
Ch 25  Electric Potential



Electric Energy, Electric 
Potential
Energy concepts are going 
to be extremely important 
to us as we consider the 
behavior of charges in 
electric fields.

How do energy concepts 
help us understand masses 
in gravity fields?

Surface of Earth

Gravity field g  

m 



Ug Review
A mass m released near the 
surface of the earth begins to 
move, due to the force of gravity. 
This can be described in two 
ways:

1.  The gravity field will do Work 
on the object, W=Fgd, 
increasing its kinetic energy.

2.  The object has gravitational 
potential energy Ug=mgh, which 
is converted to kinetic energy 
as the object falls. Surface of Earth

Gravity field g  

m 
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W =
 
F • d s ∫

Wdone  by  field =
 
F g • d s ∫

Uf −Ui = −
 
F g • d s 
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∫



Ue: Electric Potential Energy
The same exact thing occurs for a 
charge in an electrical field.

Electric field E  

q 

  

€ 

W =
 
F • d s ∫

Wdone  by  field = q
 
E • d s ∫

Uf −Ui = −q
 
E • d s 

A

B

∫Where is the electric potential 
high for this test charge?

Where is the electric potential low 
for this test charge?

Of course, a decrease in U results 
in an increase in K.



Example 2
A proton has a potential 
energy of 6.7e-15 J on 
the positive side of a 
constant 1.00 m long 
electric field.  At the 
negative side, U = 0.00 J. 

a.  How strong is the Electric 
field?���
���
���
���

b.  How fast is the proton 
traveling just before it 
arrives at the negative side 
of the field?

Uf −Ui = −q

E • d

s

A

B

∫
0− 6.7e -15= -(1.602e -19)E(1)
E = 4.18e4N /C

∆Ui =∆ K

6.7e−15= 1
2
mv2

v = 6.7e−15 • 2
1.67e− 27

v = 2.83e6m / s



Example 1
Is the electrical charge in each of these situations in a 
position of high Ue or low Ue?

-q 

-q 



What is Electric Potential?
We need to be able to talk 
about the change in an 
electric field without 
knowing about a charged 
particle that might be in it.

To do this, we’ll refer to a 
change in electric potential, 
rather than a change in 
electric potential energy.

€ 

ΔV =
ΔU
qo



Difference in Electric Pot.

The units for electrical potential 
are Volts, where 1 Volt = 1 
Joule/Coulomb.

  

€ 

ΔV =VB −VA =
ΔU
q

=
−WBA

q
=
−q E • ds∫

q
−
 
E 

A

B

∫ • d s 

We’ve talked about high and low 
U, but where are the high and 
low electric potentials? Most of the 
time, the potential is set at 0 at 
the ground (negative plate).

A B 



Example 2
A potential difference of 
9.0-Volts exists between 
two plates. 

How much Work is 
required to move a 2.0-
Coulomb charge across 
that potential?

ΔV =
WBA

q
W = ΔVq = (9V )(2C)
W =18VC =18Joules



E Potential ≠ E Potential E!
Electric potential is a measure of 
how much energy per unit 
charge a particle will acquire as it 
travels a given distance through a 
given electric field. € 

ΔU = qΔV

€ 

ΔV =
ΔUe

q
=
−WBA

q



Example 3
An electron (e-) in a TV 
picture tube is 
accelerated from rest 
through a potential 
difference of 5000 V.

a. What is the change in 
the U of the electron?

-q 

b. What is the final speed 
of the electron?

ΔU = ΔK

8e−16J = 1
2
mv2

v = 2 •8e−16
9.11e−31

= 4.05e7m / s

€ 

ΔU = qΔV
     = (1.602e −19C)(5000V )
     = 8e −16J = 5000eV



∆V in constant E field
We’ve been using constant E 
fields in our examples. What 
does the math look like for 
that situation?

A positive test charge 
experiences a decrease in 
potential energy when moving 
from A to B.

A charge experiences a 
decrease in potential when 
moving from A to B.

€ 

ΔU = qΔV

  

€ 

VB −VA = −
 
E 

A

B

∫ • d s 

VB −VA = −EdThe negative 
sign here 
indicates that 
VA is at a higher 
potential.



Example 4
Two parallel plates are 
charged to a voltage of 
50V.

a. If the separation between 
the plates is 0.050m, calculate 
the strength of the E field 
between them.

b. What is the acceleration of 
an electron in this field?

€ 

V = −Ed

E =
V
d

=
50V
0.050m

=1000N /C

E =1000N /C
F = qE =ma

a = qE
m

=
(1.602e−19C)(1000N /C)

9.11e−31kg
=1.8e14m / s2



What we know so far
•  It takes a force F(=qE) to move a 

charge through an electric field

• We can calculate the work W (=Fd) it 
takes to move the charge through that 
field.

• We have a quantity called electric 
potential V (=W/q = -Ed), which is 
related to how much energy/work per 
unit charge it takes to move through a 
field.



Absolute Electric Potential
When we discussed gravitational potential energy, it 
eventually became useful for us to define Ug = 0 at a 
distance infinitely far from the source of gravity; all large-
scale gravitational energy calculations were done using 

€ 

Ug = −G Mm
r

In the same way, we’re going to define an 
absolute electric potential at a position in 
space, which will be the amount of Work 
per unit charge necessary to bring a 
positive test charge from infinity to that 
point in space.



Absolute Electric Potential
For a point charge in space:

  

€ 

VB −VA = −
 
E • d s 

A

B

∫
 
E = k q

r2
ˆ r 

VB −VA = − k q
r2

ˆ r • d s 
A

B

∫

Vf −Vi = − k q
r2  dr

r  initial

r  final

∫

Vf −Vi = kq 1
rfinal

−
1

rinitial

$ 

% 
& & 

' 

( 
) ) 

If we set Vi = 0 at r =∞,

V = k q
r



Electric Potential
For many point charges in space:

If there are numerous point charges in a given area, then 
the potential V at any given nearby point will be the sum 
of the potentials. (Cool point to keep in mind: potentials 
are not vectors, so you don’t have to worry about x and 
y components, or directions--just add the + and - 
potentials and that’s your answer!)

€ 

Vnet = k qi
rii

∑



Electric Potential
What are the 
potentials of each of 
the charges shown 
here? What do these 
potential values 
represent?

€ 

Vnet = k qi
rii

∑



Equipotential Lines
... are related to Electric Field lines. How?



Equipotential Lines
... can be visualized as a topographic map.



Equipotential Lines
... reveal areas of higher vs. lower electric potential.



Draw appropriate equipotentials for this electric field.

Example 5 ���
 



Example 6
Draw appropriate field lines for these equipotentials.



U for a system of charges
In a system of charged particles, the forces between the 
particles themselves give the system a potential energy.  We 
can calculate that U by considering what kind of work would 
be required to bring the charges together.

q1   q2   

P ,  where V1=kq1/r2   

€ 

U = q2V1

U = q2
kq1
r

" 

# 
$ 

% 

& 
' 

U = k q1q2
r



U for a system of charges
For more than 2 charges, simply sum the Us.

€ 

Utotal =U1 +U2 +U3

Utotal = k q1q2
r12

+ k q2q3
r23

+ k q1q3
r13



Electric Field from V
We know that 

How can we go backwards to get Electric Field from 
Potential?

  

€ 

ΔV = −
 
E • d s 

A

B

∫

  

€ 

dV = −
 
E x • d

 x 

€ 

Ex = −
dV
dx



E from V, radial
If we have radial symmetry, we can write

Determine the electric field in the vicinity of a spherical 
charge distribution, given the electric potential function for a 
sphere. € 

Er = −
dV
dr

€ 

Er = −
dV
dr

                 V =
kq
r

Er = −
d
dr

kq
r

# 

$ 
% 

& 

' 
( =

kq
r2 !!!



Partial derivatives
What if V=5x-3x2y+2yz2 ? Given a 3-dimensional 
function, how can we find its derivative? How do we 
determine 

We can’t differentiate all at the same time, so we use a partial 
derivative in each dimension, and combine those to get the 
result.

A partial derivative is indicated        and is determined by 
taking the derivative with respect to one variable while 
keeping the other variables constant.

€ 

∂V
∂x

Er = −
dV
ds



Example 7

€ 

Ex = −
∂V
∂x

= −
∂
∂x
(5x − 3x 2y + 2yz2) = (−5 + 6xy)i

Ey = −
∂V
∂y

= −
∂
∂y
(5x − 3x 2y + 2yz2) = (3x 2 − 2z2)j

Ez = −
∂V
∂z

= −
∂
∂z
(5x − 3x 2y + 2yz2) = (−4yz)k

€ 

Ex = (−5 + 6xy)i = (−5 + 6•1•0) = −5
Ey = (3x 2 − 2z2)j = (3•12 − 2(−2)2) = −5
Ez = (−4yz)k = (−4 •0•−2) = 0

Emagnitude = Ex
2 + Ey

2 + Ez
2 = 7.07N /C

In a region of space, the electric potential is given by the 
function V=5x-3x2y+2yz2. ���
a) Find functions for the electric field components in this 
region, and ���
b) determine the magnitude of the field at the point P that 
has coordinates (1, 0, -2) m.



The del operator
A convenient mathematical shorthand for this operation is 
the del operator:
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Example 8
If the electric potential is 
constant in some region of 
space, what can you conclude 
about the electric field in that 
region?

E= -dV/dr, so if the potential 
isn’t changing, the E field must 
= 0. (Likewise, if E=0, then 
we’re not seeing any change 
in potential there.)



V from continuous charge?
If we need to calculate electric potential (energy per unit 
charge) for a point charge, it’s easy:

If we need to calculate electric potential for a continuous 
distribution of charge, we have two strategies:

a.  For a known charge distribution:

���
���

a.  If Electric Field is known:

€ 

V =
kq
r

€ 

dV = k dq
r

V = k dq
r∫

  

€ 

ΔV =
ΔU
qo

= −
 
E • d s 

A

B

∫



Example 9
Determine the electric 
potential for a hoop of charge 
+Q and radius a, at a distance 
x along the x-axis, as shown.

P  a  

x  

€ 

V = k dq
r∫

V =
kQ
x 2 + a2



Example 9 (continued)
Find the electric field E at this 
same position, using V.

P  a  

x  

V = − E • dr∫
dV = −E • dr

Ex = −
dV
dx

E = − d
dx

k Q
x2 + a2

#

$
%

&

'
(

E = kQx

(x2 + a2 )
3
2



Example 10
An insulating solid sphere of 
radius R has a uniform 
positive charge density w/ 
total charge Q.

R  a  

b  

c  

a.  Find the electric potential 
at a point outside the 
sphere, r > R. (Take 
potential to be 0 at r = 
.)

b.  Find the potential at a 
point inside the charged 
sphere, r < R.

c.  What are the electric field 
and electric potential at 
the center of the 
uniformly charged sphere?



Example 10
An insulating solid sphere of 
radius R has a uniform 
positive charge density w/ 
total charge Q.

R  a  

b  

c  

a.  Find the electric potential 
at a point outside the 
sphere, r > R. (Take 
potential to be 0 at r = 
.)

€ 

E = k q
r2  for r > R

ΔV = − E • ds =
A

B

∫

VB −VA = − k q
r2 • dr

∞

r

∫

V = k Q
r

 (for r > R)



Example 10
An insulating solid sphere of 
radius R has a uniform 
positive charge density w/ 
total charge Q.

R  a  

b  

c  

b. Find the potential at a 
point inside the charged 
sphere, r < R.

€ 

E = k Qr
R3  for r < R

ΔV = − E • ds =
A

B

∫

Vb −Vsurface = − k Qr
R3 • dr

R

rB

∫ = −k Q
R3 r • dr

R

rB

∫

Vb −Vsurface = −k Q
R3

1
2
r2 − R2( )% 

& 
' 

( 

) 
* 

Vb = k Q
2R3 R2 − r2( ) + k Q

R

V = k Q
2R

3− r2

R2

% 

& 
' 

( 

) 
* ,  for r < R



Example 10
An insulating solid sphere of 
radius R has a uniform 
positive charge density w/ 
total charge Q.

R  a  

b  

c  

c. What are the electric field 
and electric potential at 
the center of the 
uniformly charged sphere?

€ 

E = 0 at center (all fields cancel)
Use equation from (b) with r = 0 to get

Vo =
3kQ
2R



E for Charged Conductors
What we already know about E fields and charged 
conductors:

a. In a conductor, charges reside on the surface.

b. Just above the surface of the conductor, the E field is 
perpendicular to the surface, and has a magnitude E=/o.

c. In the conductor, the E=0. (Otherwise, charges would be 
moving, and we wouldn’t have a static situation).



V for Charged Conductors
a.  V is constant everywhere���

along the surface of a conductor. ���
���
���

b.  The surface of any charged conductor  (in equilibrium) is 
an equipotential surface. Furthermore, since the E=0 
inside the conductor, we conclude that the potential is 
constant everywhere inside the conductor, and equal to its 
value at the surface.

  

€ 

ΔV = −
 
E • d s ∫

but E ⊥ds, so
ΔV = 0



E & V, Charged Conductors

+ 
+ + + 

+ 
+ 
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+ + 
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+ 
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E   

r   

V   

r   

€ 

E = k Q
r2

€ 

V = k Q
r



Charged Conducting Cavity
Inside a charged conducting shell,  
what’s going on? Any 2 points on the 
inside surface of the shell are at the 
same potential, so if ∆V=0 across 
interior of shell , there can be no E.

Lesson: If you want to shield a circuit, or 
a lab, or anything, from electric fields, just 
enclose them in a conductor.

+ 
+ + + 
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+ 
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+ 

+ 
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Review slides/your notes



Review slides/your notes



Millikan’s Oil Drop Experiments 
• Conducted from 1909-1913

• Determined the magnitude of 
electron charge

• Earned Millikan the Nobel Prize in 
1923

E q
Fe=qE

Fg=mg



Millikan’s Oil Drop Experiments 
Assume charged sphere with mass m, charge q. 
It should be possible to set up a specific electric 
field E, based on a specific potential V, that will 
cause mass to levitate.

E q
Fe=qE

Fg=mg

charge ( x10^-19 C)
8.04204
4.90212
6.408
6.3279
1.602

12.7359
9.612
6.408
4.806

6.45606
6.408
3.204
1.5219
6.4881
8.04204
6.44004
4.83804
3.22002
6.39198
8.07408
9.66006
8.10612
4.75794
4.77396
1.66608



Millikan’s Oil Drop Experiments 
By statistically grouping the results, it’s 
possible to determine the fundamental unit of 
charge. 

charge ( x10^-19 C)
8.04204
4.90212
6.408
6.3279
1.602

12.7359
9.612
6.408
4.806

6.45606
6.408
3.204
1.5219
6.4881
8.04204
6.44004
4.83804
3.22002
6.39198
8.07408
9.66006
8.10612
4.75794
4.77396
1.66608



Debrief test
Average: 65���
Range: 35-88



 

E1.  A sphere of radius R is surrounded by a 
concentric spherical shell of inner radius 2R 
and outer radius 3R, as shown above. The 
inner sphere is an insulator containing a net 
charge + Q distributed uniformly throughout its 
volume. The spherical shell is a conductor 
containing a net charge + q different from + Q. 
Use Gauss's law to determine the electric field 
for the following values of r, the distance from 
the center of the insulator. 
a.  0 < r < R 
b.  R < r < 2R 
c.  2R < r < 3R 

Determine the surface charge density (charge per unit area) on 
d.  the inside surface of the conducting shell; 
e.  the outside surface of the conducting shell. 


