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CHAPTER  23:
Electrostatics n Static Electricity
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What do you know about the atom?

1.) Its nucleus is made up of electrically neutral neutrons and electrically positive 
protons.

2.) On its outskirts in “orbitals” associated with states of energy reside 
electrically negative electrons.

Charge

3.) Outer shell electrons, called valence electrons, determine how atoms will 
combine with one another to make molecules.  Bonding types are:

a.) Covalent bonding happens when valence electrons are shared between 
adjacent atoms.  Covalent bonding does not allow electrons to migrate 
throughout a structure.  It is characteristic of insulators.

b.) Metallic bonding happens when valence electrons can migrate freely 
throughout a structure.  It is characteristic of conductors.
c.) Ionic bonding happens when atoms have an unbalanced number of 
protons and electrons, hence are electrically charged.  This kind of bonding is 
not going to be a player in the materials we will be considering here.
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In an electrically neutral atom:

(In the nucleus at the center of the atom!)

The average position of its protons is where?

(Even though the electrons are “moving” around 
the nucleus at speeds up to 14,000 miles/second, 
their AVERAGE position is at the center of the 
atom where reside the protons.)

The average position of its electrons is where?

This is why normal atoms are electrically neutral.  Essentially covering every 
positive charge in an electrically neutral atom there sits a negative charge to null 
the positive out. 

Bohr atom

p+e− e−

electron here as much as it is here!

electron’s average 
position at center

Although there will be time when we talk about the movement of positive charge, 
in reality, protons are fixed stationary in the nucleus with electrons ALWAYS 
being the entities that move onto or off of an object.  A positively charge object is 
just an object that has had electrons removed; a negatively charged object an 
object upon which free electrons have been added. 



4.)

A glass rod, which easily releases electrons, is rubbed vigorously by a silk 
clothe, which easily accepts electrons.  This leaves the rod electrically positive. 
Consider an electrically neutral conducting sphere 
(notice that for each proton, there is an electron covering it)?
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±The ball’s electrons, which are free to move because 
the bonding is metallic, will migrate toward the 
positive charge on the rod leaving the far side of the 
ball electrically positive and the near side electrically 
negative (I’ve omitted all the neutral combinations).

Charge separation like this is called polarization.  +
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With this, the electrical repulsion between 
the rod and ball’s far-side positive charge will 
be overcome by the electrical attraction 
between the rod and the ball’s near-side 
negative charge, and a net force of attraction 
will exist.

What happens when the two are brought together?



Mr. White’s Charging by Conduction 
Slide 1

“Charging by conduction” occurs when a charged conductor (metal) 
touches a neutral conductor: some free electrons pass from one object to 
the other.
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Mr. White’s Charging by Conduction 
Slide 2
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Note from Fletch: If both rods are conductors and they are identical, the charge 
will distribute evenly (as shown) between the two.



“Charging by induction” occurs when a charged object is brought near a 
neutral conductor.

Mr. White’s Charging by Induction  
Slide 1
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The term grounding refers to connecting a conductor to the literal 
ground, ie. the earth. The earth readily accepts or gives up electrons—
it has plenty to spare—so grounding a conductor allows for the flow 
of charges. What effect this has depends on the situation.

Mr. White’s Grounding Slide
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The electroscope is a simple device designed to detect the presence 
of electric charges. Movable leaves (of gold?!) connected to a metal 
ball separate when a charged object is brought near, or touched to 
the ball. But why?

Mr. White’s Electroscope
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When free charge is placed on a conductor, electrical repulsion will motivate 
electrons to move as far away from other electrons as possible.  Consequence: 

Shielding

Force electrons onto a flat conducting surface.  At some point, 
the free electron population already on the surface will provide
such a large repulsive force that no additionally placed 
electrons will make it onto the surface.  When that happens, the 
electrons will be evenly distributed over the surface.

surface charge density 
evenly distributed

Bend the surface and you can force MORE electrons on, increas-
ing the surface charge density.  Why?  Because there is now 
material between the electrons, diminishing their repulsive effect 
on distance electrons.  This phenomenon is called SHIELDING. surface charge 

density increased

The extreme: the lightning rod, a pointed piece of metal insulated 
from a house.  It accumulates HUGES amount of charge at its end
point, attracting potential lightning strikes away from the house.

Oddly shaped conductors will have different charge densities, 
depending upon the severity of their curvature. charge density 

really high

charge density  
relatively low



The proportionality constant is usually defined in terms of another constant called 
the permittivity of free space (this is a measure of a vacuum’s resistance to 
forming an electric field—something we’ll talk about later).  Numerically, 
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When two point charges are in the vicinity of one another, they will feel a 
Newton’s Third Law, action/reaction electrical force that will be attractive if the 
charges are unlike and repulsive if the charges are like.  

Coulomb’s Law

 

!
FC = 1

4πεo

⎛
⎝⎜

⎞
⎠⎟
q1q2
r2

εo

According to Coulomb, the magnitude of that force will be proportional to the 
product of the magnitude of the two charges (the symbol for charge is q) and 
inversely proportional to the square of the distance between the two charges. 

So mathematically, Coulomb’s Law is written as:
 
εo = 8.85x10

−12C2 / N im2( )

 

1
4πεo

⎛
⎝⎜

⎞
⎠⎟
= 9x109N im2 /C2As                                       , this is sometimes defined as k and Coulomb’s Law 

is written in some books as:
 

!
FC = k q1q2

r2



There is                  Coulombs worth of charge on an electron;

The unit for charge in the MKS system is the COULOMB.  In that unit:
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Coulomb’s Law only works between two POINT CHARGES.  If you want to deal 
with more than two charges, you need to execute a vector sum of all the Coulomb 
forces acting on a charge due to all the point charges in the system.

Important Points

−1.6x10−19

Coulomb’s Law is only useful in static situations.  Charge in motion is a whole 
other kettle of fish.

There is                  Coulombs worth of charge on a proton;+1.6x10−19
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NEVER include a charge’s sign when using Coulomb’s Law.  The 
direction of force generated by a point charge on another point charge, is 
determined by attraction or repulsion between the charges (i.e., whether they are 
like or unlike charges) and how the coordinate axis is set up.  Beyond determine 
likeness or unlikeness, the sign of the charges has nothing to do with direction in a 
coordinate axis setting!  To wit:

q1

−q2Example 1: A positive charge     is located at the 
origin.  A negative charge        is located a distance -a
units along the x-axis.  What is the force on      due to 
the presence of     ?

q1
 i ix = −a−q2

q2
q1

 

!
FC =

1
4πεo

q1q2
a2

⎛
⎝⎜

⎞
⎠⎟
î( )According to Coulomb’s Law:

Why in the +x-direction?  Because opposites attract, and the direction of attraction 
on      in this case is to the right!  If it had been located at x = a, the magnitude
would have been the same but the direction would have been in the –x-direction!
q2

REGISTER! If you’d included sign in the Coulomb expression, you’d have ended 
up with a force value that was NEGATIVE, which would have made NO SENSE 
given the coordinate set-up.  USE COULOMB ONLY FOR MAGNITUDES!

q2's



14.)

Example 2: Consider the charge configuration shown.  Where could you put a 
positive charge q if it is to feel no net electric force?

 i  i
x1 = 3m

Observation: The point must be along the x-axis.  But where?

It can’t be between the two charges because the positive charge will push q to 
the left while the negative charge will also pull q to the left . . . hence no place 
in between where the net force can be zero.
It can’t be in the positive region to the right of the origin because the 2C
charge will be both larger and closer to q than will be the case for the -.5C 
charge . . . hence no place in that region where the net force can be zero.
Apparently, the coordinate must be in the -x-region to the left of the origin.

q1 = −.5C q2 = 2C

As a small side point, it doesn’t matter whether q is positive or negative—
zero force is zero force!



 

!
F1 = k

qq1
x2 

!
F2 = k qq2

x + x1( )2
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q1 = −.5C

Defining x to be the no-
force position of q, we 
can write Coulomb’s 
Law between q and each 
of the charges:  i  i

x1 = 3m
q2 = 2C

Noticing that the positive charge 
is producing a negative force (it’s 
repulsing q), and the negative 
charge a positive force, signs need 
to be added after the fact.  
Summing these forces vectorially, 
we get:

x
+q i

Fx∑ :

       − k qq2

x + x1( )2 + k qq1

x2 = max

     ⇒      q2

x + x1( )2 = q1

x2

     ⇒      
2C( )

x + 3( )2 =
.5C( )
x2

     ⇒      2x2 = .5 x2 + 6x + 9( )
     ⇒      −1.5x2 + 3x + 4.5 = 0
              ⇒      x = 3m

0

x x1
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Example 3: Determine 
the force on q.  

Begin by determining 
the direction and 
magnitude of the force 
on q due to the presence 
of each of the charges in 
the system.

To add the forces vectorially, we need to break the forces into components.

−Q2

a

Q1

x,0( )
q

 

!
F2 = k qQ2

x2 + b2( )12⎛
⎝

⎞
⎠

2

b

 

!
F1 = k

qQ1

x2 + a2( )

 
!
F2 cosθ2

θ2
 
!
F2 sinθ2

 
!
F1 cosθ1θ1

θ1
 
!
F1 sinθ1

 

!
FC = F1 cosθ1 − F2 cosθ2( ) î( ) + − F1 sinθ1 − F2 sinθ2( ) ĵ( )

At this point, we need a little trickery.  Looking at the shaded triangle, the sine
and cosine can be written as:

sinθ1 =
a

x2 + a2( )12
and cosθ1 =

x

x2 + a2( )12

x2 + a2( )12



= 1
4πεo

qQ1x

x2 + a2( )32
− 1
4πεo

qQ2x

x2 + b2( )32
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
î( ) + − 1

4πεo
qQ1a

x2 + a2( )32
− 1
4πεo

qQ2b

x2 + b2( )32
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ĵ( )
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Putting it all together:

 

!
FC =           F1                 cosθ1      −           F2              cosθ2( )       î( ) + − F1 sinθ1 − F2 sinθ2( ) ĵ( )

   = 1
4πεo

qQ1

x2 + a2( )
x

x2 + a2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− 1

4πεo

qQ2

x2 + b2( )
x

x2 + b2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

î( ) +  . . . 

−Q2

a

Q1

x,0( )
q

 

!
F2 = k qQ2

x2 + b2( )

b

 

!
F1 = k

qQ1

x2 + a2( )

 
!
F2 cosθ2

θ2
 
!
F2 sinθ2

 
!
F1 cosθ1θ1

θ1
 
!
F1 sinθ1



That charge will produce an electrical disturbance 
in the region around it.
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Place a “field producing” point-charge out 
in space.

Electric Fields

Q

To detect that disturbance, place a test charge    in the region.  As long as the 
disturbance is there, the test charge will feel a force on it.

q

q

Fon q due to Q

If you measure the force on the test charge q, THEN DIVIDE BY THE 
MAGNITUDE OF THE TEST CHARGE, you end up with a force-related quantity 
that is dependent upon: 

The size of the field producing charge Q, and
The distance from the field producing charge Q.
It will have NOTHING TO DO with the size of the test charge.
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Called an ELECTRIC FIELD, this idea 
of measuring the amount of force per unit charge 
AVAILABLE at a point due to the presence of field-
producing charge can be (and is) associated with any 
charge configuration.

An ELECTRIC FIELDs exist wherever there is charge.  For the 
electric field to exist, there doesn’t need to be present a secondary charge to feel 
the effect of the field-producing charge.  And because E-flds tell us how much 
force is available PER UNIT CHARGE at a point, the electric field is defined as:

 

!
E =
!
F
q

Q

electrical 
disturbance

exists 
!
E

Example 3: What force does a 2 C charge feel in an electric field                       ? 
!
E = 3 N/C( ) ĵ

 

!
E =
!
F
q

   ⇒    
!
F = q

!
E

                         = 2 C( ) 3 N/C( ) ĵ⎡⎣ ⎤⎦ = 6 N( ) ĵ



a

+σ

direction
of E.fld

direction
of E.flddirection

of E.fld
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Subtleties Concerning Electric Fields
An electric field, being a modified force field, is a vector.  So how is its 
direction defined?

Example 4: At point a designated in each of the scenarios below, draw the 
direction of the electric field generated by the field-producing charge configuration.

The direction of an electric field is defined as the direction a POSITIVE TEST 
CHARGE will accelerate if released in the field at the point of interest.

DON’T GET AHEAD OF YOURSELF on this.  You will see how it all plays 
out shortly.  For now, just take in the definition.

−Q

a

+
+
+
+
+
+
+
+
+
+
+
+

a

a

−
−
−
−
−

−
−
−
−
−

−

surface charge on outside  
edge of hollow, insulating                                                

sphere

no E.fld



So whereas we DIDN’T use a charge’s sign when using                         , leaving the 
force’s sign determination to attraction/repulsion characteristics coupled with where 
the charge was in the coordinate system, we NEED to include charge sign in using            

.  To see why, reconsider Example 3.
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Example 5: So back to Example 3, but with a twist.  What force does a -2 C 
charge feel in an electric field                       ?

 

!
F = q

!
E = −2 C( ) 3 N/C( ) ĵ⎡⎣ ⎤⎦ = − 6 N( ) ĵ

 
!
E = 3 N/C( ) ĵ

When the charge was positive, the calculation yielded                   , so we’d 
expect the solution to this problem to be negative that value.  But how to get that 
negative.  Although this is REALLY NOT KOSHER, IF we use the sign of the 
charge in our relationship, we get the right answer (not Kosher because the sign 
of a charge has nothing to do with the sign of a force).  Using that, we can write:

Continuing with Subtleties
By definition, positive charges freely accelerate in the direction of electric 
fields.  As such, negative charges must freely accelerate OPPOSITE the direction 
of electric fields.  

 
!
FC = kq1q2 r

2

 
!
F = q

!
E

 
!
F = 6 N( ) ĵ

Point taken?
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Example 6: Derive a general expression for the 
electric field generated by a point charge Q?

If we placed a positive test charge q a distance r units 
from Q, the magnitude of the force on q (according to 
Coulomb’s Law) would be:

A Specific Case--The Electric Field Generated 
by a POINT CHARGE

 

!
FC = k qQ

r2

Q
q Fon q due to Q

By definition, the magnitude of the electric field is             , so:
 

!
E =

!
F
q

 

!
E =

!
F
q
=

k qQ
r2

⎛
⎝⎜

⎞
⎠⎟

q

   = k Q
r2



When talking theoretically, the direction of this field will be radially outward if 
the field-producing charge is positive (a positive test charge will accelerate away 
from a positive field-producing charge—that’s how electric fields are defined . . . 
the direction a positive test charge will accelerate if put in the field and released) 
and radially inward if the field-producing charge is negative.  As such, with the 
sign of the charge included (again, not kosher, but it gives the correct sign for the    
vector), the E-fld as a vector is often presented as:
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Observations:
If you are ever working with a field-producing 
charge that is a POINT CHARGE, you now know 
its electric field will equal: 

Q

 

!
E = k Q

r2

 

!
E = k Q

r2

 

!
E = k Q

r2
⎛
⎝⎜

⎞
⎠⎟ r̂

For most problem solving, though, we work in Cartesian coordinates.  In that 
setting, use the relationship to determine the magnitude of the E-fld and 
determine the direction using the “acceleration of positive test charge” question.

r̂
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Example 7: Derive an expres-
sion for the electric field at (x,0).  

This is very similar to Example 3 
(and because the charge q was 
positive in that problem, the forces
on it and the direction of the 
electric fields will even be the 
same).  The difference?  No need 
to include the test charge q, just 
work with E:

Defining the field directions and magnitudes,

 

!
E2 = k Q2

x2 + b2( )

x,0( )

−Q2

a

Q1

b

 

!
E1 = k

Q1

x2 + a2( )

 
!
E2 cosθ2

θ2
 
!
E2 sinθ2

 
!
E1 cosθ1θ1

θ1
 
!
E1 sinθ1

 

!
E =

!
E1 cosθ1 −

!
E2 cosθ2( ) î( ) + −

!
E1 sinθ1 −

!
E2 sinθ2( ) ĵ( )

You’d use the same trickery (                               ) and finish the problem just like 
before.

sinθ1 =
a

x2 + a2( )12

x2 + a2( )12
notice, no charge here, 
just a point in space

then break into components:



= 1
4πεo

Q1x

x2 + a2( )32
− 1
4πεo

Q2x

x2 + b2( )32
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
î( ) + − 1

4πεo
Q1a

x2 + a2( )32
− 1
4πεo

Q2b

x2 + b2( )32
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ĵ( )
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Putting it all together:

 

!
E =           E1                  cosθ1      −           E2               cosθ2( )       î( ) + −

!
E1 sinθ1 − E2 sinθ2( ) ĵ( )

  = 1
4πεo

Q1

x2 + a2( )
x

x2 + a2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− 1

4πεo

Q2

x2 + b2( )
x

x2 + b2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

î( ) +  . . . 

−Q2

a

Q1

x,0( )
q

 

!
F2 = k qQ2

x2 + b2( )

b

 

!
F1 = k

qQ1

x2 + a2( )

 
!
F2 cosθ2

θ2
 
!
F2 sinθ2

 
!
F1 cosθ1θ1

θ1
 
!
F1 sinθ1



then sum that differential electric field over the 
entire rod.  To do this, we will need to define a linear charge density function

determine the electric field magnitude and direction as it exists 
at the origin due to that bit of charge, 

Being an extended charge distribution, we need to break the rod into a differentially 
small bit of charge, 

 

!
E = dE∫ = 1

4πεo

dq
x2x=a

a+L

∫

               = 1
4πεo

λdx( )
x2x=a

a+L

∫ =
Q

L( )
4πεo

x−2 dx
x=a

a+L

∫

               =
Q

L( )
4πεo

−x−1
x=a
a+L( ) = Q

4πεoL
− 1

a + L
⎛
⎝⎜

⎞
⎠⎟ − − 1

a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

              = Q
4πεoL

a + L( )− a
a a + L( )

⎛
⎝⎜

⎞
⎠⎟
= Q

4πεo

1
a a + L( )

⎛
⎝⎜

⎞
⎠⎟
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Example 8: Derive an expression
for the electric field at the origin due 
to a rod with charge -Q uniformly 
distributed over its length L.  

x

x=a

dE = k dq
x2 − − − − − − − − − − −

dx

−

dq

λ = Q L

As always, the density function 
can be written in differential 
terms as .  With that, 
we have:

λ = dq dx

(yes, this looks just like
the linear mass density 
function . . . that’s OK, we can 
use the same symbol to do the 
more than one thing):
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Example 9 (a non-AP question):
Derive an expression for the electric 
field at an arbitrary point y = b on the 
y-axis due to a rod with charge Q
uniformly distributed over its length L.  

x

dE = k dq
r2

dx

dq = λdx

As usual, define the direction and magnitude of 
the differential E-fld due to an arbitrary differential 
charge dq on the rod.

y=b
r = x2+b2( )12

θ

λ = QL
Once done, break it 

into component parts using the sine and 
cosine trick:

dE = k dq
r2

θ

dEy = k dq
r2 sinθ

      = k dq
r2

b
r

⎛
⎝⎜

⎞
⎠⎟

dEx = k dq
r2 cosθ

      = k dq
r2

x
r

⎛
⎝⎜

⎞
⎠⎟

sinθ = b r

cosθ = x r
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Without doing the integrals (the set-up is what is important, and something like 
this isn’t something the AP folks are going to throw at you), the electric field is:

 

!
E = dEx∫ − î( ) + dEy∫ ĵ( )

  = 1
4πεo

λdx( )
x2 + b2( )1

2⎛
⎝

⎞
⎠

2
x

x2 + b2( )1
2x=0

L

∫ − î( ) + λdx( )
x2 + b2( )1

2⎛
⎝

⎞
⎠

2
b

x2 + b2( )1
2

ĵ
x=o

L

∫
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  = λ
4πεo

x

x2 + b2( )3
2

dx
x=0

L

∫ − î( ) + b

x2 + b2( )3
2

dx ĵ( )
x=o

L

∫
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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Example 10: A ring situated in 
the y-z plane (as shown) has –Q’s
worth of charge on it.  Derive an 
expression for the E-fld at (x,0). 

As usual, begin with a differential
bit of charge -dq and determine
the direction and magnitude of the 
differential electric field at (x,0) 
due to that bit.  

(x,0)
x

−dq

dE = k dq

x2 +R2( )1/2( )2R

Use any symmetry that exist to 
simplify the summing task.

these 
components are 
the same.

these components 
cancel out.

dE cosθ θ

 

!
E = dE cosθ

    = k dq
x2 + R2( )

⎛

⎝
⎜

⎞

⎠
⎟

x

x2 + R2( )1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫

    = k x

x2 + R2( )3
2

dq∫

    = 1
4πεo

⎛
⎝⎜

⎞
⎠⎟

x

x2 + R2( )3
2

Q

Noting that x and R are 
constants, and that the cosine is:

cosθ = x

x2 +R2( )12
we can write:

where the direction, 
by inspection, is − î
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Example 11: Derive an expression for the electric field at the center of a half-
hoop of radius R with Q uniformly distributed over its surface.  

This is a little bit 
tricky as the 
differential bit of 
charge dq is 
located on an arc

λ dθ

ds

dq = λds
    = λ Rdθ( )

Using a linear 
charge density 
function, then, we 
can write: dq = λds
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What needs to be 
noticed is that the 
arclength ds
subtended by an 
angle      is: ds = Rdθdθ

So magnitude, 
direction and
components of
dE due to dq
become:
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An additional bit of trickery is involved in exploiting the symmetry of the set-up.  
Notice there is a second dq on the right side at an angle    that will produce a mirror-
image differential electric field to our original bit of charge.  The x-components of 
the two fields will add to zero, so all we really have to deal with is the y-component.
With the linear charge density as:
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Example 12: A solid disk of
radius R situated in the x-z plane 
(as shown) has Q’s worth of 
charge on it.  Derive an expression 
for the E-fld at (x,0). 

We already know the E-fld
function along the x-axis for a 
charged hoop.

(x,0)
x

dq

So taking the hoop’s charge to be dq
and its radius to be r, we can write 
the magnitude of the differential E-
fld (in the x-direction) due to a 
differentially thin hoop on the face 
of the disk to be:
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As always, a surface density function can 
be defined as both:

σ = charge
area

= Q
πR2

and, with the area of a hoop equaling the 
circumference of the hoop times its thickness:

σ = dq
dA

= dq
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  ⇒   dq = 2πσr( )dr
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Summing over all of the differential 
hoops yields:
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If you would like to look at more exotic, most-probably non-AP electric 
field problems, look at the Where r You Going PowerPoint on the class Web site.
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A method to visualize what an electric field looks like 
is wrapped up in what are called electric field lines.  You 
saw an example of field lines when I introduced the idea of 
an electrical disturbance around a charge (see figure to the 
right).  The lines are designed to tell you very specific 
information about the charge configuration:

Electric Fields Lines
Q

As electric field lines move away from positive charge and toward negative 
charge (remember, the direction of an electric field is defined as the direction a 
positive test charge would accelerate if released at the point of interest), electric 
field lines always leave positive charges and enter negative charges. 

The number of line that leave a charge is proportional to the size of the charge.

The distance between lines gives you a relative feel for the strength of the field 
at a particular point—the closer the lines, the stronger the force.  That means a 
constant E-fld will have field lines that are parallel and equidistant apart.

The lines gives you a relative feel for the direction of the 
field at a given point, and skirt areas where an E.fld is zero.

electric field lines for 
positive point charge

constant E-fld



(next five pictures courtesy of Mr. White)
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(courtesy of Mr. White)
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(courtesy of Mr. White)



(next five pictures courtesy of Mr. White)
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(courtesy of Mr. White)
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(courtesy of Mr. White)
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(courtesy of Mr. White)



Electric Fields - concept check

a) it’s a vector, which tells you the direction a positive test charge will accelerate if placed in 
the field (a negative charge would go the other way).

b) Its magnitude is the available force per unit charge (like “g”). If you place a charge “q” at 
any location where you know E, you can calculate the force on the charge to be F = qE
(like Fg = mg)

c) This is how all our electrical devices work! When you flip a switch, plug something in, 
whatever, an electric field is the thing that makes electrical devices function.

a) An electron would accelerate to the left because the field indicates how a positive charge 
would accelerate.

b) A proton would accelerate to the right. It would feel the same electrical force as the 
electron (just in the opposite direction) but would accelerate differently due to its larger 
mass.

From Fletch’s book
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Example 13: A charge –Q and mass m is 
fired into a cavity bounded by two metallic 
plates of length L.  The plates are d units apart.  
The charge initially moves along the cavity’s 
central x-axis with velocity (see sketch).  
Assuming gravity acts downward:

a.) The hope is that Q will move straight along the x-axis even though gravity is 
acting upon the mass.  An E-fld is placed between the plates to counteract gravity.  
In what direction must that field be?  Also, what kind of charge must exist on the 
top and bottom plate to effect that field?

vo

If the electric FORCE must be upward to counteract the downward force of 
gravity, and if the force on a negative charge is opposite the direction of an 
electric field (think about how the direction of an electric field is defined), the 
E-fld must be downward (hence producing an electrical force upward). 
(NOTE: The easiest way to think through this is to assume the charge is 
positive, determine the E-fld for that particle, then reverse you solution.) 

m x

y

y=d/2

y=-d/2
x=L

The charge configuration needed to generate a downward electric field, 
given that field lines leave positive charges, is positive charge on the top 
plate and negative charge on the bottom plate.  

+ + + + + + + + + +

− − − − − − − − − −vo

−Q
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b.) What must be the electric field magnitude 
to effect this straight-line motion?

m x

y

y=d/2

y=-d/2

i.) What path would the charge take after the firing?

+ + + + + + + + + +

− − − − − − − − − −

This is a Newton’s Second Law problem.  
Noting that the magnitude of the electric 
force is       , where q does not carry its 
sign, we can write:

Fx∑ :
           Q E − mg = ma

     ⇒      E = mg
Q

q E

c.) Given this E-fld, if this experiment had been carried out in space:

ii.) Given the electric 
field as calculated, what 
velocity would the 
charge require to just 
barely clear the cavity 
without crashing into its 
wall? 

(see sketch)

Fy :∑
       Q E = may  

  ⇒ Q mg
Q( ) = may

            ⇒  ay = g

1

y2 = y1 + v1,yΔt + 1
2ay Δt( )2  

     ⇒  Δt( ) = d
g( )1

2

g0d
2 02

x2 = x1 + v1,xΔt + 1
2ax Δt( )2  

  ⇒  L = voΔt  
  ⇒  vo = L

Δt

             = L
d
g

⎛
⎝⎜

⎞
⎠⎟

1
2
= L g

d
⎛
⎝⎜

⎞
⎠⎟

1
2

0 0L vo
3

0

vo

x=L



He is going to need an electric force 
opposite the direction of the E-fld, so 
it will need to be a negative charge.  
With the f.b.d.:

20°

E = 100 N/C

m = 75.0 kg

sharks = hungry

Secret Agent 008  is in a rather sticky situation.  
A climbing rope of negligible mass suspends 
our hero over a pool of hungry sharks.  The 
space above the pool is permeated by a uniform 
electric field of 100 N/C.  Luckily, Agent 008 is 
wearing a special Adjustable Electric Charge 
Body Suit prepared for him by the ingenious 
minds at the Imperial Research and 
Development Lab.
a)  In order to stay alive long enough to devise

Example 14—courtesy of Mr White:
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an escape plan, 008 must select a charge for 
his suit that will enable him to keep the rope 
at a minimum angle of 20° to the left of 
vertical, as shown in the drawing above.  If he 
weighs 75 kg, what is the magnitude and 
polarity of the charge Agent 008 should set 
the suit for?

mg
qE

T Tcosθ−mg = 0
Tsinθ− qE = 0

and

⇒   q = mg
E

tanθ



20°

E = 100 N/C

m = 75.0 kg

sharks = hungry

b)  Agent 008 accidentally selects a charge of +10.0 
Coulombs for his body suit.  To what angle (relative 
to the vertical) does his body swing now?
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A positive charge will swing him in the direction of 
the E-fld, so the sketch will be a mirror image of 
what is seen and you’ll just have to do the math 
(it’s the same math) to figure out the angle.

Go back to either of the equations used to solve Part b and solve for T.

c)  Unfortunately, Agent 008’s rope has been 
weakened--when the rope reaches this new angle, it 
snaps.  What was the tension in the rope just before it 
broke?


