εo

d = Q
εoA

d

Except σ
−σσ = Q

A
so

Cparallel plate cap =
Qon one plate( )
Vacross plates( )

                  = Q
Q
εoA

d
⎛
⎝⎜

⎞
⎠⎟

                  = εo
A
d

4.) Using the definition 
of capacitance:

(This general expression for the capacitance of a parallel plate capacitor is 
actually something you will be expected to know.)



Example 5: Derive an expression for the 
capacitance-per-unit-length of a coaxial cable of 
inside radius a and outside radius b.  

22.)

 

Vcap = −ΔV = +
!
E i d!r∫

      = λ
2πεor

r̂
⎛
⎝⎜

⎞
⎠⎟r=a

b

∫ i dr r̂( ) = λ
2πεo

1
r

dr cos0o

r=a

b

∫
      = λ

2πεo

ln r( ) r=a
b = λ

2πεo

ln b( )− ln a( )⎡⎣ ⎤⎦ =
λ

2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟    

1.) Assume charges (in this case, a linear 
charge density    ) on the inside rod:

2.) Noting that all the charge will 
migrate to the inside surfaces, use a 
Gaussian cylinder of length L and 
Gauss’s Law to derive an expression 
for the E-fld between plates.

 

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E 2πrL( ) = λL

εo

      ⇒    E = λ
2πεor

3.) Derive an 
expression for the 
electrical 
potential 
difference (      ) 
between the 
plates:

Vcap

λ b

−λ
a

λ L

r

1



23.)

Vcap =
λ

2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟

      =
Q

L( )
2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟

Except λ = Q
L

so

Cparallel plate cap =
Qon one plate( )
Vacross plates( )

                  = Q
Q

L( )
2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟

       ⇒    C / L = 2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟

4.) Using the definition of capacitance:

b

−λ
a

λ L

r



Point of order: what would have happened if we 
had defined the inner section a charge density       and 
the outer shell a charge density of      ? 

24.)

 

Vcap = −ΔV = +
!
E i d!r∫

      = − λ
2πεor

r̂
⎛
⎝⎜

⎞
⎠⎟r=b

a

∫ i dr r̂( ) = λ
2πεo

1
r

dr cos180o

r=b

a

∫
      = − λ

2πεo

ln r( ) r=b
a = − λ

2πεo

ln a( )− ln b( )⎡⎣ ⎤⎦

      = λ
2πεo

ln b( )− ln a( )⎡⎣ ⎤⎦ =
λ

2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟    

Gauss’s Law would 
have yielded:

 

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E 2πrL( ) = −λL

εo

      ⇒    E = − λ
2πεor

 ⇒  
!
E is directed INWARDRemembering that 

dr is defined 
outward, if we track 
WITH the electric 
field to determine 
the electrical 
potential difference 
and, hence,       , 
we’d have to track 
from the outside 
shell to inside, so:

Vcap

b

+λ
a

−λ L

r
−λ

+λ

−1

SAME RESULT!



Example 6: Derive an expression for the 
capacitance of concentric spherical shells of 
inside radius a and outside radius b.  

25.)

 

Vcap = −ΔV = +
!
E i d!r∫

      = Q
4πεor

2 r̂
⎛
⎝⎜

⎞
⎠⎟r=a

b

∫ i dr r̂( ) = Q
4πεo

1
r2 dr cos0o

r=a

b

∫
      = Q

4πεo

−1
r

⎛
⎝⎜

⎞
⎠⎟ r=a

b = Q
4πεo

− 1
b

⎛
⎝⎜

⎞
⎠⎟ − − 1

a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= Q

4πεo

b − a
ab

⎛
⎝⎜

⎞
⎠⎟    

1.) Assume charges (in this case, Q’s):

2.) Noting that all the charge will migrate to the inside 
surfaces, we don’t really need Gauss’s Law as we know 
from experience that the E-fld for a charged sphere is:

E = Q
4πεor

2

3.) Derive an 
expression for the 
electrical 
potential 
difference (      ) 
between the 
plates:

Vcap

b

Q
−Q

a



26.)

Cparallel plate cap =
Qon one plate( )
Vacross plates( )

                  = Q
Q

4πεo

b − a
ab

⎛
⎝⎜

⎞
⎠⎟

                  =
4πεo ab( )

b − a( )

4.) Using the definition of capacitance:

It should go without saying, but I’ll say it anyway.  These derivations are not 
here to memorize.  UNDERSTAND THE APPROACH so you can handle 
whatever comes down the pike!



Lab this week  (courtesy of Mr. White)

Measuring voltage Measuring current

27.)



The Electric Battery  (courtesy of Mr. White)

1780s - Galvani vs. Volta

28.)



The Electric Battery  (courtesy of Mr. White)

1780s - Galvani vs. Volta

Ag (silver)

Zn (zinc)

Cloth or
paper soaked
in salt or acid.

29.)



Two electrodes (carbon and zinc) are 
immersed in a dilute acid (the electrolyte). C

Zn

Zn2+
Zn2+

Zn2+Zn2+
2e–

2e–
2e–

2e–

e–e–e– e–e–e–
e–e–

C4+

C4+

How It Works  (courtesy of Mr. White)

As the acid dissolves the Zn,         ions are 
drawn into the electrolytic solution leaving    

in the zinc.

Extra       are pulled from the carbon rod 
to neutralize the now positively charged 
electrolyte, leaving positive charges 
(electron holes) on the carbon.

In this way, an electrical potential 
difference is created between the rod and 
the bottom plate of the battery.

e−s

Zn2+

e−s

30.)



plates. This creates a reverse electric field that 
diminishes the net electric field across the plates (see 
sketch on next page).

Dielectrics

31.)

Consider the charged, parallel-plate capacitor 
shown to the right (complete with its E-fld).
Placing an insulating material (called a dielectric)
between the plates does a number of things.   

2.) With the net electric field diminishing, the net 
electrical potential across the plates goes DOWN.  

3.) Conceptually, placing a dielectric between the plates effectively allows the 
plates to hold more charge per unit volt.  This is why the capacitance increases 
when a dielectric is placed internal to the cap.  

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

As C=q/V, a diminishing of V means the capacitance goes UP.  

1.) The dielectric experiences a van der Waal effect 
due to its presence in the electric field between the
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Net effect: For the charged, parallel-plate capacitor 
shown to the right.

where    , sometimes characterized as     , is the 
proportionality constant called the dielectric constant.

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

1.) The capacitance of a capacitor with a dielectric 
between its plates will equal:

Cwith  dielectric = κCwithout  dielectric ,

κ εd

Note 1:  This means there are three ways to increase 
a capacitor’s value:

1.) increase the plate area.

2.) bring the plates closer together.
3.) place an insulating dielectric between the plates.



3.) Gauss’s Law is still                           , but there’s a problem.  The charge 
enclosed isn’t solely the charge on        the plates due to          (inside the Gaussian 
plug, I’ll call this plate charge    ).  There is also charge induced on the dielectric’s 
surface (a negative        --call the charge inside the Gaussian plug due to this     ) 
due to the van der Waal effect.  In other words, 

Example 8:  Genesis of dielectric constant: Derive 
an expression for the capacitance of a parallel plate 
capacitor of plate area A and distance between the 
plates d if it has between its plates an insulator.

33.)

1.) The approach is similar to the one used originally.  
Assume an area charge densities          for the plates.    

2.) All the plate charge will still migrate to the inside 
surfaces, so a Gaussian plug will have one side in the 
region between the plates (in the dielectric) and one
face inside the conductor where the E-fld is zero.

 

!
E i d
!
S

S∫ = qenclosed
εo

σplate

σplate

Gaussian plug

qenclosed = q − q'

σplate

σdiel

q
q'



34.)

Problem is, we don’t want Gauss’s charge enclosed to be 
in terms of some nebulous, induced charge quantity 
associated with the insulating dielectric.  So what to do?

If we take the fraction of “charge in the plug to
the charge on the plate” as the constant      , we 
can write

 

!
E i d
!
S

S∫ = q − q'
εo

= q − q'
q

⎛
⎝⎜

⎞
⎠⎟

q
εo

             = 1
κ

q
εo

       
That is where the 
dielectric constant comes 
from.

Gaussian plug

1
κ
= q − q'

q

Bottom line:  When dealing with a dielectric, you can assume the 
“charge enclosed” part of Gauss’s Law is equal to the charge on the cap 
plates (ignoring the induced charge on the dielectric) if you include the 
insulator’s dielectric constant in the Gauss’s Law expression as:

 

!
E i d
!
S

S∫ = q
κεo

σplate

1
κand Gauss’s Law can be 

written in
terms of the charge 
on the plates q as:



 

Vcap = −ΔV = +
!
E i d!r∫

      = Q
κεoA

r̂
⎛
⎝⎜

⎞
⎠⎟r=0

d

∫ i dr r̂( ) = Q
κεoA

dr cos0o

r=0

d

∫
      = Q

κεoA
r( ) r=0

d = Q
κεoA

d   

35.)

d

A

So the parallel-plate capacitor derivation would look like:

σ = Q
A

and

Cparallel plate cap =
Qon one plate( )
Vacross plates( ) =

Q
Q

κεoA
d

⎛
⎝⎜

⎞
⎠⎟

                  = κεo
A
d

        = κCw/o diel( )

That means:

 

!
E i d
!
S

S∫ = q
κεo

  ⇒   EA = σA
κεo

  ⇒   E = σ
κεo

with            , 
E = σ

κεo
=
Q
A( )

κεo
= Q
κεoA

−σσ



36.)

a.) A capacitor in which the dielectric extended 
only partially into the region between the plates?

If asked to derive it, you’d use Gauss’s Law to 
determine the E-fld in each region (the expressions 
will look identical with the exception of the     terms 
with          for air), then determine the voltage change 
between the plates by summing the changes across 
the two regions: 

Example 9: How would you deal with:

κ

 
Vcap = −ΔVregion  1 − ΔVregion  2 = +

!
E1 i d!r

r=0

d1∫ +
!
E2 i d!r

r=d1

d2∫   
x=d1x=0 x=d2

ΔVregion  2ΔVregion  1

If you were asked to just determine the net capacitance, you could just be clever.  
How so? What you are really looking at are two caps in series.  

	
C1 = κ1εo

A
d1

	
C2 = κ2εo

A
d2 −d1( )

So we could write:

	
1
Ceq

= 1
C1

+ 1C2

	κ =1



37.)

 
Vcap = −ΔVregion  1 − ΔVregion  2 = +

!
E1 i d!r

r=0

d1∫ +
!
E2 i d!r

r=d1

d2∫   

b.) A capacitor in which the dielectric only partially 
fills in the region but does it from plate to plate?

	x=dx=0

In this case, you have two different electric fields 
across in different regions which makes it look like two 
different capacitor side by side, connected at both ends.  
By definition, this is a parallel combination.

Back to being clever, though, 
you could use what you 
know about parallel cap:

And write:

	Ceq =C1 +C2

	
C1 = κ1εo

A1
d

	
C2 = κ2εo

A2
d

As parallel caps add, a derivation would required you 
to determine the capacitance for each using standard 
means, then add the two.  That is, execute:



38.)

a.) Energy is stored within the capacitor.  How so?   
That is, WHERE is the stored energy stored?

The energy is stored in the electric field between 
the capacitor’s plates.

Example 10: Consider a charged capacitor of capacitance 
C with a voltage        across its plates.

Vcap

b.) How much energy is stored?

The real question is, how much work was required to assemble 
the charges currently residing on the capacitor’s plates? 

Vcap

dW = −ΔU = − dq( )ΔV
                = + dq( )Vcap

Think about it.  If there is already charge on the plates creating a voltage 
of        , a differentially charge +dq will need work done on it, and will 
experience a change of potential energy, as it is forced from the low voltage 
plate to the high voltage plate.  Knowing the relationship between that 
differential bit of work, potential energy and electrical potential difference, 
so we can write:

Vcap



39.)

But according to our definition of capacitance:

so substituting that into our relationship yields:

Vcap

dW = dq( )Vcap

     = dq( ) q
C

⎛
⎝⎜

⎞
⎠⎟

The total work due to all the charge transferred in this way, then, is:

C = q
Vcap

  ⇒   Vcap =
q
C

W = dW∫
     = 1

C
qdq

q=0

Q

∫ = 1
C

q2

2
⎛
⎝⎜

⎞
⎠⎟ q=0

Q

     = 1
2

Q2

C
= 1

2
CV2

Q2=C2V2



40.)

c.) So if an capacitor is charged to 250 volts: 
Vcap

i.) How much energy is stored in the capacitor? 

8 µf

E = 1
2

CV2

   = 1
2

8x10−6 f( ) 250 V( )2

   = .25 J

i.) How much charge is stored in the capacitor? 

C = q
V

  ⇒  q = CV
           = 8x10−6 f( ) 250 V( )
           = 2x10−3C   (or 2 millicoulombs)

This is slightly tricky.  The net charge is zero.  The charge on one plate is:



Demo 2
Parallel-Plate Capacitor (courtesy of Mr. White)

Physlet I.26.2

41.)



Dielectric Values

€ 

C =
εoA
d

€ 

C =
κεoA
d

Material Dielectric Dielectric
Constant ( ) Strength (V/m)

Vacuum 1.00000 ------
Air (dry) 1.00059 3e6
Paper 3.7 16e6
Water 80 ------

Advantages to using dielectrics in capacitors include:
1.increasing capacitance (!)
2. increasing the maximum operating voltage of the capacitor (most dielectrics have a 
greater breakdown strength than air does).
3. the dielectric itself provides a mechanical support between the plates.
4. allows the plates to be closer than would otherwise be the case.

42.)

κ



Example 7 (courtesy of Mr. White)

A parallel-plate capacitor has plates 2.0cm x 3.0 cm, separated only by a 
1.00mm thickness of paper.

a.) Find the device’s capacitance 
(note that the dielectric constant 
for paper from the chart on the 
previous slide is 3.7).

b.) What is the maximum charge that can be placed on the capacitor?

C = κεo
A
d

  = 3.7( ) 8.85x10−12 f / m( ) .02m( ) .03m( )
.001m( )

  = 1.97x10−11f    (this is 19.7 pf)

Note that the dielectric strength identifies the dielectric’s breakdown 
voltage the per meter of material.  For paper, that is: 16x106  V/m

At .001 meters, the 
breakdown voltage is: Vmax = 16x106  V / m( ) .001 m( )

       = 1.6x104 V   
So: Qmax = CVmax

       = 1.97x10−11f( ) 1.6x104 V( )
       = 3.15x10−7 C    (=.315 µC)   

43.)



c.) What is the maximum energy that can be stored in this capacitor?

U = 1
2

CV2

  = 1
2

1.97x10−11f( ) 1.6x104 V( )2

  = 2.52x10−3 J 

44)


