
1.)

Heat flux
Energy radiating through a surface



asymmetrically 
placed inside an irregularly shaped, closed surface.  
Assume the amount of heat per unit area per unit time
passing through the surface is defined by a position 
function h (that is, you give me a coordinate and I give 
you the goods).  How much heat per unit time passes 
through the entire surface?

2.)

CHAPTER  24:
Gauss’s Law

Consider a heat source

If we could identify a differential surface area through which heat was 
passing, we could multiply the heat per unit area per unit time function h by that
surface area dA to produce the heat per unit time through that area.  Summing 
(integrating) over all the areas for the entire surface would generate the amount of 
heat that passes through the entire surface per unit time.

So how does the math work on this?



We start by defining on the surface a 
differential surface area vector       whose 
magnitude dA is equal to the surface area 
of the differentially small patch and whose
direction is perpendicularly out from the 
surface.  That vector, along with  , is 
shown to the right.

3.)

What we are interested in is the 
component of along the line of         
times the magnitude of       .  In other 
words, we want the differential heat flux
through the patch, which will equal:      
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This is the mathematical definition of flux.  Any vector field can have a flux 
through a surface, whether it be an open surface or a closed surface.  
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So let’s assume our hot object is 
actually a point charge q.  What can we do 
with that situation?

4.)

 d
!
A

 
!
Eq

Gauss made the simple but powerful 
observation that there would be an electric 
flux through the closed surface, called a
Gaussian Surface, as long as there was charge enclosed inside the surface.

What’s more, he surmised that the amount of flux would have to be proportional to 
the amount of charge enclosed inside the Gaussian surface.  In other words, 
mathematically:
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The proportionality constant that made the relationship into 
an equality was the inverse of our old friend, the permittivity of 
free space (i.e.,       ), so Gauss’s Law is written as:1
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(Tiny note: Some books use dS as the surface area vector, so                            .)
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5.)

Some Observations About Flux:
1.) Remember back to the impulse relationship                    and the instances when 
you were asked to determine the impulse on an object.  You had the choice of 
determining the namesake of the operation (        ) OR, you could determine       , 
depending upon what you knew.

FxΔt = Δpx

FxΔt Δpx

You have a similar situation when asked to determine the electric flux 
through a closed surface.  You can determine              over the surface, OR 
you could just determine the total net charge enclosed inside the surface and 
use                to determine the flux.  The two will be the same.qenclosed
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2.) The units for electric flux are                 . N im2 /C

3.) The area vector dA used in electric flux calculations is ALWAYS defined 
perpendicularly outward from the Gaussian surface.

4.) Charge outside a Gaussian surface will generate no net flux through the closed 
surface.  (Think about it, charge outside the surface will produce electric field lines 
that first pass into the surface, but then will pass out of the surface on the other side 
generating no net flux through the surface).



6.)

Back to Gauss’s Law
Gauss’s Law is ALWAYS TRUE, no matter how the geometry shakes out, but it is 
pretty useless unless you can exploit symmetry in a problem.

Example 1: Use Gauss’s Law on the spherical 
surface of radius R and charge Q as shown.

Q

Gaussian surface

What the integral              is apparently asking us to do 
is to define an arbitrary, differential surface area dA
(remember, dA has a magnitude equal to the area of the 
enclosed surface and is directed perpendicularly outward 
from the surface), evaluate both the direction and 
magnitude of the electric field at that surface, dot the
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and       into one another, then do that for all the differential surfaces over the 
entire structure and sum them by integrating. 

Gauss was right.  That flux WOULD equal        .  But because no two points on 
the surface are the same distance from the charge Q, and no two dot products are 
going to be the same (angles different), doing that integral would be a 
NIGHTMARE.  In short, this is an impossible problem to do!!!!!!!
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7.)

Example 2: This is Example 1 done more 
reasonable:  Derive an expression for the electric field 
function for a point charge Q. Q

imaginary Gaussian surface

Important observation: There is no given Gaussian 
surface to begin with in this problem, just a hanging 
charge.  We need to create an imaginary Gaussian
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surface around the charge, one that exploits the symmetry of the charge’s electric 
field.  That is, we need to create a surface such that ever point on the surface is 
equidistant from the charge.  

With the imaginary Gaussian surface centered on the charge, ANY differential 
area vector dA will be radially outward, which is to say, in the direction of E, and 
the angle between the electric field vector and the differential area vector will be 
zero (so the cosine in the dot product will equal 1).  With that, we can draw (see 
sketch), then write:
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8.)

Herein lies the beauty of the method.  Because every 
point on the surface is equidistant from the charge, the 
evaluation of the magnitude of E at every differential 
surface dA WILL BE THE SAME, which is to say, IS A
CONSTANT VALUE, and because it is a constant, we 
can pull it out of the integral.  (Note that we couldn’t do 
that with the original Example 1 because each point was 
a different distance from Q.)  With that, we can write: 

Q

imaginary Gaussian surface
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That makes life wonderful, as now the only thing inside the 
integral is the differential surface area dA, and summing that 
over the surface simply yields the total surface area of the 
sphere (         ) . . . So we can further write4πR2
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Look familiar?  It should.  It’s the same as the 
electric field function we derived for a point charge 
using Coulomb’s Law! 



Start with an 
imaginary Gaussian sphere of 
radius r, where r > R, and 
write out Gauss’s Law for the 
situation (there are notes on 
the process on the next page):

a.) for r>R:

9.)

Insulators and Gauss’s Law
What is characteristic of insulators is that free 
charge stays put in an insulator, it doesn’t migrate around 
in response to an electric field.  With that in mind:

Example 3: Derive the electric field function, both 
inside and outside, for a spherical insulator of radius R, that 
has charge -Q evenly distributed throughout its volume.  

R

Gaussian surface
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And yes, this looks 
like a point charge!



10.)

Subtleties:
1.) The LEFT SIDE of Gauss’s Law is always the EASY PART of the 
equation.  Assuming you’ve picked the appropriate geometry, the magnitude 
of    , which is what the dot product is interested in, should be the same 
everywhere.  That means      will be a constant and you will ALWAYS pull it 
out of the integral which, in turn, means you will ALWAYS end up integrating 
over dA. So for spherical symmetry, the left side will ALWAYS end up 
equaling:
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2.) The dot product deals with magnitudes, so the E being determined by Gauss’s 
Law should be the magnitude of the electric field as evaluated at (or on) the
Gaussian surface.  So what’s the deal with the negative sign?

To make the math easy, always assume that     is outward in the same direction 
as      .  That will make the dot product positive.  If you are clever, though, and 
include the sign of the charge in            , a negative sign showing up in the final 
expression for E will tell you that you’ve assumed the wrong direction for    (i.e., 
it’s inward, not outward).  In other words, the negative sign doesn’t technically 
means a negative electric field direction, but it sorta does . . . This will be a lot 
more important when you get to complicated charge configurations. 
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Again, start with an imaginary 
Gaussian sphere of radius r, this time with r < R, 
and write out Gauss’s Law for the situation.

11.)

R

Gaussian surface

b.) for r<R:

qenclosed = fraction of Q inside r( ) −Q( )
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Note that we to need to figure out how much charge is 
inside r.  We can do this two way.  I’ll show both.
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(con’t.—doing this with the density 
function . . . though either way would do here)

12.)

R

Gaussian surface

b.) for r<R:

r

Note that this is a linear E-field inside the sphere!
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13.)

R

c.) What does the graph look like for electric field 
magnitude versus position?
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The imaginary 
Gaussian sphere of radius r, 
where r > R, looks just like it 
did for the insulator, except the 
charge is not shot through the 
volume but resides on the 
volume’s surface (like-charge 
attempts to get as far away 
from like charge as possible).  
So . . .  

a.) for r>R:

14.)

Conductors and Gauss’s Law
What is characteristic of conductors is that free 
charge can move around freely within the conductor, 
migrating in response to an electric field.  With that in mind:

Example 4: Derive the electric field function, both 
inside and outside, for a spherical conductor of radius R, 
that has charge Q placed on it.

R

Gaussian surface
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Still looks like a 
point charge!



This is easy.  With all the charge on the 
surface, the charge enclosed inside the Gaussian 
surface is zero and:

15.)

R
b.) for r<R:
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c.) What does the graph look like for E-field magnitude versus position?
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Note that this suggests that E-fld
functions are discontinuous . . . 
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Example 5: A thick skinned, conducting, spherical 
shell with inside radius b and outside radius c has a net 
charge 3Q on it.  At its center is a solid conducting 
sphere of radius a that has a net charge of –Q on it.

1.) The electric field inside a conductor in a static 
situation will always be ZERO.  Why?  Because if 

a.) How will charge distribute itself on these structure?

16.)

Now for the Real Fun

2.) For the E-field to be zero inside the conducting sphere, the net charge 
inside a Gaussian surface in that region must be zero.  How can this be?  
Free charge in the amount –Q (i.e., electrons) must migrate to the outside 
surface of the conductor (hence the total charge inside the Gaussian surface 
inside the shell will sum to zero).  

OBSERVATIONS:

an electric field existed, electrons would respond to it and move until the 
field was nullified.

b
a

c

−
−−

−

−

−
− −

−Q



3.) Being a conductor, the electric field inside the 
shell must also be zero.  As there is –Q’s worth of 
charge on the solid sphere at the center, electrons in 
the shell will be repulsed and migrate out from the 
inside to outside wall leaving the inside surface 
with +Q’s worth of charge on it and no charge 
enclosed for a Gaussian surface inside the shell. 

a.) (con’t)

17.)

4.) IF the shell had been electrically neutral, the migration
of electrons in the shell due to the –Q at the center would have left the 
inside surface at +Q and the outside surface at –Q.  

OBSERVATIONS (con’t)

b
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a

c

−
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−

−

−
− −

5.) IF the charge at the center didn’t exist, on the other hand, the +3Q 
net charge on the shell (meaning 3Q’s worth of electrons had been 
removed) would reside on the outside surface.

6.) Combining observations 4 and 5 leaves us with a net charge on the 
outside surface of +2Q and a net charge on the shell of +3Q (look at sketch).

+

+

+ +

+

+ +

+

+

+

+

+

+

+ +

+

+

+ +

+

+

++

+

+2Q



b.) Derive an expression for the E-fld for         .
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Using an imaginary Gaussian sphere of 
radius r, where r > c, and including ALL 
the charge enclosed, we can write:

Gaussian surface
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c.) Derive an expression for the E-fld for           .

19.)

b<r<c

b

−Q

+Q

c

−
−−

−

−

−
− −

+

+

+ +

+

+ +

+
+

+

+

+

+

+ +

+

+

+ +

+

+

++

+

+2Q

Using an imaginary Gaussian sphere of radius
r, where r is inside the shell, we can write:

Gaussian surface 
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d.) Derive an expression for the E-fld for           .

20.)

a<r<b
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Using an imaginary Gaussian sphere of 
radius r, where r is between the shell and 
the sphere, we can write:

Gaussian surface
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where the negative sign tells us the E-fld is not outward as assumed but, instead, 
opposite the assumed direction and inward (you’d expect this with net negative 
charge on the inside of the region and net positive charge on the outside).



e.) Derive an expression for the E-fld for         .
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Using an imaginary Gaussian sphere of 
radius r, where r is inside the sphere:

Gaussian surface
f.) What does the graph
look like for E-field as a 
vector versus position?  
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2.) In reality, electrons are drawn from the shell’s outside edge, leaving it with a 
net charge of Q, migrating through the shell to the inside edge where they jump to 
the insulator (that’s how the shell becomes more positive).

1.) An important point, which I haven’t men-
tioned yet, is that physicist have no qualms 
about looking at situations like this from the 
perspective of the motion of POSITIVE

22.)

Real Fun With a Twist
Example 6: Let’s assume that someone 
touches an insulator to the inside of the conducting 
shell, and in doing so transfers Q’s worth of charge 
to the shell.  What is going to happen in that case?

CHARGE.  That is not what is really happening, but you can view theoretical 
situations as though it was happening, and come out with reasonable conclusion.

+

+

+

+ +
+ +

+

+

charge ends up here

Doing that in this case suggests the following will happen:  The bits of positive 
charge making up the transferred Q will migrate to the outside edge of the shell 
leaving it with a net charge of Q on that surface.

+

+

+

Q added
(which migrates)



Example 7: A thick skinned, insulating
spherical shell with inside radius b and outside 
radius c has a volume charge density           ,
where the constant .  At its center is a 
solid conducting sphere of radius a that has a net 
charge of Q on it.

a.) Derive an expression for the magnitude of 
the electric field for r > c.

23.)

And Even More Fun
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Gaussian surface

a

k = 1 C/m4

We need the total charge inside a Gaussian 
surface that engulfs the entire charge 
configuration.  The Q on the center sphere is 
easy, but the charge shot through the shell is not 
so easy as it is slight at the inside and gets 
heavier as one moves outward (that is, it isn’t 
uniform).  To do this, we need to be clever.

r



Define a differential volume dV as a differentially 
thin shell of radius h and thickness dh.  Its 
magnitude will be its surface area (         ) times its 
differential thickness dh, or                         .  With 
a given volume charge density of          , where    
has been evaluated at h, we can write:         

24.)
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ρ = dq
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      ⇒   dq = ρdV
                  = ρ 4πh2dh( )
                  = kh( ) 4πh2dh( )
                  = 4πkh3dh  

h

dq
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ρ=kh
dV = 4πh2dh( )   

4πh2  

ρ

With this, we can determine the charge shot through 
the entire shell, or through just part of the shell.

Gaussian surface
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With   

25.)
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and figuring out the charge between b and c inside 
the Gaussian radius r, we can write:

Gaussian surface
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This is easy as it’s the same as Part a except 
the shell’s contribution to the charge is only 
the charge out to the Gaussian radius r.  That 
is: 

b.) Derive an expression for the magnitude of 
the electric field for c > r > b.
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27.)

c.) Derive an expression for the magnitude of the electric 
field for b > r > R.
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	a

Gaussian surface

r

The only charge inside the Gaussian surface for 
this section is that on the inner conductor, which 
is Q, so:
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  ⇒   E 4πr2( ) = Q
εo

         ⇒   E = Q
4πεor
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d.) Derive an expression for the magnitude of the electric 
field for r < R.

No charge enclosed inside the Gaussian surface, so E = 0.



What you are looking for in a Gaussian surface is a 
surface upon which the magnitude of E is constant AND

28.)

Cylindrical Symmetry and Gauss’s Law
Example 8: Derive an expression for the 
electric field function for an “infinitely long” 
insulating rod whose linear charge density is a 
constant    . 

cylindrical 
Gaussian 
surface

λ r

the dot product is either the same everywhere, or zero. With a linear charge 
distribution, a sphere clearly won’t do.  What will work, if you are clever, is a 
cylinder.  How so?  If the charge configuration is infinitely long (or in a pinch, 
very, very long), the electric field will be radially outward (or inward, depending 
upon the charge).  A Gaussian cylinder will have ends whose dA’s will be 
perpendicular to the electric field (hence producing no electric flux and a zero dot
product) and a curved surface whose dA’s are along the line of E.  In short, a 
cylindrical Gaussian surface will do the job.

λ

L



Noting that the amount of charge inside an 
imaginary, cylindrical, Gaussian surface will be 
the linear charge density times the length of the 
surface, and the surface area of a cylinder is the 
circumference times the length L, we can 
write:

29.)

cylindrical 
Gaussian 
surface
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!
E i d
!
Aendend∫ = qcnclosed

εo
curve∫

  ⇒   E dAcurve cos0o

curve∫ + 2 E dAend cos90o

curve∫ = λL
εo

      ⇒   E dAcurvecurve∫ = λL
εo

      ⇒   E 2πrL( ) = λL
εo

         ⇒   E = λ
2πεor

r

λ

2πr

0

L



a.) Derive the electric field function for a < r < b:

30.)

Example 9: A cylinder of inside radius a and outside radius b has a volume 
charge density that varies as r (i.e.,          , where k is a constant). 

The set-up is shown below:

ρ = kr

ρ = kr

a

b
a

b

a
b

3-d view
end view

central 
axis

ρ = kr

ρ = kr

bGaussian       
surface

r

Gaussian       
surface

L

r

L

r

top view



The differential volume of a 
differentially thin cylindrical shell of 
radius c is the circumference of the shell 
(      ) times the differential thickness of 
the shell dc times the length of the 
Gaussian cylinder L.  That is:

31.)

We need the total charge inside a 
Gaussian cylinder, but as the density 
varies, we need to determine the 
charge in a differentially thin 
cylindrical shell inside the Gaussian 
surface, then integrate over all the 
shells.  

2πc

a
b
r

c

dq

dc

Gaussian 
surfacedV = 2πcL( )dc

Knowing that               , we can write dq evaluated at c as:dq = ρdV

dq = ρdV
    = kc( ) 2πcL( )dc⎡⎣ ⎤⎦

end view



32.)

With that, Gauss’s Law becomes:

b.) Derive an electric field for r < a: (It’s zero as no charge inside Gaussian surface.)

c.) Derive an electric field for r > b:
Same problem as Part a exception of the limits of the integration are different 
(you are now adding up ALL the charge inside the cylinder, so the limits go 
from c = a to c = b instead of c = a to c = the Gaussian radius r.)

 

!
E

S∫ i d
!
S =

ρdV
c=a

r

∫
εo

 ⇒    E 2πrL( ) =
kc( ) 2πcL( )dc⎡⎣ ⎤⎦c=a

r

∫
εo

 ⇒    E = 2πkL
2πεorL

c2 dc
c=a

r

∫

             = k
εor

c3

3
⎛
⎝⎜

⎞
⎠⎟ c=a

r

             = k
3εor

r3 − a3( )
ρ = kr

a

b

3-d view

central 
axis

Gaussian       
surface

L

r



--An insulator typically has free 
charge infused throughout its volume.  
For insulators, an area charge density 
function       say, “Multiply me by a 
surface area and you get how much 
charge is behind that surface shot 
through the structure.”
--A conductor has charge on its surface 
with NO free charge in its interior.  For 
conductors, an area charge density 
function        say, “Multiply me by a 
surface area and you get how much charge 
is on the surface of the area in question.”

30.)

Flat Sheets of Charge and Gauss’s Law
There is a subtlety we need to 
look at before we can make sense out of 
sheets of charge.

σ ins

σcon

thin      sheet
3-D view

thin      sheet
conductor

from side

thin      sheet
insulator 

from side
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These are two very different critters!
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We need a Gaussian surface whose 
faces either yield zero flux or a flux
whose electric field evaluation is a 
constant.  It turns out that a plug whose 
end-faces are symmetrically placed on 
either side of the slab will do the job.  
The flux through the curved section will 
be zero as E and dA will be at right-
angles with one another, and with dA
defined as outward on both outside 
faces, E will both have the same 
evaluation and will provide the same dot 
product.  That is:
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Example 10: Derive an expression for 
the electric field function for an “infinite” 
sheet of insulating material whose area 
charge density is a constant       . σ ins

With that in mind:
thin      sheet

insulator 
from side
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E i d
!
Acurve + 2

!
E i d
!
Aendend∫ = qcnclosed

εo
curve∫

  ⇒   E( )dAcurve cos90o

curve∫ + 2 E( )dAend cos0o

end∫ = σ insAend

εo

      ⇒   2E dAendend∫ = σ insAend

εo

      ⇒   2EAend =
σ insAend

εo

         ⇒   E = σ ins

2εo
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conductor

from side

σcon

Here is where the difference in the 
charge configurations comes into play.  
We could use the same plug we used 
with the insulator, but there would be 
two surfaces upon which there was 
charge placed, each of which would have 
a charge density of        .  That means: 

33.)

Example 11: Derive an expression for 
the electric field function for an “infinite” 
sheet of conducting material whose area 
charge density is a constant       . σcon
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curve∫
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σcon

As a side point, another 
possibility would be to utilize the fact 
that inside the conductor, the electric 
field is zero.  That means the Gaussian 
surface could have looked like:
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!
E

 d
!
A

 

!
E i d
!
Acurve +

!
E i d
!
Aendend∫ = qcnclosed

εo
curve∫

      ⇒   E dAendend∫ = σconAend

εo

      ⇒   EAend =
σconAend

εo

         ⇒   E = σcon

εo

 
!
E = 0

and:
0

Same result either way!
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Parallel Sheets of Charge
Example 12: Two infinite, parallel sheets of 
opposite charge sit side by side and have a charge 
density of    on each.  What is the electric field intensity 
on either side, and in-between the configurations? 

The Gaussian surfaces for both the positive and 
negative charge configuration is shown for region 
A.  Each is identical to the configuration 
associated with an insulator.  As such, each 
electric field magnitude will be equal to         .  
As the fields will be in opposite directions, 
though, they will add to zero.  The same will be 
true in region C.

viewed from side
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Between the sheets in region B, the fields are in the 
same direction with the same magnitude, so we have a 
net field of 

2 σ
2εo( ) = σ

εo

−−
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Example 13: Two infinite conducting plates with equal 
but opposite charge densities     on them sit side by side.  
What is the electric field intensity between the plates? 

+−

+−

+−

Assuming the plates are very close together (in comparison 
to their plate area), we can approximate them as infinite 
conducting sheets.  If we do that, Gauss’s Law yields:

from side

σ

 
!
E

Parallel Plates and a Bit of Trickery

E dAendend∫ = σAend

εo

      ⇒   EAend =
σAend

εo

         ⇒   E = σ
εo

But an intrepid observer will undoubtedly notice that THIS 

IS THE SAME FUNCTION we got for a SINGLE infinite 
sheet . . . so how can that be (‘cause there’s two sheets here!)?
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The trickiness is, again, in the definition of     .

In other words, Gauss’s Law will still worked, but the charge 
density function will be altered from the original situation.

σ

σ1

If you start with a sheet that has charge density     on it, 
then bring a similar but oppositely charged plate in parallel 
to it, what’s going to happen to the original plate? 

σ1

Electrons in the original plate will migrate away from the 
negative charge on the encroaching plate, leaving the 
original plate’s inside surface MORE ELECTRICALLY 
POSITIVE than it had been (and as that happens, more 
negative charge will be drawn to the inside surface of the 
encroaching plate keeping the charge distributions equal 
and opposite).  In other words, it’s plate charge density will 
have changed to a new value     .
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38.)

A Disk
Example 14: Can you use Gauss’s Law to 
determine the electric field function for a flat, finite, 
positively charged disk? 

Technically, there is no Gaussian surface that will 
accommodate the symmetry (or lack of symmetry) 
associated with a disk.  However, you could use a plug 
and the technique used with the infinite sheet of charge 
as long as your point of interest was close to the central 
axis and r was small in comparison to the radius R of the 
disk. 

+

R
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Example 16 - Faraday’s Ice Pail Experiment
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Example 16 - Faraday’s Ice Pail Experiment
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Example 16 - Faraday’s Ice Pail Experiment
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Example 16 - Faraday’s Ice Pail Experiment
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