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CHAPTER  25:
Electric Potentials and Energy 

Considerations

courtesy of 
Mr. White
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You should now be comfortable with the idea
that a charge configuration will produce an electrical 
disturbance in its vicinity, and that knowing how much 
force per unit charge is provided to the region

Electric Potential Fields

Q

 
!
Edue to Q

It’s time to consider another related field, one associated with energy.

around the field-producing charge (whether there be a secondary charge is in the 
region experiencing the force or not) in the form of an electric field is a useful idea 
to entertain.

If we release a test charge q (or any charge, for 
that matter) in the electrical disturbance generated by 
our field-producing charge, the test charge WILL 
ACCELERATE.  

Q
q

will  
accelerate,
has energy
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We could measure the amount of potential energy 
the test charge has, but that would be quite limiting (the

Why will the test charge accelerate?  

Q
q

will  
accelerate,
has energy

Because there is POTENTIAL ENERGY available to 
the test charge as it sits in the field.

information would be applicable only to that particular test charge).

The clever thing to do would be to mimic what we did with electric fields.  
We could measure the test charge’s potential energy while in the field at a 
particular point, then divide by the size of the test charge to determine how 
much POTENTIAL ENERGY PER UNIT CHARGE is AVAILABLE at the 
point (whether the test charge is there to feel the effect or not). 

This quantity, with units of joules per coulomb (or volts), is called the ABSOLUTE 
ELECTRIC POTENTIAL at the point of interest.
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An ELECTRIC POTENTIAL 
FIELD, measuring the amount of potential energy 
per unit charge AVAILABLE at all points in the region of 
a field-producing charge, can be (and is) associated with 
any charge configuration.

An ELECTRIC POTENTIAL FIELD exists wherever there 
is charge (and, for that matter, wherever there is an electric field).  For the potential 
fields to exist, there doesn’t need to be present a secondary charge to feel the 
effect.  And because voltage-flds tell us how much energy is available PER UNIT 
CHARGE at a point, the electric potential field V is defined as:

V = Uq

Q

electrical 
disturbance

potential 
field exists

Important note: As an absolute electric potential is a function of the charge 
q that generates the field, a negative charge will produce a NEGATIVE absolute 
electric potential and a positive charge will produce a POSITIVE absolute electric 
potential!
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Example 2: How much potential 
energy does a -2 C charge have at a 
point where the absolute electric 
potential is                                      ?V1 = 3 joules/coulomb

V1 =
U1

q
   

     ⇒    U1 = qV1

                  = −2 C( ) 3 J/C( )
                  = −6 J

Example 3: How much 
potential energy does a -2 C 
charge have at a point where the 
absolute electric potential is                                      

?V1 = −3 joules/coulomb

V1 =
U1

q
   

     ⇒    U1 = qV1

                  = −2 C( ) −3 J/C( )
                  = 6 J

Example 1: How much 
potential energy does a 2 C 
charge have at a point where the 
absolute electric potential is                                    

?V1 = 3 joules/coulomb

V1 =
U1

q
   ⇒    U1 = qV1

                              = 2 C( ) 3 J/C( ) = 6 J



Example 4 (courtesy of Mr. White)

Is the electric charge in each of these situations in a position of high
Ue or low Ue?

-q 

-q 

6.)
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Work and Electric-Potential (Voltage) Fields
Note: An absolute electric potential field is a modified potential energy field.  

Everything you can do with energy considerations, you can do with electric 
potential functions:

Just as the work done on a body moving from 
one point to another in a conservative force field
equals                 ,  we can use the definition of 
absolute electric potential to write: 

W = −ΔU

W = −ΔU = −qΔV

    ⇒   W
q

= −ΔV

Apparently, if you know the voltage difference between 
two points, you know how much work per unit charge 
AND potential energy per unit charge the field has 
available between the two points.

Example 5: How much work does a field do on a moving 2 C charge if the 
potential difference between its beginning and end points is 7 volts?

W
q

= −ΔV   ⇒    W = −qΔV

                                 = − 2 C( ) 7 J/C( ) = −14 J

W = −ΔU = −qΔV

        ⇒   ΔU
q

= ΔV

and



Example 6:  (courtesy of Mr. White)

An electron (e-) in a TV picture tube is accelerated from rest through a potential 
difference of 5000 V.

a.) What is the change in the U of the electron?

-q 

b. What is the final speed of the electron?

		

−ΔU= ΔK
− −8x10−16 J( ) = 12mv

2

		⇒ 		v =
2 8x10−16( )
9.11x10−31 = 4.2x107m / s

	

ΔU= qΔV == q V2 −V1( )
						 = (−1.602x10−19C)(5000V−0)
							= −8x10−16 J					 = −5000eV( )*

*Fletch’s note: An electron-volt (eV) is defined as the amount of energy an electron
picks up when accelerated through a 1 volt electrical potential difference.
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Electric Potential Difference and E-flds

Assuming we are dealing with a constant electric 
field and a straight-line path between two points in the 
field, we can use the definition of work (               ) with the 
manipulated definition of the electric field (           ) to 
extend out potential difference relationship ( ) 
into a very interesting proposition.  Specifically:

 W =
!
F i
!
d

 

WAB

q
= −ΔVAB    ⇒    

!
F i
!
dAB

q
= −ΔVAB

                    ⇒    q
!
E i
!
dAB

q
= −ΔVAB

                                 ⇒   
!
E i
!
dAB = −ΔVAB

 
!
F = q

!
E A  i

 iB

 
!
E

two points in a
constant E-fldW

q = −ΔV

And what might we glean from this bit of amusement?



the dot product in 
our relationship falls out as:

B
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Observations

 

!
E i
!
d = −ΔV

  ⇒   
!
E
!
d cos0o = − VB −VA( )

Example 7: Points A, B and C are identified in a 
constant electric field as shown in the sketch.

a.) Which point has the GREATER absolute 
electric potential?  (That is, do electric fields run 
from higher voltage to lower, or vice versa?)

A  i

 i

three points in a
constant E-fld

 
!
d

1

By observation, the left-side of the equation is positive (two magnitudes 
multiplied together), so the right-side must also be positive.  For this to be 
true,      must be larger than      .VA VB

IMPORTANT OBSERVATION: This means that ELECTRIC FIELDS migrate 
from HIGHER ELECTRIC POTENTIAL to LOWER.

Traversing from A to B, so     points along the line of    ,  
!
d  

!
E

C
 i

 
!
E
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!
E i
!
d = −ΔV

  ⇒   
!
E   
!
d  cos180o = − VA −VB( )

       −
!
E 3m( )             = − 11v− 5v( )

                 ⇒   
!
E = 2 V/m

b.) Assume the electric potential at A is                
and the electric potential at B is                    .  If the 
distance between the two points is 2 meters, derive 
an expression for the magnitude of the electric 
field. 

A  i

 iB

This time, to point out how the angle works, we will traverse from B to A.  
Noticing that now the angle between    and     is        , we can write:

 
!
d

−1

VA = 11 volts

IMPORTANT SIDE POINT:  The unit for ELECTRIC FIELDS is newtons
per coulomb, but it is also, apparently, volts per meter.

C
 i

VB = 5 volts

 
!
d  

!
E 180o

three points in a
constant E-fld



12.)

c.) A positive charge Q=1C and mass m=1 kg moves 
naturally along the E-fld lines.  

A  i

 iB

i.) Is the charge moving from higher electrical 
potential to lower, or lower electric potential to 
higher? 

This has nothing to do with the charge.  Electric fields proceed from higher voltage 
to lower, so it’s doing the former.

ii.) Is the charge moving from higher potential energy to lower, or lower 
potential energy to higher? 

This has EVERYTHING to do with the charge.  POSITIVE CHARGES naturally 
move from higher to lower voltage along E-fld lines (being by definition the 
direction a positive charge would naturally accelerate), so it is moving from higher
to lower potential energy.  

iii.) If Q’s initial velocity was       
at A, what is its velocity 

at B?  (Note that the voltages 
have been put on the sketch.)  

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
1

2mvA
2 + qVA( ) + 0 = 1

2mvB
2 + qVB( )

1
2 1( ) 3( )2 + 1( ) 11( ) = 1

2 1( )vB
2 + 1( ) 5( )           

                  ⇒   vB = 4.58 m/s

VA = 11 volts

VB = 5 volts

3 m/s
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!
E i
!
d = −ΔV

  ⇒   
!
E   
!
d  cos90o = − Vc −VB( )

          ⇒  0 = − VC −VB( )
               ⇒   Vc = VB = 5 V/m

d.) Given the electric potential at B is                   
and the electric field, as calculated in the previous 
part, is                    , what is the voltage (i.e., the 
electric potential) at C, assuming the distance
between B and C is .5 meters?

A  i

 iB

This is slightly tricky.  Define     on your sketch as shown.  Notice that the 
angle between    and     is       .  With that, we write:

 
!
d

0

IMPORTANT POINT:  An EQUIPOTENTIAL LINE is a line upon which every 
point has the same electrical potential.  Points B and C are on the 5-volt equipotential 
line.

C
 i

VB = 5 volts

 
!
d  

!
E 90o

 
!
E = 2 V/m

 
!
d

IMPORTANT POINT:  Equipotential lines are ALWAYS perpendicular to electric 
field lines.



Electric Potential contours (courtesy of Mr. White)

What are the potentials of 
each of the charges shown 
here? What do these 
potential values represent?

€ 

Vnet = k qi
rii

∑
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Equipotential Lines 
(courtesy of Mr. White)

... are related to Electric Field lines. How?

15.)



... can be visualized as a topographic map.

Equipotential Lines 
(courtesy of Mr. White)
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... reveal areas of higher vs. lower electric potential.

Equipotential Lines 
(courtesy of Mr. White)

17.)



Draw appropriate equipotentials for this electric field.

Example 8: (courtesy of Mr. White)

18.)



Draw appropriate field lines for these equipotentials.

Example 9: (courtesy of Mr. White)

19.)
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!
E i
!
d = −ΔV

  ⇒   
!
E       

!
d cos0o = −   V−   −    V+   ( )

  ⇒   
!
E 3x10−3  m( )  = − 2 V( )− 14 V( )( )

                 ⇒   
!
E = 4000 V/m    (or 4000 N/C)

Example 10: A battery has an electric potential of 
14 volts at its positive terminal and 2 volts at it’s negative 
terminal.  It is connected to parallel metal plates that are 3 
millimeters apart and insulated from one another.

a.) From what you know about the voltages, 
draw in the electric field lines between the plates.

plates viewed 
from side

1

Traversing from the upper plate to the lower plate (i.e., from the higher 
voltage to the lower voltage plate ALONG THE E-FLD LINES, we can 
write:

hi voltage 
(positive) 
terminal

low voltage 
(negative)  
terminalb.) How big is the electric field between the plates?

+

−
2V

14V
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c.) Points A, B and C are identified between the plates.  
A positive charge is placed successively at each point:

plates viewed 
from side

hi voltage 
terminal

low voltage 
terminal

i.) At which point will the charge experience the 
greatest electric field? A

B

C

ii.) At which point will the charge experience the 
greatest electric potential?

iii.) At which point will the charge experience the greatest potential energy?

(The E-fld is constant between the plates—all points are the same.)

(The voltage closest the positive plate will be highest, which is C.)

(A charge’s potential energy at a point is related to voltage as              , so for a positive charge, 
that will be greatest at C . . . or as close to the 14 volt plate as possible.)

U = qV

d.) Now, a negative charge is placed at each point:

i.) At which point will the charge experience the greatest electric potential?

ii.) At which point will the charge experience the greatest potential energy?
(Using             , sign included, the greatest potential energy point for a negative charge is A.  
This makes sense if you think about it.  A -1C charge on the negative plate (pt A)would be -2 
joules whereas on the positive plate (pt C) it would be -14 joules.  A is bigger (closer to zero)!  
Also, where, if you let a negative charge go, would it pick up the most kinetic energy?  
Certainly not if it was next to the positive plate.  Definitely next to the negative plate at A!).

U = qV

(Electrical potential has NOTHING TO DO with the charge feeling the effect: it’s still C.)
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e.) An electron                                                        
accelerates between the plates.  How fast is it moving 
if it started from rest?

plates viewed 
from side

hi voltage 
terminal

low voltage 
terminal

A
B
C

Note that the electron (charge –e) would accelerate 
from the negative the positive plate, and that the 
potential energy of a charge sitting at a point whose 
potential is V is              with the charge’s sign included, 
we can write:

KE1∑ +    U1∑   + Wext∑ = KE2∑ +   U2∑
     0    + −e( )V−( ) +      0    = 1

2mv2 + −e( )V+( )
   ⇒   −1.6x10−19 C( ) 2 V( ) = 1

2 9.1x10−31  kg( )vB
2 + −1.6x10−19 C( ) 14 V( )           

                                   ⇒   v = 2.1x106  m/s

(e = 1.6x10−19 C,  m = 9.1x1031kg)

U = qV
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We know from our experience with energy considerations that if we want the 
potential energy function that goes with a conservative force field, we can derive 
it using:

If the force is the consequence of a charge in an electric field, we could divide
everything by the size of the charge q feeling the effect, and have:

Deriving an Electric Potential 
From an Electric Field

 
U r( )− U zero pt( ) = −

!
F i d!r

zero  pt

r

∫

 

U r( )
q

−
U zero pt( )

q
= −

!
F i d!r

qzero  pt

r

∫
   ⇒    V r( )−V zero pt( ) = −

!
E i d!r

zero  pt

r

∫

0

0
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Example 11: Derive a general expression for the electric 
potential generated by a point charge Q?

Setting the zero point for 
the electric potential to be 
where the electric field is 
zero (i.e., at infinity), and 
using the electric field 
function for a point 
charge as                   , we 
can write:

A Specific Case--The Electric Potential 
Generated by a POINT CHARGE

 

V r( )−V ∞( ) = −
!
E i d!r

∞

r

∫
                    = − k Q

r2 r̂⎛
⎝⎜

⎞
⎠⎟r=∞

r

∫ i d!r

                    = − k Q
r2

⎛
⎝⎜

⎞
⎠⎟r=∞

r

∫  dr cos0o( )
                    = −kQ −1

r
⎛
⎝⎜

⎞
⎠⎟ r=∞

r

   ⇒   V r( )pt  chg =
1

4πεo

⎛
⎝⎜

⎞
⎠⎟

Q
r

Q

 
!
E

 

!
E = kQ r2 r̂
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Q

Vnet  at point 1 = V∑ i

               = k qi

ri

⎛
⎝⎜

⎞
⎠⎟∑

Things to notice:  
!
E

This function is good ONLY for point charges.

This is a SCALAR quantity (‘cause electric potentials are 
NOT vectors).

Being a scale, a group of point charges will produce a 
net electric potential at a point that is simply the sum 
of the individual electric potentials.  There is NO 
NEED to do anything with components . . . because 
again, voltages aren’t vectors!  Mathematically, this 
can be stated as:

Positive charges generate positive electric potentials while negative charges 
generate negative electric potentials, so the SIGN of the charge needs to be 
included in the use of                            . 

 
V r( )−V ∞( ) = −

!
E i d!r

∞

r

∫
Any electric field generated by a static charge 
configuration will be conservative in nature, and can 
have an electric potential function derived for it using:

V r( )pt  chg = kQ
r
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Remember back to the Energy chapter when we related a conservative 
force function to its potential energy function.  We found that the spatial rate of 
change of potential energy equals the force associated with the potential energy 
field, or                         .  There is an electrical analogue to this.

is

So How Are Electric Fields and
Electric Potentials Related?

 
V r( )−V zero pt( ) = −

!
E i d!r

zero  pt

r

∫
 dV = −

!
E i d!r

But if that is true, it must also be true that:
 

!
E = − dV

dr
r̂

 

!
F = − dU

dx( ) î
That is, the differential consequence of:

which can be expanded into multiple dimensions using the del operator as:

 

!
E = −

!
∇V = − ∂V

∂x
î + ∂V

∂y
ĵ+ ∂V

∂z
k̂⎛

⎝⎜
⎞
⎠⎟

Except in Cartesian coordinates (assuming E is in the x-direction), 
 

!
E = − dV

dx
î
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Using the del operator 
in polar spherical 
coordinates . . . 

The Electric Field Generated by a POINT 
CHARGE as calculated from 

the Electric Potential

Q

 
!
E!

E = −
!
∇V

   = − ∂V
∂r

r̂ +  . . . ⎛
⎝⎜

⎞
⎠⎟

We’ll come back to this 
shortly. . . 

   = −
∂ kQ

r( )
∂r

r̂

   = − kQ
∂ r( )−1

∂r
⎛

⎝⎜
⎞

⎠⎟
r̂

   = − kQ −r−2( )( ) r̂
   = 1

4πεo

Q
r2

⎛
⎝⎜

⎞
⎠⎟

r̂
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Example 12: Assume the charges are 
equal and opposite, and are placed 
symmetrically as shown.  

a.) Is there an electric field at (x,0).  
If so, in what direction is it? 

Vtotal =           VQ                +              V−Q

       = 1
4πεo

⎛
⎝⎜

⎞
⎠⎟

Q

x2 + a2( )1
2
+ 1

4πεo

⎛
⎝⎜

⎞
⎠⎟

−Q

x2 + a2( )1
2

       = 0

x,0( )

−Q

a

Q
x2 + a2( )12

a

x2 + a2( )12
There will be an E-fld at (x,0).  By 
inspection, its x-components will add to 
zero leaving it with only y-components.

b.) Is there an absolute electric potential at (x,0).  If so, in what direction is it? 
TRICK QUESTION—electric potentials don’t have directions as they are scalars.  
As for magnitude:

c.) Does this make sense?

Yes, if you understand how E-flds and voltage flds are related to one another.
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c.) How would the problem 
change if the charges were no 
longer the same and their 
positions no longer 
symmetric?

V2 = k
−Q2( )

x2 + b2( )12

x,0( )

−Q2

a

Q1

b

x2 + a2( )12

x2 + b2( )12

V1 = k
Q1

x2 + a2( )12

Vtotal =
1

4πεo

⎛
⎝⎜

⎞
⎠⎟

Q1

x2 + a2( )12
− 1
4πεo

⎛
⎝⎜

⎞
⎠⎟

Q2

x2 + b2( )12

The math shows it all.



then sum that differential electrical 
potential over the entire rod.  You’ll again need to define a linear charge density 
function
and                             
note that                . 
With that, we can 
write: 

This extended charge distribution is something you’ve already seen.  The 
solving technique is exactly as was before.  

	

V = dV∫ = 1
4πεo

dq
xx=a

a+L
∫

															 = 1
4πεo

λdx( )
xx=a

a+L
∫ =

−Q
L

⎛
⎝⎜

⎞
⎠⎟

4πεo
dx
xx=a

a+L
∫

															 =
−Q

L
⎛
⎝⎜

⎞
⎠⎟

4πεo
lnx x=a

a+L( ) = −Q
4πεoL

ln a+L( )( )− lna( )⎡
⎣

⎤
⎦

															 = −Q
4πεoL

ln a+L
a

⎛
⎝⎜

⎞
⎠⎟
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Example 13 (A non-AP problem):
Derive an expression for the electric 
potential at the origin due to a rod with 
charge -Q uniformly distributed over its 
length L.  x

x=a

dV = k dq
x

− − − − − − − − − − −

dx

−

dq

Define the differential electric potential 
at the origin due to a differential bit of charge,

λ = −Q L

dq = λdx
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Example 14 (a non-AP question):
Derive an expression for the electric 
potential at an arbitrary point y = b on the 
y-axis due to a rod with charge Q uniformly 
distributed over its length L.  

x

dV = k dq
r

dx

dq = λdx

SO NICE, no components!

y=b
r = x2+b2( )12

λ = QL
V = dV∫
  = 1

4πεo

dq
rx=0

L

∫
  = 1

4πεo

λdx( )
x2 + b2( )1

2x=0

L

∫

  = λ
4πεo

1

x2 + b2( )1
2

dx
x=0

L

∫      (whatever that is--what's important is the set-up)
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Example 15: A ring situated in the x-z 
plane (as shown) has –Q’s worth of charge 
on it.  

a.) What is the direction of the E-
fld at (x,0)?

(x,0)
x

−dq

dE
R

these 
components are 
the same.

these components 
cancel out.

From observation, it’s      .− î

b.) Derive an expression or V at (x,0)?

V = dV∫
  = 1

4πεo

dq

x2 + R2( )1
2∫

  = 1

4πεo x2 + R2( )1
2

dq∫

  = −Q

4πεo x2 + R2( )1
2

     

c.) Do the results from Parts a and b make sense together?
sure
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Example 17 (not): Consider yourself lucky.  A 
lab I had my students do for years (minus the data part) 
follows:  Given a charged copper disk:

a.) Use Gauss’s Law to derive an expression for 
the electric field due to the disk very, very close 
to the disk’s central axis (i.e., at a coordinate 
(x,0) such that x << R).

(x,0)
x

dq

r

c.) Using the relationship derived in Part b, assume that x<<R in that relationship 
and see if that E matches up with the Gauss’s Law expression.

d.) Using dq , derive an expression for the electric potential at (x,0). 

b.) Use the differential-charges-dq-approach to 
derive an expression for the electric field generated
by the disk at some point down the x-axis (x,0).

e.) Though not completely kosher, due to the vagaries of the symmetry, you could 
use the del operator on the electric potential function you derived in Part d to 
derive an expression for the electric field at (x,0).  Do so and see if it matches your 
expression from Part a.

Called THE LAB FROM HELL, students lost a lot of sleep but learned a LOT.
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Example 18: In the previous “lab” 
example identified as Example 17, it was 
stated in Part e that “although it is not 
kosher, you could use the del operator to 
derive an expression for the electric field at 
(x,0).”  What was up with that? 

The question is asking us to use

There would be a net electric field at (x,0) in the y-direction, but the electric 
potential V at (x,0) would be ZERO.  So how could you use                         ?

 

!
E = − dV

dx
î

(or the del operator equivalent) to determine E.  Why is this spooky?

Consider a hoop.  What would happen if the upper half of the hoop was 
negatively charged while the lower half had an equal amount of positive charge?

(x,0)
x

−dq

R

+dq

 

!
E = − dV

dx( ) î

V(x,y) at 
       arbitrary 
         point

r

dE dE

To make things work, you need a general expression for V(r), an expression 
for the electric potential at an arbitrary point, to use with                .  

!
E = −

!
∇V
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Due to the symmetry, a single-
charge hoop has an electric field that 
is down the x-axis, and it has a V-
function that is a function of x.  As 
such, using 

 

!
E = − dV

dx
î (x,0)

x

dq

dE

R

yields

dq

V = 1
4πεo

Q

x2 +R2( )12

 

!
E = − dV

dx
î

   =

d 1
4πεo

Q

x2 + R2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dx
î

   = Q
4πεo

d x2 + R2( )−1
2⎛

⎝
⎞
⎠

dx
î = Q

4πεo

− 1
2

⎛
⎝⎜

⎞
⎠⎟ 2x( ) x2 + R2( )−3

2 î

   = Qx

4πεo x2 + R2( )3
2

î which matches the derived E-fld expression 
from before. 



37.)

The point here is that you can use 

 

!
E = − dV

dx
î

(x,0)
x

dq

dE

R

dq

V = 1
4πεo

Q

x2 +R2( )12

even if we don’t have a general 
expression for V(r).  The key is in 
whether the charge involved is all the 
same kind (i.e., either all positive or 
all negative).  If that be the case, you 
can fudge some (not kosher, but it 
gives you the right answer).



38.)

Example 19: A solid, charged, conducting sphere 
of radius R and Q’s worth of charge on it.  

a.) Derive a general algebraic expression for the 
electric potential field for r > R.

If we are going to use                                                
we need to know the E-fld function for r>R.  
Gauss’s Law was born to dispatch that problem.  

R

Gaussian surface

r

 
V r( )−V zero pt( ) = −

!
E i d!r

zero  pt

r

∫

 

!
E i d
!
A = qcnclosed

εo
S∫

  ⇒   E dAcos0o

S∫ = Q
εo

      ⇒   E dA
S∫ = Q

εo

      ⇒   E 4πr2( ) = Q
εo

         ⇒   E = Q
4πεor

2

Starting with a Gauss’s surface, we can write:



39.)

R

r

Although it isn’t stated, 
problems like assume the 
electric potential will be zero 
where the electric field is 
zero, which in this case is at 
infinity.  So identifying       :  

 

V r( )−V ∞( ) = −
!
E i d!r

∞

r

∫
                     = − Q

4πεo

1
r2

⎛
⎝⎜

⎞
⎠⎟

i dr !r( )
∞

r

∫

                     = − Q
4πεo

1
r2

⎛
⎝⎜

⎞
⎠⎟

dr cos0o

∞

r

∫ = − Q
4πεo

1
r2

⎛
⎝⎜

⎞
⎠⎟ dr

∞

r

∫

                     = − Q
4πεo

−1
r

⎛
⎝⎜

⎞
⎠⎟ r=∞

r = Q
4πεo

1
r
− 1
∞

⎛
⎝⎜

⎞
⎠⎟

      ⇒    V r( ) = Q
4πεor

V r( ) V ∞( )=0

ΔV

0

0

ΔV



40.)

r

b.) Derive a general algebraic expression for the electric potential field for r < R.
This is where it gets a bit tricky.  Why?  Because the electric field inside the 
sphere and outside the sphere are different, so we can’t use one giant       in   ΔV
ΔV = −

!
E i d!r

zero  pt

r

∫ .

How to deal with this?  Derive       
for each discrete region         
using each region’s known 
electric field function, then 
add them all up.  That is:

ΔV

V R( )
V ∞( )=0

ΔVoutsideΔVinside

V r( )

ΔVinside + ΔVoutside = V r( )−V R( )⎡⎣ ⎤⎦ + V R( )−V ∞( )⎡⎣ ⎤⎦
                          = V r( )

0

To execute these changes, we need electric fields (as each                         over 
its limits),  so normally we’d be back to Gauss’s Law.  

ΔV = −
!
E i d!r∫

Also, because electric 
potentials AREN’T inverse 
square functions, you can’t 
ignore the charge interior to 
the point of interest like you 
did with Gauss’s Law!



V r( ) =         ΔVoutside     +       ΔVinside

        = V R( )−V ∞( )⎡⎣ ⎤⎦ + V r( )−V R( )⎡⎣ ⎤⎦

        = −
!
Eoutside i d

!r
∞

R

∫ −
!
Einside i d

!r
R

r

∫
        = − Q

4πεo

1
r2 r̂

⎛
⎝⎜

⎞
⎠⎟
i dr !r( )

∞

R

∫ + 0

              ⇒    V r( ) = Q
4πεoR

   for r > R

41.)

In this problem, though, we have the electric field for the outside region, and 
because the sphere is a conductor, we know the electric field inside is zero, so we 
can write:

0

Note: If the inner sphere had been an insulator, we would have had to use Gauss’s 
Law to determine the electric field function in that region, and that second integral 
would not have been zero.  We’ll try this in the next problem.  In the meantime . . .



42.)

c.) Sketch the 
graph for:           
E-fld vs position
AND the electric 
potential field vs.
position.

 
!
E

rR
Notice that 
whereas the E-fld
functions is 
discontinuous, the 
V-fld function is 
CONTINUOUS! 

V

rR

V r( ) = Q
4πεor

E r( ) = Q
4πεor

2

Q
4πεoR( )



43.)

Example 20: A solid insulating sphere of radius R
has Q’s worth of charge shot uniformly throughout.  

a.) Derive a general algebraic expression for the 
electric potential field for r > R.

As before, Gauss’s Law yields:

R

Gaussian surface

r

 

!
E i d
!
A = Q

εo
S∫

    ⇒   E = Q
4πεor

2

and the electric potential 
function yields:

 

V r( )−V ∞( ) = −
!
E i d!r

∞

r

∫
                     = − Q

4πεo

1
r2

⎛
⎝⎜

⎞
⎠⎟

i dr !r( )
∞

r

∫
         ⇒    V r( ) = Q

4πεor
just as before . . . 



We know the E-fld outside.  
For the E-fld inside:

44.)

b.) for r<R:
a

r

da

Gaussian surface 

!
E i d
!
A =

ρdV
a=0

r

∫
εoS∫

ρ = Q
4
3
πR3⎛

⎝⎜
⎞
⎠⎟

where the volume charge density is:

 

!
E i d
!
A =

ρdV
a=0

r

∫
εo

S∫

   ⇒    E 4πr2( ) = ρ 4πa2da⎡⎣ ⎤⎦a=0

r

∫
εo

= ρ

4
3
πr3⎛

⎝⎜
⎞
⎠⎟

εo

      ⇒   E = 1
4πr2

Q
4 3( )πR3

⎛

⎝⎜
⎞

⎠⎟
4

3πr3( )
εo

          ⇒   E = Q
4πεoR

3 r

and the spherical shell’s differential volume                         , so:dV = 4πa2( )da



V r( ) = ΔVoutside + ΔVinside

        = V R( )−V R∞( )⎡⎣ ⎤⎦ + V r( )−V R( )⎡⎣ ⎤⎦

        = −
!
Eoutside i d

!r
∞

R

∫ −
!
Einside i d

!r
R

r

∫
        = − Q

4πεo

1
r2  r̂

⎛
⎝⎜

⎞
⎠⎟
i dr !r( )

∞

R

∫ − Q
4πεoR

3 r r̂
⎛
⎝⎜

⎞
⎠⎟
i dr !r( )

r=R

r

∫

        = − Q
4πεo

1
r2  r̂⎛

⎝⎜
⎞
⎠⎟ i dr !r( )

∞

R

∫ − Q
4πεoR

3 r r̂( ) i dr !r( )
r=R

r

∫

              ⇒    V r( ) = − Q
4πεo

−1
r

⎛
⎝⎜

⎞
⎠⎟ r=∞

R − Q
4πεoR

3
r2

2
⎛
⎝⎜

⎞
⎠⎟ r=R

r   

                               = Q
4πεoR

− Q
8πεoR

3 r2 − R2( )           for r < R

45.)

So the electric potential is:



The first thing to note is that when you are asked to “determine” a value, that is not 
the same as “derive” a value.  As long as you justify what you do, you can be as 
clever as you want.  In this case, the observation to be made is that outside       
(especially from a distance), this charge configuration just looks like a point charge 
(even with the charge redistributing itself on the conductor).  We know the electric 
potential function for a point charge.  It’s

46.)

Example 20: A point charge at the center of a thick, 
uncharged conducting spherical shell of inside radius      and 
outside radius     .  Determine the electrical potential for:  

	R1

	R2

	a.)	r >R2

	R1

	R2
	Q

	b.)	R2 > r >R1
	
V(r)= 1

4πεo
Q
r

	R2

Again, being clever: You know the electric field inside a conductor is zero, so the 
electric potential difference between any two points must be zero.  You also know 
that electric potential functions are continuous.  Evaluating the field for           right 
at      , we get the electric potential at the outside edge of the conductor, which 
must be the electric potential throughout the conductor.  That evaluation is:  

	r >R2

	R2

	
V(r)= 1

4πεo
Q
R2



The problem with this is that this function, evaluated at            yields

And conclude that because the electric field is that of a point charge, the electric 
potential must be that of a point charge, or

47.)

	r =R1

	R1

	R2
	Q

	c.)	r <R1

This is where things get tricky.  
The temptation is to look at hollow region in which Q resides, 
think, “That’s a point charge with an electric field equal to:

	 

!E(r) = 1
4πεo

Q
r2

	
V(r)= 1

4πεo
Q
r

	
V(r)= 1

4πεo
Q
R1

But this is part of the conductor, and we’ve already concluded that the electric 
potential has to be                        inside the conductor. 

	
V(r)= 1

4πεo
Q
R2

So what gives?



Electric potentials aren’t like that.  They are simply 
inverse distance functions , or

48.)

	R1

	R2
	Q

We know that for spherical symmetry, Gauss’s Law states that an 
electric field is generated only by the charge inside the sphere 
upon which the point of interest resides.  That is because the 
electric field generated by each individual points charges is an 
inverse square function in distance (i.e.,                          ) 

	 

!E(r) = 1
4πεo

Q
r2

	
V(r)= 1

4πεo
Q
r

To get the electric potential function for a charge geometry that is spherical in 
nature, we not only have to consider the charge inside the sphere upon which the 
point of interest resides, we also have to consider the charge outside that sphere, 
also.  That means: 

	 

V r( ) = ΔVoutside +ΔVin_conductor +ΔVinside
								 = V R2( )−V R∞( )⎡⎣ ⎤⎦+ V R1( )−V R2( )⎡⎣ ⎤⎦+ V r( )−V R1( )⎡⎣ ⎤⎦

								 = − !Eoutside id
!r

∞

R2∫ −
!Ein_conductor id

!r
R2

R1∫ −
!Einside id

!r
R1

r
∫ 									

	0



	

V r =R1( ) = Q
4πεoR2

+ Q
4πεo

1
r −

1
R1

⎛

⎝⎜
⎞

⎠⎟
= Q
4πεoR2

+ Q
4πεo

1
R1

− 1
R1

⎛

⎝⎜
⎞

⎠⎟

																		 = Q
4πεoR2

				as	expected	for	a	point	inside	the	conductor!						
49.)

	R1

	R2
	Q

V r( )= ΔVoutside +ΔVin_conductor +ΔVinside
								 = V R2( )−V R∞( )⎡⎣ ⎤⎦+ V R1( )−V R2( )⎡⎣ ⎤⎦+ V r( )−V R1( )⎡⎣ ⎤⎦

								 = − !Eoutside id
!r

∞

R2∫ −
!Einside id

!r
R2

R1∫ −
!Einside id

!r
R1

r
∫

								 = − Q
4πεo

1
r2 	r̂

⎛

⎝⎜
⎞

⎠⎟
i dr	!r( )

∞

R2∫ − 0r̂( )i dr	!r( )− Q
4πεor2

r̂
⎛

⎝
⎜

⎞

⎠
⎟ i dr	

!r( )R1

r
∫R2

R1∫

								 = − Q
4πεo

1
r2 	r̂

⎛
⎝⎜

⎞
⎠⎟
i dr	!r( )

∞

R2∫ − Q
4πεo

1
r2 	r̂

⎛
⎝⎜

⎞
⎠⎟
i dr	!r( )R1

r
∫

														⇒ 			V r( )= − Q
4πεo

−1r
⎛
⎝⎜

⎞
⎠⎟ ∞

R2 − Q
4πεo

−1r
⎛
⎝⎜

⎞
⎠⎟ R1

r 		

																															 = Q
4πεoR2

+ Q
4πεo

1
r −

1
R1

⎛

⎝⎜
⎞

⎠⎟
										

	0

Note that for          , 
this becomes: 

	r =R1

That is:



SUMMARY—Conductors . . . 
Electric Fields:

a.) Free charge on a conductor in a static setting stays on the conductor’s surface.

b.) Close to the surface of a conductor, the E-fld is perpendicular to the surface 
and has a magnitude .
c.) Inside a conductor, the E-fld is zero in a static charge situation (otherwise, 
electrons would migrate).

Electric Potentials:
a.) Free charge on a conductor will distribute itself so as to create a equipotential 
surface (the voltage will be the same at every point on the surface)..

b.) As the electric field inside a conductor is zero, the voltage field (the electric 
potential field) inside a conductor will be CONSTANT.

50.)

E = σ
εo



21.)

Wtotal = W q1 did on q2( )+ W q1 did on q3( )+ W q2  did on q3( )    

1.) It takes no energy to bring a charge      in from infinity.  Once in, though, 
it will generate an electric potential field whose point-magnitude will (because 
it is a point-charge) equal to                   with V = 0 at infinity.  

q1

How do you determine the total energy in a systems of particles?  (We did a 
problem like this back in the Gravitation section).  The idea is simple:

V1 = k
q1
r

2.) Bringing a second charge     in from infinity will require work in the 
amount of                     .  That work will go into the total energy wrapped up 
in the system.  That new charge will produce it’s own voltage field with a 
similar function defining it.  

W = −q2ΔV
q2

3.) Bringing a third charge     in from infinity will require work as it deals 
with the fields generated by both     and     , the the total amount of work done 
(and the total energy in the system) will become:

q3
q1 q2



Example 5: A long wire of radius R has a linear 
charge density    on it.  What can we say about the 
electric potential function for: 

21.)

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E 2πrL( ) = λL

εo

      ⇒    E = λ
2πεor

For r>R

λ

its length L, and noting that the charge inside the Gaussian surface will be equal to     
times the length of the Gaussian surface L, we can write:                         

1.) We need the electric field function for this 
region so we can use the                          approach 
to determine the electric potential outside the wire.  
Starting with a Gaussian surface whose outside 
surface area dS will be its circumference           
times its length L, and noting that the charge inside 

ΔV = −
!
E i d!r∫   

λ

2πr( )

R
r

L



21.)

V r( )−V ∞( ) = −
!
E i d!r

r=∞

r

∫
      = λ

2πεor
r̂

⎛
⎝⎜

⎞
⎠⎟r=∞

r

∫ i dr r̂( ) = λ
2πεo

1
r

dr cos0o

r=∞

r

∫
      = λ

2πεo

ln r( ) r=∞
r = λ

2πεo

ln r( )− ln ∞( )⎡⎣ ⎤⎦ =
λ

2πεo

ln r
∞

⎛
⎝⎜

⎞
⎠⎟     yikes . . .    

2.) With the electric field, we run into a 
problem if we try to assume the electric 
potential is zero at infinity.  Following the 
math will show why:

Bottom line: Although you could be asked to use Gauss’s Law to determine the 
electric field generated by an insulator or conductor whose geometry is cylindrical, 
you will not be asked to determine the electric potential relative to infinity.

Having said that, you COULD be asked to determine the electric potential 
DIFFERENCE between two points in the region around or inside a cylindrically 
symmetric charge configuration.  That is:

R r

L



21.)

ΔV = −
!
E i d!r

r=a

b

∫
      = − λ

2πεor
r̂

⎛
⎝⎜

⎞
⎠⎟r=a

b

∫ i dr r̂( ) = − λ
2πεo

1
r

dr cos0o

r=a

b

∫
      = − λ

2πεo

ln r( ) r=a
b = − λ

2πεo

ln b( )− ln a( )⎡⎣ ⎤⎦ = − λ
2πεo

ln b
a

⎛
⎝⎜

⎞
⎠⎟    

1.) We need the E-fld between the 
structures.  Gauss’s Law to the 
rescue:

 

!
E i d
!
S

S∫ = qenclosed

εo

  ⇒    
!
E 2πrL( ) = λL

εo

      ⇒    E = λ
2πεor2.) With the E-fld, 

and assuming we are 
traversing from the 
inside-out (i.e., with 
the electric field), we 
can write:

b

−λ
a

λ L

r

1

Let’s say you have a coaxial cable in which the 
inside wire has a linear charge density of     on it while 
the outside sheath has a charge density of       on it.  
What is the voltage difference between the two cables?

λ
−λ

. . . Which makes sense as electric potential drops as you go from positive to negative plates.



Review slides/your notes  (courtesy of Mr. White)

51.)



a.) Note that the positive charge is in blue and the 
negative charge is in redish:

52.)

i.) 	r < a
The charge inside the Gaussian surface is the 
fraction of charge inside r, or:

For a Gaussian 
surface inside a:

	a 	2a

	3a

	X
	Y

	r

	 

!Eid!A =
qcnclosed
εoS∫

		⇒ 		 EdAcos0o
S∫ =

fraction	of 	q	inside	Gaussian	surface( )
εo

						⇒ 		E dA
S∫ =

r3
a3( )Q
εo

						⇒ 		E 4πr2( ) = r
3Q
a3εo

									⇒ 		E= Q
4πεoa3

r

	

qencl =
4
3( )πr3

4
3( )πa3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
Q = r3

a3
⎛

⎝⎜
⎞

⎠⎟
Q



a.) Use Gauss’s Law to derive the electric field for:

53.)

ii.) 	a < r <2a
For a Gaussian surface between a and 2a:

	 

!Eid!A =
qcnclosed
εoS∫

		⇒ 		 EdAcos0o
S∫ = Q

εo
						⇒ 		E dA

S∫ = Q
εo

						⇒ 		E 4πr2( ) = Qεo
									⇒ 		E= Q

4πεor2

	a 	2a

	3a

	X
	Y

	r



a.) Use Gauss’s Law to derive the electric field for:

54.)

iii.) 	2a < r <3a
For a Gaussian surface between 2a and 3a:

	r

	a 	2a

	3a

	X
	Y

We need the volume density function (this is 
the easiest way to go):

	

ρ= −Q
V = −Q

4
3πR3

3⎛
⎝⎜

⎞
⎠⎟
− 4
3πR2

3⎛
⎝⎜

⎞
⎠⎟

										 = −3Q
4π

1
R3

3 −R2
3( ) =

−3Q
4π

1
3a( )3 − 2a( )3⎛

⎝
⎞
⎠

										 = −3Q
4π

1
19a3

With the volume of a differential spherical 
shell of radius c and thickness dc inside the 
outer insulator being: 	

dV = surface	area( ) thickness( )
					 = 4πc2( )dc



55.)

	r

	a 	2a

	3a

	X
	Y

With the density function:

!Eid!A =
qcnclosed
εoS∫

		⇒ 		E 4πr2( )=
Q+ ρdV

c=R2

r
∫
εo

		⇒ 		E 4πr2( )=
Q+ρ ρdV

c=R2

r
∫
εo

		⇒ 		E 4πr2( )=
Q+ρ 4πc2 	dc( )c=R2

r
∫

εo

		⇒ 		E 4πr2( )=
Q+ρ 4π( ) c3

3 c=R2
r⎛

⎝⎜
⎞

⎠⎟

εo
=
Q+ −3Q

4π
1

19a3 4π( ) r3
3 −

R2
3

3
⎛

⎝
⎜

⎞

⎠
⎟

εo

									⇒ 		E= Q
4πεor2

1− 1
19a3 r3 − 2a( )3⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟



a. continued) Use Gauss’s Law to derive the 
electric field for:

56.)

iv.)	r >3a

For a Gaussian surface outside of 
3a, the enclosed charge will be 
zero and E = 0.

Note:  As a check, if we went all the way out to          , the E-field should be zero 
as there would be NO net charge enclosed in the Gaussian surface at that radius 
(+Q on the inside sphere and –Q on the outside sphere).  Trying it, we get:

	r =3a

	

E= Q
4πεor2

1− 1
19a3 3a( )3 − 2a( )3⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

		 = Q
4πεor2

1− 1
19a3 19a

3( )⎛
⎝⎜

⎞
⎠⎟
=0				(yippee)

	r

	a 	2a

	3a

	X
	Y



b.) What is the electric potential at the outside 
edge of the outer shell (i.e., at          )?  Explain 
your response.

57.)

	a 	2a

	3a

	X
	Y	r =3a

The electric potential at the outer edge is ZERO.
This bit of trickery is based on the fact that the 
electric field is zero in the outer region, which 
means       between any two points in the region 
must be zero.  If the electric potential is zero at 
infinity, it must be zero at the sphere’s edge.

	ΔV

c.) Derive an expression for the electric potential difference between points X and 
Y as shown in the sketch. 

To do this, we need the electric potential function for the volume between a
and 2a. 



58.)

	a 	2a

	3a

	X
	Y

This is tricky.  Because we’ve already used Gauss’s Law 
to determine the electric fields in the system, the 
temptation might be to use the extended approach to 
determine electrical potential differences from infinity 
(assuming that V = 0 at infinity) by setting up the 
integrals as shown below.  

V r( )= ΔVoutside +ΔVR3to	R2 +ΔVY	to	X
								 = V 3a( )−V ∞( )⎡⎣ ⎤⎦+ V 2a( )−V 3a( )⎡⎣ ⎤⎦+ V r( )−V 2a( )⎡⎣ ⎤⎦

								 = − !Eoutside id
!r

r=∞

3a
∫ −

!ER3 	to	R1 id
!r

r=3a

2a
∫ −

!EY	to	X id
!r

r=2a

r
∫

								 = − 0	r̂( )i dr	!r( )r=∞

3a
∫ − Q

4πεor2
− Q
4πεor2

1
19a3

⎛
⎝⎜

⎞
⎠⎟
r3 − 2a( )3⎛

⎝
⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟ i dr	

!r( )r=3a

2a
∫ − Q

4πεor2
r̂

⎛

⎝
⎜

⎞

⎠
⎟ i dr	

!r( )r=2a

r
∫

etc.

	0

This horror clearly can’t be the expected approach as this is an AP problems, and 
doing all of this would take an eternity, relatively speaking. 

So how to proceed?



58.)

r
	2a

	3a

	X
	Y

	a

With the voltage at infinity zero, let’s 
define      as the voltage on the inside 
surface of the outer shell due to the 
charge shot through the outside shell. 
The inside sphere will look like a point 
charge from the outside, so the net 
voltage at “r,” where “r” is between “a” 
and “2a,” will be the superposition of      
the voltage due to a point charge and     . 
That is

ΔV = Vo −V ∞( )	0

∞Vo

Vo

Vo

V r( ) = Vo + kQr
Evaluating this relationship at X 
(where r = a) and Y (where r = 2a), 
then subtracting the two to get the 
voltage difference between the two 
points, yields:

VX−Y = Vo + k
Q
a

⎛
⎝⎜

⎞
⎠⎟
− Vo + k

Q
2a

⎛
⎝⎜

⎞
⎠⎟

       = k
Q
a
− k

Q
2a

= 1
4πεo

⎛

⎝⎜
⎞

⎠⎟
1
a
− 1

2a
⎛
⎝⎜

⎞
⎠⎟

       = 1
4πεo

⎛

⎝⎜
⎞

⎠⎟
1
2a

⎛
⎝⎜

⎞
⎠⎟
= 1

8πεoa
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E&M 1: Consider the E-fld
lines:

a-i.) Between A, B and C, 
where is the E-fld the greatest? 

The E-fld is greatest at 
Point C as the field lines 
are the closest together at 
that point.

a-ii.) Between A, B and C, where is the electric potential the greatest? 
The electric potential is greatest at Point A as electric potentials are always greatest 
upstream in E-flds (positive charges move along E-fld lines, and E-fld lines move 
from higher to lower voltages)

b-i.) Describe the motion of an electron released at Point B. 

Electrons accelerate opposite the direction of E-flds, so an electron will accelerate 
toward the left.  The acceleration will be a function of the magnitude of the field.  
From observation, the field lines get farther apart as one moves toward the left, so the 
E-fld gets smaller in that direction.  That means the electric force and, hence, 
acceleration, will diminish as the electron proceeds, though the velocity will 
continually increase (just not at a steady pace).  
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b-ii.) The electron’s speed after accelerating through a 10 volt potential difference?

	

KE∑ 1 + 	 U1∑ + Wext∑ = KE∑ 2 + 	 U2∑
					0					+ −eV2( )+ 					0						 = 	12mv

2 + −eV12( )
			⇒ 			v = 2e

m V12 −V2( )⎛
⎝⎜

⎞
⎠⎟

1
2

														 =
2 1.6x10−19C( )
9.1x10−31kg( ) 12V−2V( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
2

														 =1.88x106m/s

Assuming the electron accelerates, for the sake of argument, from 2 volts to 12 
volts, conservation of energy yields:
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c.) If the voltage between B and C is 20 volts, estimate the magnitude of the E-fld
halfway between them.  State assumptions made:

	 

!Ei
!
d = −ΔV

			⇒ 			Edcosθ= − Vfinal −Vinitial( )

	

E					d				cos0o = − 	VC 	− 		VB 	( )
E .01m( ) 	 1( ) 		 = − 10V−30V( )
				⇒ 				E=2000	V/m

Assuming the electric field is constant, or nearly constant in that region, assume (for 
the sake of the math) that                 and                 (thereby generating the 20 volt 
potential difference between the two), and noticing from the graph that the distance 
between the two points is approximately .01 m, we can write:

	VB =30V 	VC =10V

If we take     to be a vector 
between Points B and C in the 
direction of the E-fld, then the 
angle between     and     will be 
zero and that relationship 
becomes:

	 
!
d

	 
!
d	 

!E

	 
!
d
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d.) Equipotential line through Point D:

Equipotential 
line 
perpendicular to 
E-fld lines



Millikan’s Oil Drop Experiments (courtesy of Mr. White)

• Conducted from 1909-1913

• Determined the magnitude of electron charge

• Earned Millikan the Nobel Prize in 1923

E q
Fe=qE

Fg=mg
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Millikan’s Oil Drop Experiments

Assume charged sphere with mass m, charge q. It should 
be possible to set up a specific electric field E, based on a 
specific potential V, that will cause mass to levitate.

charge ( x10^-19 C)
8.04204
4.90212
6.408
6.3279
1.602

12.7359
9.612
6.408
4.806

6.45606
6.408
3.204
1.5219
6.4881
8.04204
6.44004
4.83804
3.22002
6.39198
8.07408
9.66006
8.10612
4.75794
4.77396
1.66608

E q
Fe=qE

Fg=mg

(courtesy of Mr. White)
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By statistically grouping the results, it’s possible to 
determine the fundamental unit of charge. 

charge ( x10^-19 C)
8.04204
4.90212
6.408
6.3279
1.602

12.7359
9.612
6.408
4.806

6.45606
6.408
3.204
1.5219
6.4881
8.04204
6.44004
4.83804
3.22002
6.39198
8.07408
9.66006
8.10612
4.75794
4.77396
1.66608 67.)

Millikan’s Oil Drop Experiments
(courtesy of Mr. White)


