CHAPTER 25:

Flectric Potentials and fnergy
Considerations

courtesy of
Mr. White
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FElectric Potential Fields

Yous ﬁOM[C[ 1MOW be comfortable with the idea \\,\(l)///ﬂ

that a charge configuration will produce an electrical L O
disturbance 1n its vicinity, and that knowing how much // l \1\ E de 15 Q
force per unit charge 1s provided to the region

around the field-producing charge (whether there be a secondary charge is in the

region experiencing the force or not) in the form of an electric field 1s a useful idea
to entertain.

Jt’s time to consider another related field, one associated with energy.

If we release atest charge g (or any charge, for \\T//

that matter) in the electrical disturbance generated by

our field-producing charge, the test charge WILL
ACCELERATE. // l \\ »

accelerate,
has energy
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Wﬁy will the test charge accelerate? “\\T /

Because there is POTENTIAL ENERGY available to

the test charge as it sits in the field. // l \\
\WI”

We COM[C[ measure the amount of potential energy accelerate,

has energy
the test charge has, but that would be quite limiting (the
information would be applicable only to that particular test charge).

The clever tﬁing to do would be to mimic what we did with electric fields.
We could measure the test charge’s potential energy while in the field at a
particular point, then divide by the size of the test charge to determine how
much POTENTIAL ENERGY PER UNIT CHARGE is AVAILABLE at the
point (whether the test charge is there to feel the effect or not).

This quantity, with units of joules per coulomb (or volts), 1s called the ABSOLUTE
ELECTRIC POTENTIAL at the point of interest.
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An ELECTRIC POTENTIAL \T /  smabance
FIELD, measuring the amount of potential energy "k //

per unit charge AVAILABLE at all points in the region of

a field-producing charge, can be (and 1s) associated with 7/ l ®Ot ential

any charge configuration.

‘An ‘ELEC TRQC ?OTENT‘J?[L FIE LD exists wherever there

1s charge (and, for that matter, wherever there is an electric field). For the potential
fields to exist, there doesn’t need to be present a secondary charge to feel the
effect. And because voltage-flds tell us how much energy is available PER UNIT
CHARGE at a point, the electric potential field V 1s defined as:

Y,

‘Jm’}?OTTOLTll' note: As an absolute electric potential is a function of the charge

g that generates the field, a negative charge will produce a NEGATIVE absolute
electric potential and a positive charge will produce a POSITIVE absolute electric
potential!

field exists
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fxam]o[e 1: How much

potential energy does a2 C V=—1 = U =qV
charge have at a point where the q
absolute electric potential 1s =(2C)(3JIC)=61
V, = 3 joules/coulomb ?

Ul
‘Exam [é 2. How much potential Vi=—

i q
energy does a -2 C charge have at a
point where the absolute electric
potential is V, = 3 joules/coulomb ? =(-2 C)(3 JiC)
=—61]

= U =9V,

fxampfe 3: How much v =2

potential energy does a -2 C q

charge have at a point where the = U, =qV,

absolute electric potential 1s = (—2 C)(—3 J/C)
V, = -3 joules/coulomb ? —6]
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Exam}a[e 4 (courtesy of Mr. White)

Is the electric charge in each of these situations in a position of Aigh
U, or low U.?




Work and Electric-Potential (\/ofmge) Fields

Ml’é.’ An absolute electric potential field 1s a modified potential energy field.

f\/erytﬁing you can do with energy considerations, you can do with electric

potential functions:

Just as. the work don.e on a body mpvmg from W =—AU = —gAV

one point to another in a conservative force field W

equals W =—AU, we can use the definition of = —=-AV
absolute electric potential to write: 4 and
?ljojaare.ntfy, if you know the voltage dlﬁferencie between W =—AU = —qAV
two points, you know how much work per unit charge AU

AND potential energy per unit charge the field has = —=AV

available between the two points. q

EXQWLJO[Q 5. How much work does a field do on a moving 2 C charge if the

potential difference between its beginning and end points 1s 7 volts?

W__AV = w=—qav

! —_(20)(7/C) =14 ]
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fxam}ofe O: (courtesy of Mr. White)

An electron (e7) in a TV picture tube 1s accelerated from rest through a potential
difference of 5000 V.

a.) What is the change in the U of the electron?

AU=gAV ==q(V,-V,)
= (-1.602x107°C)(5000V —0)
=-8x107°] (=-5000eV)*

b. What is the final speed of the electron?
—AU = AK

~(-8x107°])= %mvz

2(8x107°)
= V= - =4.2x10'm /s
9.11x10

VVVVVVQVVVVV

*Fletch’s note: An electron-volt (eV) is defined as the amount of energy an electron

picks up when accelerated through a 7 volt electrical potential difference.
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FElectric Potential @gﬁcerence and f-ffcfs
E

ﬂSSMWliﬂg We are afeaﬁ’ng with a constant electric

field and a straight-line path between two points in the
field, we can use the definition of work (W = F«d) with the
manipulated definition of the electric field (F = gE) to
extend out potential difference relationship (W/ = —AV )
into a very interesting proposition. Specifically:

two points in a
constant E-fld

W.s F. dAB

=—AV,;, = =—AV,;
q q
E«d
= ;( AR =_AV,,
= E.d,,=—AV,,

And what might we glean from this bit of amusement?
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Observations =

fxampfe /. Points A, B and C are identified in a
constant electric field as shown in the sketch.

a.) Which point has the GREATER absolute

electric potential? (That is, do electric fields run
from higher voltage to lower, or vice versa?)

three points in a
constant E-fld

T raversing from A to B, so d points along the line of E, the dot product in
our relationship falls out as:

By observation, the left-side of the equation is positive (two magnitudes
multiplied together), so the right-side must also be positive. For this to be
true, V, must be larger than V, .

IMPORTANT OBSERVATION: This means that ELECTRIC FIELDS migrate
from HIGHER ELECTRIC POTENTIAL to LOWER.
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6.) Assume the electric potential at A 1s V, =11 volts
and the electric potential at B 1s V, =5 volts. If the
distance between the two points 1s 2 meters, derive
an expression for the magnitude of the electric

field.

three points in a
constant E-fld

This time, to point out how the angle works, we will traverse from B to A.
Noticing that now the angle between d and E is 180°, we can write:

E.d=
= |E\ \d\ 9(800— V)
—‘E‘ 3m ——(11V—5V)
E|=2 V/m

IMPORTANT SIDE POINT: The unit for ELECTRIC FIELDS is newtons
per coulomb, but it is also, apparently, volts per meter.
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c) A positive cﬁarge O=1C and mass m=1 kg moves
naturally along the E-fId lines.
i) 1s the cﬁarge moving from higher electrical
potential to lower, or lower electric potential to
higher?
This has notﬁing to do with the charge. Electric fields proceed from higher voltage
to lower, so 1t’s doing the former.

ii.) 1s the cﬁarge moving from higher potential energy to lower, or lower
potential energy to higher?

This has EVERYTHING to do with the charge. POSITIVE CHARGES naturally

move from higher to lower voltage along E-fld lines (being by definition the
direction a positive charge would naturally accelerate), so it is moving from higher

to lower potential energy.

iii.) 1f Qs initial velocity was 2 KE, +ZU +Y W, ZKE +> U,
3 m/s at A, what is its velocity / mv,” +(qV, )+0= / mv,” +(qV,)

at B? (Note that the voltages
have been put on the sketch.) A(I)B) +(1)(11)= A(I)VB +(1)(5)
= vy =4.58 m/s
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c[.) Given the electric potential at B 1s V, =5 volts
and the electric field, as calculated in the previous
part, 1s ‘E‘ =72 V/m, what is the voltage (i.e., the
electric potential) at C, assuming the distance
between B and C 1s .5 meters?

This is sﬁgﬁtfy tmcﬁy Define d on your sketch as shown. Notice that the
angle between d and E is 90°. With that, we write:

d=—AV
=[5 |d ¢ }(90” Vi)
= 0=—(V, )

= VC VB—SV/m

IMPORTANT POINT: An EQUIPOTENTIAL LINE is a line upon which every
point has the same electrical potential. Points B and C are on the 5-volt equipotential
line.

IMPORTANT POINT: Equipotential lines are ALWAY'S perpendicular to electric
field lines.
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Electric Potential contours (courtesy of Mr.White)
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Equipotential Lines
(courtesy of Mr. White)

... are related to Electric Field lines. How?
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Equipotential Lines
(courtesy of Mr. White)

.. can be visualized as a topographic map.
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Equipotential Lines
(courtesy of Mr. White)

.. reveal areas of higher vs. lower electric potential.
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(courtesy of Mr. White)

*
*

fxam]ofe 8

for this electric field

1als

Draw appropriate equipotent

—
(e o]
—




fxam]o[e 9! (courtesy of Mr. White)

Draw appropriate field lines for these equipotentials.
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plates viewed

from side +
|

fxampfe 10: A battery has an electric potential of

14 volts at its positive terminal and 2 volts at it’s negative

terminal. It 1s connected to parallel metal plates that are 3 — v v Vv v v

millimeters apart and insulated from one another. —
14V
a.) From what you know about the voltages, 2V, |
draw in the electric field lines between the plates. low voltage! | hi voltage
(negative) (positive)
terminal terminal

b.) How Big is the electric field between the plates?

T raversing from the upper plate to the lower plate (i.e., from the higher
voltage to the lower voltage plate ALONG THE E-FLD LINES, we can

write:

E.d=-AV |
= |E] \a\c?s()‘):—( V. -V, )
= |E|(3x10° m) =—((2 V)-(14 V))
= |E[=4000 V/m (or 4000 N/C)
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plates viewed

c.) Points ‘A, ‘B and C are identified between the plates. from |Side

A positive charge 1s placed successively at each point: C
i) At which point will the charge experience the B
greatest electric field? v vAY Vv Y

(The E-fld is constant between the plates—all points are the same. )

ii.) At which point will the charge experience the | |

greatest electric potential? low voltage! | hi voltage

(The voltage closest the positive plate will be highest, which is C.) ~ terminal terminal

iii.) At which point will the charge experience the greatest potential energy?

(A charge’s potential energy at a point is related to voltage as U = qV , so for a positive charge,

that will be greatest at C . . . or as close to the 14 volt plate as possible.)
d.) Now, a negative charge is placed at each point:

i) At which point will the charge experience the greatest electric potential?
(Electrical potential has NOTHING TO DO with the charge feeling the effect: it’s still C.)

ii.) At which point will the charge experience the greatest potential energy?

(Using U = qV, sign included, the greatest potential energy point for a negative charge is A.
This makes sense if you think about it. A -1C charge on the negative plate (pt A)would be -2
joules whereas on the positive plate (pt C) it would be -14 joules. A 1s bigger (closer to zero)!
Also, where, if you let a negative charge go, would it pick up the most kinetic energy?
Certainly not if it was next to the positive plate. Definitely next to the negative plate at A!).
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plates viewed

e.) An electron (e =1.6x10""C, m = 9.1x10°'kg) from Tide
accelerates between the plates. How fast is it moving

if 1t started from rest?

Note that the electron (charge —¢) would accelerate v WAW v v ¥
from the negative the positive plate, and that the
potential energy of a charge sitting at a point whose I I

e : . .
potential is Vis U= qV with the charge’s sign included, |~ gel [hivoltage
we can write: terminal terminal

YKE + DU, +)W,_ =>KE+ YU,
0 +((-e)V.)+ © zémvz+((—e)V+)
= (-1.6x107°C)(2 V)= 14(9.1x10™" kg)v,* +(-1.6x107°C)(14 V)
= v=2.1x10° m/s

= O
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@em’ving an ‘Electric Potential
From an ‘Electric Field

We QTLOW from our experience with energy considerations that if we want the

potential energy function that goes with a conservative force field, we can derive

it using:
0 foL
U(r)—U(}n{pt):— | Fedr

‘Jf the force is the consequence of a charge in an electric field, we could divide
everything by the size of the charge ¢ feeling the effect, and have:

U(r) U(zeropt) _J~r F.dr
zero pt q

q q
0 r
= V(r)-V opt)z—J E.dr

zero pt
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‘A Syemﬁc Case--The Electric Potential
Generated Ey a POINT CHARGE

fxam}ofe 11: Derive a general expression for the electric
potential generated by a point charge O?

Setting the zero point for \\\T /

the electric potential to be V(r)=V(eo)= _J' E.dr

« =
where the electric field is = 7
zero (1.e., at infinity), and —_[ (k%f).df /l\
using the electric field e T
Junction for a point __[" (kg) dr(cosOO)
charge as E =k 2 r, we Jr=eo| 1
can write: 1
o)
r
1 )Q
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T ﬁings to notice:

This function is good ONLY for point charges. \\T//
This is a SCALAR quantity (‘cause electric potentials are / \
NOT vectors). / l\

Being a scale, a group of point charges will produce a
net electric potential at a point that is simply the sum

of the individual electric potentials. There 1s NO Vaet atpoint 1 = Evi
NEED to do anything with components . . . because q
again, voltages aren’t vectors! Mathematically, this = Z —

can be stated as:

‘Positive cﬁarges generate positive electric potentials while negative charges
generate negative electric potentzalii so the SIGN of the charge needs to be
included in the use of V(r )pt n /

Any electric ﬁ’e[cf generated by a static charge
configuration will be conservative in nature, and can
have an electric potential function derived for it using:
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So How Are Electric Fields and
FElectric Potentials Related?

Rememﬁer Eac é TO the Energy chapter when we related a conservative

force function to its potential energy function. We found that the spatial rate of
change of potential energy equals the force associated with the potential energy
field, or F = —(d%x)i. There 1s an electrical analogue to this.

That is, the differential consequence of:

r —

V(r)—V(zero pt):—J E«dr
zero pt

is

dV=-E.dr
But 1f that is true, it must also be true that: | = _d_Vf
dr
Except in Cartesian coordinates (assuming E is in the x-direction), E = _((ji_Vi
X

which can be expanded into multiple dimensions using the del operator as:

V:_(aVc AV A aVA)

—i+—j+—Kk

E=-V
ox dy 0z
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The ‘Electric Field Generated by a POINT
CHARGE as ca[cu[ated%[
the Electric Potential

Using the del operator =—| —T+ ...
in polar spherical

.coom’inates . .. ) a(k (%) 7/ l \\\

We'll come back to this
shortly. . . ( 1 Q)A
| —=1
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fxamjo[e 12 Assume the charges are QFr

equal and opposite, and are placed ~~_

symmetrically as shown. a Tl

a.) Is there an electric field at (x,0).
If so, in what direction is 1t? // \
There will be an E-fld at (x,0). By 4 e

inspection, its x-components will add to T (X2 +a’
zero leaving it with only y-components. —QL-

b.) Is there an absolute electric potential at (x,0). If so, in what direction is it?

TRICK QUESTI10N—electric potentials don’t have directions as they are scalars.

As for magnitude:
V. .= V,

total Q

+ V_Q

( 1 ) . +( 1 ] »
47e, (Xz 4 g2 )% 4me, (Xz 4 a2 )%
0

c.) Does this make sense?

Yes, 1f you understand how E-flds and voltage flds are related to one another.
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¢.) How would the problem
change if the charges were no
longer the same and their
positions no longer
symmetric?

The math shows it all.

b

—Q7

(1 Q, (
Vtotal - 1/
(47[80 ] (X2 + 212 )A

1
4me, ] (X2 +b° )%
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fxamy[e 13 (A non-A7P Joroﬁfem): qv =134 dq

Derive an expression for the electric
potential at the origin due to a rod with
charge -O uniformly distributed over its
length L. X

This extended cﬁarge distribution is something you’ve already seen. The
solving technique 1s exactly as was before. Define the differential electric potential

at the origin due to a differential bit of charge, then sum that differential electrical
potential over the entire rod. You’ll again need to define a linear charge density

function A =-Q/L

>idXi<

and V= JdV j 1 dq
x=2 47ca X
note that dq = Adx . Q
With that, we can 1 kdx ( / j a+L dx

write:
=a 4758 X X—a X

I
( ) j‘i 4n§)L[(ln(a+L))—(lna)}

4—7‘68

B —Q a+L
47t£ L a
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fxamjo[e 14 (a non-A4P cluestion):

Derive an expression for the electric

dV =
y:

potential at an arbitrary point y = b on the
y-axis due to a rod with charge O uniformly

distributed over its length L.
SO NICE, no components!

V=[dv
1 (v dq
- 4me x=0 t
1 v (Adx)
 4me, X_O(x2+b2)%
_ A J‘L 1
4me, x=0(Xz+bz)%

dx

(whatever that 1s--what's important is the set-up)
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fxamy[a 15: A ring situated in the x-z

plane (as shown) has —O s worth of charge
on it.

a.) What is the direction of the E-
fld at (x,0)?

From observation, it’s _3.
b.) Derive an expression or V at (x,0)?

V:jdv
_ 1 [ dq
B 471:80 (X2+R2)%

1
= - dq
41e, (X2 +R? )/2 J.
_ —Q

) 4me, (X2 +R? )%

TV
/ -

-
-
’/

)
1
1
I
|
1
1
|
|
1
1
1
1

[}

Phe |

-7 0
1

“.__-these

components are

the same.

these components

cancel out.

c.) Do the results from Parts a and b make sense together?

sSure
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fxamjo[e 17 (TLOT,').’ Consider yourself lucky. A

lab I had my students do for years (minus the data part)
follows: Given a charged copper disk:

a.) ‘Use Gauss's Law to derive an expression for
the electric field due to the disk very, very close
to the disk’s central axis (i.e., at a coordinate
(x,0) such that x << R).

b.) “Use the differential-charges-dq-approach to
derive an expression for the electric field generated
by the disk at some point down the x-axis (x,0).

¥

(x,0)

c.) ‘Using the relationship derived in Part b, assume that x<<R in that relationship
and see 1f that £ matches up with the Gausss Law expression.

d.) ‘Using cfcl , derive an expression for the electric potential at (x,0).

e.) T ﬁougﬁ not comjofete[y kosher, due to the vagaries of the symmetry, you could
use the del operator on the electric potential function you derived in Part d to
derive an expression for the electric field at (x,0). Do so and see if 1t matches your

expression from Part a.
Called THE LAB FROM HELL, students lost a lot

of sleep but learned a LOT. ,,




fxamjo[e 18: In the previous “lab”

example identified as Example 17, it was
stated in Part e that “although it is not
kosher, you could use the del operator to

derive an expression for the electric field at -~ (x,0)
(x,0).” What was up with that?
The question is asking us to use V(x.y) at
arbitrary
_ dV - '
po_4vs point
dx

(or the del operator equivalent) to determine £. Why is this spooky?

Consider a ﬁoop. What would happen if the upper half of the hoop was
negatively charged while the lower half had an equal amount of positive charge?

There would be a net electric field at (x,0) in the y-direction, but the electric
potential J at (x,0) would be ZERO. So how could you use E = _(d%x) 1?

To make things work, you need a general expression for V(r), an expression
for the electric potential at an arbitrary point, to use with E =-VV
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Due to the symmetry, a single-
charge hoop has an electric field that
1s down the x-axis, and 1t has a /-
function that 1s a function of x. As

. |dB
A

X

(x,0)
- Q
v 4me, (x4 R7)

such, using E = ———j
dx
yields
po_dVvs
dx
1 Q
d 4 Iz
ne, (X2+R2) > .
= i
dx
_1
(e +r?) ) 3
-9 PR (—l)(zx)(x2 +R2)_/2i
41, dx e \ 2
Qx A

3 1 which matches the derived E-fld expression
4me, (X2 + Rz) *  from before.
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The point here is that you can use

even if we don’t have a general
expression for V(r). The key 1s in
whether the charge involved is all the
same kind (i.e., either all positive or
all negative). If that be the case, you
can fudge some (not kosher, but it
gives you the right answer).

(x,0)

Q

- 471',80 (Xz +R2)y2

37)




fxamy[e 19: A solid, charged, conducting sphere
of radius R and O s worth of charge on it.

a.) Derive a general algebraic expression for the

electric potential field for r > R.

T —

1f we are going to use V(r)— V(zero pt)= —j E.dr
we need to know the E-fld function for 7>R.” " i
Gauss s Law was born to dispatch that problem.
Starting with a Gauss 5 surface, we can write: Gaussian surface

LE'dA:%

o

= JSEdAcosOO = 2

80
— Ej ia=2
S 80

— EB(4nr’)=2

Q

4Te r

)

o

= E= 5
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ﬂ[tﬁougﬁ it isn’t stated,
problems like assume the R/ V(r) V(0)=0

electric potential will be zero

where the electric field is L (mmm=m- J
zero, which 1n this case is at AV
infinity. So identifying AV :
O r —
V(1)- Vi) =~ E-di
o 1)
=—L J — |+(dr T)
\47580 r )
of 1) o 1
:—j Q 1 drcos0° =— Q j (—Zjdr
=\ 4me; 17 ) 4me, J=\r
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b.) Derive a general algebraic expression for the electric potential field for r < R.

This is where it gets a bit tricky. Why? Because the electric field inside the
sphere and outside the sphere are different, so we can’t use one giant AV in

AV=—[ E.df.

zero pt

A[so, because electric
potentials AREN’T inverse
square functions, you can’t
ignore the charge interior to L T .
the point of interest like you AV AV .

did with Gauss’s Law!

How to deal with this? Derive
for each discrete region AV

using each region’s known
electric field function, then AV, ie T AV, e =| V(1) - V(R)] + [V(R) _%):I
add them all up. That is: =V(r)

To execute these changes, we need electric fields (as each AV = —j]:Z «dr over

its limits), so normally we’d be back to Gauss s Law.
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In this ]oroﬁfem, though, we have the electric field for the outside region, and
because the sphere 1s a conductor, we know the electric field inside 1s zero, so we
can write:

+ AV.

inside

V(r)= AV

outside

- [V(R)- V(=) J+[V(e)- V(R)]
:_‘oo outside dr—jr%e dr
=— (——r]- (dr 7)+0

J\ 4

—

forr>R

4n8 R

Note: If the inner sphere had been an insulator, we would have had to use Gauss s
Law to determine the electric field function in that region, and that second integral
would not have been zero. We’ll try this in the next problem. In the meantime . . .
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c.) Sketch the
graph for:

E-fld vs position
AND the electric
potential field vs.
position.

|

I

|

|

|

|
Notice that |
whereas the E-fld R r
functions is

discontinuous, the %4 R) E
V-fld function is o W Q
CONTINUOUS! E 4me r
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fxamjo[e 2 0. A solid insulating sphere of radius R
has O s worth of charge shot uniformly throughout.

a.) Derive a general algebraic expression for the

electric potential field for r > R.
As Eefore, Gauss s Law yields:

[Beah=2 ,
S €, Gaussian surface
= E= Q 5
4me r
and the electric potential
function yields: V(r)— V()= _Jr E.df
Q1 _
—_ — |o(d
L[4n80 r ) (dr )
just as Befm’e . N V(r) . Q
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b.) for r<R:

We know the E-fld outside. ©od
For the E-fld inside: [[EvdA= Jpav
S 80 -
Gaussian strface
Q

where the volume charge density is: p=

5

and the s'pﬁerica[ shell’s differential volume dV = (47532 )da, S0:

80
r 2 —r’
= E(4nr2)= LO[:na da]:p( - )
= E ! [ Q )%7&3) B Q ;
4mr” (‘b@}ﬂ* €, 4me R’
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So the electric Jootentia[ is:

+ AV

inside

V (I' ) = A\/outside

=[V(R)=V(Ree) ]+ [ V(r) - V(R)

R o r -
_Jm Eoutside ¢ dr — REinside ¢ dI'

Q Q (rz_Rz)

= = forr<R
4ne R 8me R’
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QZXCLTYL]?[Q 2 0. A point charge at the center of a thick,

uncharged conducting spherical shell of inside radius R, and
outside radius R,. Determine the electrical potential for:

a)r>R,

The first thing to note 1s that when you are asked to “determine” a value, that is not
the same as “derive” a value. As long as you justify what you do, you can be as
clever as you want. In this case, the observation to be made is that outside R,
(especially from a distance), this charge configuration just looks like a point charge
(even with the charge redistributing itself on the conductor). We know the electric
potential function for a point charge. It’s V()= 1.Q

4rne T

b)R,>r>R,

Again, being clever: You know the electric field inside a conductor is zero, so the
electric potential difference between any two points must be zero. You also know
that electric potential functions are continuous. Evaluating the field for r>R, right
at R, , we get the electric potential at the outside edge of the conductor, which
must be the electric potential throughout the conductor. That evaluation is:
1 Q
V(r)=——=
4me R,
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c.)r<R,

This 1s where things get tricky.
The temptation is to look at hollow region in which Q resides,

think, “That’s a point charge with an electric field equal to: <
B 1 Q
E(r)=—-=
‘ (r)‘ 4me_r’

And conclude that because the electric field 1s that of a point charge, the electric
potential must be that of a point charge, or

SN I

47t80 r
Q

The problem with this is that this function, evaluated at '=R, yields V(r)= %R—
TE
o} 1

But this 1s part of the conductor, and we’ve already concluded that the electric

potential has to be V(r)= 1 ¥ inside the conductor.
4me R,

So what gives?
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We know that for spherical symmetry, Gauss’s Law states that an
electric field is generated only by the charge inside the sphere
upon which the point of interest resides. That is because the
electric field generated by each individual points charges is an
inverse square function in distance (i.e.,

Electric potentials aren’t like that. They are simply
inverse distance functions , or V(r)= 1Q

4me 1
To get the electric potential function for a charge geometry that is spherical in
nature, we not only have to consider the charge inside the sphere upon which the
point of interest resides, we also have to consider the charge outside that sphere,
also. That means:
V(r)=av

outside in_conductor inside

=[V(R,)J=V(Re) [+ V(R )-V(R, ) [+ V[r)-V(R,)

R, —. R - 0 o oer ~
=—j E -dr—j E -dr—j E odrf
oo outside Rz i’ conductor R1 inside

48.)




That is:

o .11

4ne R, 4me |r R

Note that for r=R , ( ) Q Q (1 1 Q Q (1 1
- . Vir=R |= —— = + —

this becomes: " ane R, 4me (r R, | 4me R, 4me (R, R,

= as expected for a point inside the conductor!
4me R 1)

+




SUMMARY —Conductors . . .

FElectric Fields:

a.) Free charge on a conductor in a static setting stays on the conductor’s surface.

b.) Close to the surface of a conductor, the £-fId is perpendicular to the surface

and has a magnitude E = % .

c.) Inside a conductor, the E-fld 1s zero 1n a static charge situation (otherwise,
electrons would migrate).

FElectric Potentials:

a.) Free charge on a conductor will distribute itself so as to create a equipotential
surface (the voltage will be the same at every point on the surface)..

b.) As the electric field inside a conductor is zero, the voltage field (the electric
potential field) inside a conductor will be CONSTANT.

50.)




How do you determine the total energy in a systems of particles? (We did a
problem like this back in the Gravitation section). The idea 1s simple:

1.) 7t takes no energy to bring a charge q, in from infinity. Once in, though,
it will generate an electric potential field whose point-magnitude will (because
it is a point-charge) equal to V, = k4 - with V = 0 at infinity.

2.) Bringing a second cﬁarge d, in from infinity will require work 1n the
amount of W =—-q,AV. That work will go into the total energy wrapped up
in the system. That new charge will produce it’s own voltage field with a

similar function defining it.

3.) Bringing a third cﬁarge d, in from infinity will require work as it deals
with the fields generated by both q, and q,, the the total amount of work done
(and the total energy in the system) will become:

W = W(q1 did on q2)+ W(ql did on q3)+ W(q2 did on q3)

total ~—

21)
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fxamjafe 5.4 [ong wire of radius R has a linear

charge density A on it. What can we say about the
electric potential function for:

‘For >R

1.) We need the electric field function for this

region so we can use the AV = —IE «dr approach
to determine the electric potential outside the wire.
Starting with a Gaussian surface whose outside
surface area dS will be its circumference (ZTcr)
times its length L, and noting that the charge inside

its length L, and noting that the charge inside the Gaussian surface will be equal to
A times the length of the Gaussian surface L, we can write:

- ——

-
P

—~————

J B o dS = enclosed
S 80
= [B(2nm)=2E
= E= A

2me 1

21)
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2.) With the electric fie[cf, we run into a
problem 1f we try to assume the electric
potential 1s zero at infinity. Following the
math will show why:

=r A fj-(dr f)zL " Lircosoe -

=\ 2TE I 2me  Jr==1
— 277;80 ln(r) = %eo[ln(r)—ln(oo)] = 2;;0 ln(i) yikes . ..

Bottom line: Although you could be asked to use Gauss’s Law to determine the
electric field generated by an insulator or conductor whose geometry is cylindrical,
you will not be asked to determine the electric potential relative to infinity.

ﬂ-[aving said that, you COULD be asked to determine the electric potential
DIFFERENCE between two points in the region around or inside a cylindrically
symmetric charge configuration. That is:

21)




Let’s say you have a coaxial cable in which the

inside wire has a linear charge density of A on it while
the outside sheath has a charge density of —A on it.
What 1s the voltage difference between the two cables?

1.) We need the E-fld between the J‘ B o dS = denclosed
structures. Gauss’s Law to the S €,
: . L
rescue: — ‘E‘ (anL) _ 7L_
8O
= E= A
2.) With the E-fld, 2mer
and assuming we are b o~
. AV=—|" E.dr
traversing from the r=a |
inside-out (i.e., with _ fb A +(dr #) = — Aoel dr 650"
the electric field), we r=a\ 2TTE T 2me  Yr=ar
can write: A A A b
=— In(r)|’, =———| In(b)—1In(a) |=- In| —
2me, (1)l 2me, [ (b)=In( )] 2me, (a)

... Which makes sense as electric potential drops as you go from positive to negative plates.

21)




ReViEW SlidES/yOur nOteS (courtesy of Mr. White)

58

E&M 2.

In the figure above, a nonconducting solid sphere of radius a with charge +Q uniformly distributed throughout
its volume is concentric with a nonconducting spherical shell of inner radius 2a and outer radius 3a that has a

charge —Q uniformly distributed throughout its volume. Express all answers in terms of the given quantities and
fundamental constants.

(a) Using Gauss’s law, derive expressions for the magnitude of the electric field as a function of radius 7 in the
following regions.

i. Within the solid sphere (r < a)
ii. Between the solid sphere and the spherical shell (a < r < 2a)
iii. Within the spherical shell (2a < r < 3a)
iv. Outside the spherical shell (r > 3a)
(b) What is the electric potential at the outer surface of the spherical shell (r = 3a )? Explain your reasoning.

(c¢) Derive an expression for the electric potential difference Vy — V), between points X and ¥ shown in the figure.
51)




a.) Note that the positive charge 1s in blue and the
negative charge 1s in redish:

1) r<a Y
The charge inside the Gaussian surface is the
fraction of charge inside r, or: A
g "'

RLEY i NN
Qe = (%)mf ( Bj

For a Gaussian [E-di= Denciosed
S

surface inside a: €,

= J EdAcos0° =
S

7)o
8O
r’Q
a’e

(fraction of q inside Gaussian surface)

€

(0]

- ELdAz

- E(4nr2):

52))




a.) Use Gauss’s Law to derive the electric field for:

ll.)a<r<?2a

For a Gaussian surface between a and 2a:

=% Yenciose
LE-dA:%

(0]

= j EdAcos0° :g
S

8O
— EjsclA:g

8O
— 13(471:1~2)=g
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a.) Use Gauss’s Law to derive the electric field for:

iii.) 2a<r<3a

For a Gaussian surface between 2a and 3a: |
We need the volume density function (this is "
the easiest way to go): @

—Q —Q
"=V T4 4
(BTCR;j_(BnRZB}
~=3Q 1 _=3Q 1
) (] ]
~=3Q 1
41t 19a°
With the volume of a differential spherical dV = surface area)(thickness)
shell of radius ¢ and thickness dc inside the — (45 CZ) dc
outer insulator being: a
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With the density function:

J’ SE «dA = Qenclosed

€
0

— E(4nr2):
- E(4nr2):
— E(4nr2)=

- E(4nr2):

= E=

Q+ j;Rzpdv

Q+ ijsz pdV
80
Q+p_[;R (4nc2 dc)

€
0

3

Q+P(4n)(c .

3

e -y

€ €
0 0

__Q 2[1— 13(r3—(2a)3n
4me r 19a
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Note: As a check, if we went all the way out to r=3a, the E-field should be zero
as there would be NO net charge enclosed in the Gaussian surface at that radius

(+Q on the inside sphere and —Q on the outside sphere). Trying it, we get:

Q (, 1

e 100 ((33)3 _(Za)g)j
__Q [, 1
_4n80r2\ 19a

. (19a3 )j =0 (yippee)

a. continued) Use Gauss’s Law to derive the
electric field for:

v.)r>3a

For a Gaussian surface outside of
3a, the enclosed charge will be
zero and E = 0.

56.)




b.) What 1s the electric potential at the outside
edge of the outer shell (i.e., at r=3a)? Explain

your response.

The electric potential at the outer edge 1s ZERO. “
This bit of trickery is based on the fact that the
electric field is zero in the outer region, which

means AV between any two points in the region
must be zero. If the electric potential is zero at
infinity, it must be zero at the sphere’s edge.

c.) Derive an expression for the electric potential difference between points X and
Y as shown in the sketch.

To do this, we need the electric potential function for the volume between a
and 2a.

57.)




This 1s tricky. Because we’ve already used Gauss’s Law

to determine the electric fields in the system, the ¢

temptation might be to use the extended approach to

determine electrical potential differences from infinity A
(assuming that V = 0 at infinity) by setting up the "

integrals as shown below.

V(r)=Av .+ AV, o, AV,
=[ v(3a)- V(<) |+ v(2a)-V(3a) |+ v(r)-V(2a)]

3a 0 2a -

=] Bl di- | B g cdF=[ B, edF
oM e o) [ [ e

47[801‘2 47[801‘2 41teor2

etc.

This horror clearly can’t be the expected approach as this is an AP problems, and
doing all of this would take an eternity, relatively speaking.

So how to proceed?

58.)




With the voltage at infinity zero, let’s
define V_ as the voltage on the inside
surface of the outer shell due to the
charge shot through the outside shell.
The inside sphere will look like a point
charge from the outside, so the net
voltage at “r,” where “r” 1s between “a”
and “2a,” will be the superposition of
the voltage due to a point charge and V..
That 1s

Q

V(I') = Vo +k?

Evaluating this relationship at X

(where r = a).and Y (wherer=2a), , _ (V +kg] B (V +kg]
then subtracting the two to get the a °

voltage difference between the two Q o (1 1o
points, yields: ;—k—_ I |
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E&M. 1.

Consider the electric field diagram above.
(a) Points A, B, and C are all located at y = 0.06 m .

i. At which of these three points is the magnitude of the electric field the greatest? Justify your answer.
ii. At which of these three points is the electric potential the greatest? Justify your answer.
(b) An electron is released from rest at point B.
i. Qualitatively describe the electron’s motion in terms of direction, speed, and acceleration.
ii. Calculate the electron’s speed after it has moved through a potential difference of 10 V.

(c) Points B and C are separated by a potential difference of 20 V. Estimate the magnitude of the electric field
midway between them and state any assumptions that you make.

(d) On the diagram, draw an equipotential line that passes through point D and intersects at least three electric
field lines. 60.)




E&M 1: Consider the E-fld Y (m)

0.1

lines: . ,
. 0.084-— -~ -
a-1.) Between A, B and C, ; ; 1 : !
where is the E-fld the greatest? .06 A, | ; B

The E-fld 1s greatest at

Point C as the field lines . |
are the closest together at 0.021--=-=-= e
that point. I ' |

0.04

0

X(m)

0 0.02 0.04 0.06 0.08 0.1

a-11.) Between A, B and C, where is the electric potential the greatest?

The electric potential is greatest at Point A as electric potentials are always greatest
upstream in E-flds (positive charges move along E-fld lines, and E-fld lines move
from higher to lower voltages)

b-1.) Describe the motion of an electron released at Point B.

Electrons accelerate opposite the direction of E-flds, so an electron will accelerate
toward the left. The acceleration will be a function of the magnitude of the field.
From observation, the field lines get farther apart as one moves toward the left, so the
E-fld gets smaller in that direction. That means the electric force and, hence,
acceleration, will diminish as the electron proceeds, though the velocity will

continually increase (just not at a steady pace).
61.)




b-11.) The electron’s speed after accelerating through a 10 volt potential difference?

Assuming the electron accelerates, for the sake of argument, from 2 volts to 12
volts, conservation of energy yields:

ZKE1+ 2U1+2Wext:2KE2+ Yu
1
0 +(—eV2)+ 0 :Emvz+(—eV12)

= v=£2—e(vlz—vz)]%

m
%

) 2(1.6x1o—19c) 2v-2v)

{ (91x10%kg)
=1.88x10°m/s
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c.) If the voltage between B and C is 20 volts, estimate the magnitude of the E-fld
halfway between them. State assumptions made:

Assuming the electric field is constant, or nearly constant in that region, assume (for
the sake of the math) that V., =30V and V_ =10V (thereby generating the 20 volt
potential difference between the two), and noticing from the graph that the distance
between the two points is approximately .01 m, we can write:

- - yv(m)

Eed=—-AV o]
= Edcosez—(V —Vinmal)

final

0.08

If we take d to be a vector 0106
between Points B and C in the «
direction of the E-fld, then the 0.04
angle between E and d will be
zero and that relationship

becomes: 0

E d cosO":—( V. - VB)
E(.o1m) (1) =—(10V—3ov)
— E=2000V/m

0.02 1

xX(m)
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d.) Equipotential line through Point D:
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Millikan’s O1l Drop Experiments (courtesy of Mr. White)

 Conducted from 1909-1913

* Determined the magnitude of electron charge

 Earned Millikan the Nobel Prize in 1923
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Millikan’s O1l Drop Experiments

(courtesy of Mr. White)

Assume charged sphere with mass m, charge g. It should
be possible to set up a specific electric field £, based on a
specific potential V, that will cause mass to levitate.

charge ( x10™-19 C)

8.04204

4,90212

6.408

6.3279

1.602

12.7359

9.612

6.408

4.806

6.45606

6.408

_—

SR

—

3.204

1.5219

6.4881

8.04204

6.44004

4.83804

3.22002

6.39198

8.07408

9.66006

8.10612

4.75794

4.77396

1.66608
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Millikan’s O1l Drop Experiments

(courtesy of Mr. White)

By statistically grouping the results, it’s possible to
determine the fundamental unit of charge.

charge ( x10™-19 C)

8.04204

4,90212

6.408

6.3279

1.602

12.7359

9.612

Distribution of Charge Values

,_.
o

-
N

-
o

(o]

Charges ( x 10~-19C)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Trials

6.408

4.806

6.45606

6.408

3.204

1.5219

6.4881

8.04204

6.44004

4.83804

3.22002

6.39198

8.07408

9.66006

8.10612

4.75794

4.77396

1.66608 67.




