Ch I5
 Simple Harmonic Motion

Periodic (Circular) Motion

Point P is travelling in a circle with a constant speed. How can we determine the x-coordinate of the point P in terms of other given quantities?

Periodic (Circular) Motion

- Point P is beginning its circular motion at an arbitrary angular position ϕ.
- As P rotates with some angular velocity w , the angular position of P is given by $\theta=\omega t+$ ϕ.
- What is the x coordinate of P as it rotates around the circle?

$$
\begin{aligned}
& x=A \cos \theta \\
& x=A \cos (\omega t+\phi)
\end{aligned}
$$

Vocabulary

A = the "amplitude" of the motion

T = the "period" = the time for one complete revolution
$\omega=$ the angular speed of $\mathrm{P}=$
"angular frequency"
$\phi=$ the "phase constant"

$$
\begin{aligned}
& x=A \cos \theta \\
& x=A \cos (\omega t+\phi)
\end{aligned}
$$

S.H.M.

By definition, a particle on the x -axis exhibits simple harmonic motion when its position varies according to this relationship:

$$
x=A \cos (\omega t+\phi)
$$

x is a function of t, and repeats when ωt increases by 2π.

S.H.M.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, x(t)=a * \sin (\omega t), y(t)=b * \cos (\omega t)
$$

Frequency

What is the relationship between T and ω ?

$$
T=\frac{2 \pi}{}
$$

ω

The units for T are obviously "seconds" (per one cycle). If
we invert T, we get frequency

$$
x=A \cos (\omega t+\phi)
$$

 f, which is in "cycles per second," or "Hertz."

$$
f=\frac{1}{T}=\frac{\omega}{2 \pi}
$$

Derive $\mathbf{v}(\mathbf{t})$?

$$
\begin{aligned}
x & =A \cos (\omega t+\phi) \\
v & =\frac{d x}{d t} \\
v & =\frac{d}{d t}(A \cos (\omega t+\phi)) \\
v & =-\omega A \sin (\omega t+\phi)
\end{aligned}
$$

And what is v's maximum value?

$$
v_{\max }=-\omega A
$$

Derive $a(t)$?

$$
a=-\omega A \sin (\omega t+\phi)
$$

$$
a=\frac{d v}{d t}
$$

$$
a=\frac{d}{d t}(-\omega A \sin (\omega t+\phi))
$$

$$
a=-\omega^{2} A \cos (\omega t+\phi)
$$

Note this important relationship:

$$
a=-\omega^{2} x
$$

Example 1

Does the acceleration of
a simple harmonic oscillator remain constant during its motion?

Is the acceleration of a simple harmonic oscillator ever zero?

Mass-Spring = SHM?

Do mass-spring systems exhibit SHM?
How would we know?
I.Assuming it's a Hooke's

Law spring, we know that
$F_{\text {spring }}=-k x$, or $m a=-k x$, or $a=-$ $(\mathrm{k} / \mathrm{m}) \mathrm{x}$, where k / m is a constant value.
2.We've already established, for SHM, that a=$\omega^{2} A \cos (\omega t+\phi)$, so

$$
a=-\omega_{2} x
$$

3. Therefore, if
$-\omega^{2} x=-(k / m) x$, our mass-
spring system exhibits SHM.

f \& \boldsymbol{T} for Mass-Spring

$$
\begin{array}{ll}
T=\frac{2 \pi}{\omega} & f=\frac{1}{T}=\frac{\omega}{2 \pi} \\
T=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}} & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
\end{array}
$$

Mass-Spring Energy

$$
\begin{aligned}
& E=U_{\max }=\frac{1}{2} k A^{2} \\
& E=K_{\max }=\frac{1}{2} m v_{o}{ }^{2} \\
& E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} k x^{2}
\end{aligned}
$$

Example 2

A $5.00-\mathrm{kg}$ mass is connected to a light spring with $\mathrm{k}=20 \mathrm{~N} / \mathrm{m}$, and oscillating on a horizontal frictionless surface.
a. Calculate total energy of the system and speed of mass at x_{0} if Amplitude is 3.00 cm .
b. What is the velocity of the mass at $x=2.00 \mathrm{~cm}$?
c. Find K \& U when $x=2.00$ cm
d. For what values of x does the speed of the mass $=0.1$ m / s ?

The Simple Pendulum

... consists of a mass (a "bob") at the end of a string of length L, swinging back and forth due to the effect of gravity.

$$
\begin{aligned}
& F_{\text {tangential }}=-m g \sin \theta=m \frac{d^{2} s}{d t^{2}} \\
& s=L \theta, s o \\
& -g \sin \theta=\frac{d^{2} L \theta}{d t^{2}} \\
& \frac{d^{2} \theta}{d t^{2}}=\frac{-g}{L} \sin \theta
\end{aligned}
$$

Pendulum = SHM?

I. Set calculator mode to rads
2. Set graph range for $0-1,0-1$
3. Graph yl=x
4. Graph $y 2=\sin x$

The Physical Pendulum

A physical pendulum includes a solid object of mass m that oscillates under the influence of gravity.
$\tau=-m g d \sin \theta$ and $\tau=I \alpha$
$-m g d \sin \theta=I \alpha$
$-m g d \sin \theta=I \frac{d^{2} \theta}{d t^{2}}$
Assuming small θ :

$\frac{d^{2} \theta}{d t^{2}}=\frac{-m g d \theta}{I}$, so $\omega=\sqrt{\frac{m g d}{I}}$
(where $\mathrm{d}=$ distance from rotation axis to cg)

Example 3

A pendulum is made of a I-kg meter stick with a 2-kg blob of clay stuck on it at the $75-\mathrm{cm}$ mark.

a. What is the moment of inertia of this pendulum?

$$
\begin{aligned}
& I_{\text {toatal }}=I_{\text {stick }}+I_{\text {bob }}=\frac{1}{3} M L^{2}+M R^{2} \\
& I=\frac{1}{3}(1 \mathrm{~kg})(1 \mathrm{~m})^{2}+(2 \mathrm{~kg})(0.75 \mathrm{~m})^{2} \\
& I=1.46 \mathrm{~kg} \bullet \mathrm{~m}^{2}
\end{aligned}
$$

b. Where is the pendulum arm's center of mass located?

$$
\begin{aligned}
& x_{c m}=\frac{1}{M}\left(x_{1} m_{1}+x_{2} m_{2}\right) \\
& x_{c m}=\frac{1}{3 k g}((0.5 \mathrm{~m})(1 \mathrm{~kg})+(0.75 \mathrm{~m})(2 \mathrm{~kg})) \\
& x_{c m}=0.67 \mathrm{~m}
\end{aligned}
$$

c. What is the period of the pendulum as it swings from an axis at the top end?

$$
\begin{aligned}
& \omega=\sqrt{\frac{m g d}{I}}(\text { from previous page }) \\
& \mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{I}{m g d}} \ldots
\end{aligned}
$$

Ch IO-II Test

Test average 2015-2016: 67.5\%
Test average 2014-2015: 77.3\%
Test average 2013-2014:71.1\%
Test average 2012-2013:77.6\%
HW Stats for 2012-2013:
Avg for stdnts regularly completing homework: 83.3\%
Avg for stdnts with late or missing assignments: 71.6\%
Test average 2011-2012: 79.9\%
Test average 2010-20II: 69.7\%

Finklebottom \& Priest

"In the presence of air
friction, objects accelerate at
a constant rate $k<g$."
If this is the case, what will the graph of x vs. t look like for an object falling in air? Is
 this what we actually observe?

Graphing exercise

I. Set calculator mode to radians, and Standard Zoom on graph window
2. Graph $x=A \cos (\omega t+\phi)$ as $y \mid=4 \cos (\mid x+0)$
3. Graph $v=-\omega A \sin (\omega t+\phi)$ as $y 2=-1 \cdot 4 \cdot \sin (1 x+0)$
4. Graph a as well.

NOTES

I. x, v, and a all vary sinusoidally with time, but are not "in phase"
2. a is proportional to x, but in the opposite direction
3. f and T are independent of A

