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Vibratory Motion
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The Island Series:

1b.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  Your demented host has a precocious child who wants to 
dig a hole through the center of the earth and jump into it.  Thinking the kid is a 
genius who can do anything he puts his mind to, the parent assumes the kid will 
succeed, periodically re-emerging at the mouth of the hole after the jump (he’ll 
accelerate down through the earth to the other side, then come back).  To get a 
picture of the kid every time he shows himself at the original hole site, the 
parent wants to hire a satellite that will orbit at just the right altitude so that 
every time the kid’s head pops out of the ground, the satellite will be overhead 
to take a picture.  To get off the island, you must determine the appropriate 
orbital altitude the satellite needs to maintain to be able to do this?



You’ll see!  

Solution to Island Problem

1c.)
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Two glaring observations can be made from the graphic on the previous 
slide:  

1.) The PROJECTION of a point on a circle moving with constant angular 
velocity     follows the same path as a mass attached to an ideal hanging spring 
as the spring oscillates up and down.  And:
2.) If you track the oscillation in time, it traces out a sinusoidal path.

ω

Both of these observations fall out 
from the math if we start with Newton’s 
Second Law applied to a mass m
attached to an ideal spring oscillating 
over a frictionless, horizontal surface.

That analysis follows:

k

x

x = 0

m



Pulling the –kx to the right side and dividing by m yields the relationship:

spring will be                          (Hooke’s Law), Newton Second Law yields:

3.)

Keeping the sign of the acceleration
embedded (it will be either positive or 
negative, depending upon the point in 
time, so we’ll leave it implicit), and 
noting that the spring force in the x-
direction on a mass attached to the

Fspring = − kx( ) î

k

x

x = 0

m

Fx:∑
        − kx = max

                = m d2x
dt2

⎛
⎝⎜

⎞
⎠⎟

d2x
dt2

+ k
m

⎛
⎝⎜

⎞
⎠⎟ x = 0

This is the characteristic equation of SIMPLE HARMONIC MOTION.
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This relationship:
k

x

x = 0

m

essentially asks us to find a function x such that when 
you take its second derivative and add it to a constant
times itself, the sum will always add to zero.

d2x
dt2

+ k
m

⎛
⎝⎜

⎞
⎠⎟ x = 0

The function that does this is either a cosine or a sine (I usually use a sine, 
but your book for no particularly good reason uses a cosine, so we’ll use that).  

There are restrictions on the cosine function we need.  In fact, we want 
the most general form possible.  Specifically:

1.) We need the cosine’s angle to be time dependent, so instead of using an angle   
, we will use a constant times t, where the constants units have to be 
radians/second.  As we have already run into a variable with those units (   ), we 
will use that symbol.  (Interesting note: If the angular velocity of the rotating 
point-on-the-circle shown in the first slide had been    , the constant in question 
for the vibratory motion’s cosine function would have been that same number    .)

θ
ω

ω
ω



We need to be able to shift the axis by 
some phase shift amount   , essentially 
starting the clock (i.e., setting t = 0) when 
the body is at any chosen x-coordinate.

5.)

2.) We need the ability to start the clock 
when we want.  A simple cosine function 
sets the position to be at a positive 
maximum at t = 0 (see sketch).

φ

cos ωt( )

at t=0, x=max pos. displ.

cos ωt + φ( )
φ

at t=0, x-coord. shifted
3.) Lastly, we need to be able to 
accommodate motion whose maximum 
displacement is other than one.

The function that does all of this for us is:

x = Acos ωt + φ( )

new axis
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So back to the problem at hand.  Does
k

x

x = 0

m

satisfy
d2x
dt2

+ k
m

⎛
⎝⎜

⎞
⎠⎟ x = 0?

The only way to tell is to try it out:

x = Acos ωt + φ( )

dx
dt

=
d Acos ωt + φ( )( )

dt
    = −ωAsin ωt + φ( )

This, by the way, is the velocity function.  And as a sine function can never be 
larger than one, this means the magnitude of the maximum velocity for this 
oscillatory motion will be:

vmax = ωA

This will happen when the force is completely spent, or at equilibrium.
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k

x

x = 0

m
Continuing:

d2x
dt2 =

d −ωAsin ωt + φ( )( )
dt

      = −ω2Acos ωt + φ( )
Another side point:  This means the magnitude of the maximum acceleration, 
which happens at the extremes where the spring force is maximum, will be:

amax = ω2A

Plugging everything in:
             d2x

dt2            + k
m

⎛
⎝⎜

⎞
⎠⎟              x          = 0

−ω2Acos ωt + φ( )⎡⎣ ⎤⎦ +
k
m

⎛
⎝⎜

⎞
⎠⎟ Acos ωt + φ( )⎡⎣ ⎤⎦ = 0

          ⇒         −ω2 + k
m

⎛
⎝⎜

⎞
⎠⎟ = 0

                 ⇒        ω = k
m

⎛
⎝⎜

⎞
⎠⎟

1
2
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k

x

x = 0

m
In other words, the differential equation

ω = k
m

⎛
⎝⎜

⎞
⎠⎟
1
2

x = Acos ωt + φ( )
is satisfied by the position function

d2x
dt2

+ k
m

⎛
⎝⎜

⎞
⎠⎟ x = 0

as long as the angular frequency     satisfies:ω

Big Note:  Notice that in concluding that                   , we are saying that the 
angular frequency of our oscillating system is equal to the square root of the 
constant that sits in front of the position term in the Newton’s Second Law 
equation!  Put a little differently, if you can get a N.S.L. evaluation into the form:

acceleration + constant( ) position( ) = 0
you will know the oscillation is simple harmonic in nature AND you will know that 
the angular frequency of the system is                           .  ω = constant( )12

ω = k
m

⎛
⎝⎜

⎞
⎠⎟
1
2
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k

x

x = 0

m
Minor point:  So what is the angular frequency     
really doing for us?  It is simply another way to 
identify how quickly the system is oscillating 
back and forth.  But instead of telling us the 
frequency    in cycles per second, it is telling us 
how many radians being swept through per cycle.  
Noting that there are      radians per cycle, the 
relationship between frequency and angular 
frequency is:

2π

ω = 2πν

ω

ν

And as the frequency in cycles per second is the inverse of the number of 
seconds required to traverse one cycle (or the period T in seconds per cycle), we 
can also write:

ν

T = 1
ν

In short, if we can derive an expression for     for a system, we also know    and T.  ω ν
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At the extremes where the velocity is zero and 
acceleration a maximum:

Fmax = −kA

Energy in a Spring System

Etotal =
1
2

mv2 + 1
2

kA2

       = 1
2

kA2

k

x

x = 0

m

, where A is the maximum displacement (the amplitude), so:
0

At the equilibrium where the acceleration is zero and velocity a maximum:

Etotal =
1
2

mvmax
2 + 1

2
kx2

       = 1
2

m ωA( )2

0
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ω = 2πν

Relationships always true:

T = 1
ν

Summary of Relationships

d2x
dt2 + κ( )x = 0  or  α + κ( )θ = 0

x = Acos ωt + φ( )

vmax = ωA

amax = ω2A

characteristic equation for simple harmonic motion

angular frequency and frequency related

period inversely related to frequency 

position function for s.h.m.

v = dx
dt   and  a = dv

dt =
d2x

dt2 velocity and acceleration functions

ω = κ( )12 angular frequency from characteristic equation

maximum velocity (happens at equilibrium)

maximum acceleration (happens at extremes)
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For a spring:

Summary of Relationships

d2x
dt2

+ k
m

⎛
⎝⎜

⎞
⎠⎟ x = 0 characteristic equation for simple harmonic motion

total mechanical energy in system

ω = k
m

⎛
⎝⎜

⎞
⎠⎟
1
2

angular frequency from characteristic equation

Etot =
1
2
kA2

The period of oscillation for a spring is constant no matter what the spring’s 
amplitude.  How so?  A larger displacement will require more distance traveled 
to execute a single cycle, but because force is a function of displacement, it will 
also generate a larger maximum force, so the period will stay the same no matter 
what!
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REALLY SIMPLE Example 1: A spring with 
spring constant k is hung from the ceiling.  A mass m = .4 kg is 
attached and allowed to gently elongate the spring until it comes 
to rest at a point .6 meters below its free-hanging position.  The 
mass is then pulled an additional .2 meters down and released.

a.) What is the spring’s spring constant?

k = F
x
= mg

d

  =
.4 kg( ) 9.8 m/s2( )

.6 m( )
  = 6.53 N/m

The spring constant identifies how much force is required to displacement the 
spring one meter (units: N/m).  It measures, essentially, stiffness.  We’ve been 
told that a mass m, whose weight is mg, displaced the spring a distance d = .6 
meters, so we know:  

m

k
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b.) What is the amplitude of the resulting oscillation?

ω = k
m

  = 6.53 N/m( )
.4 kg( )

  = 4.04 rad/sec

Being elongated an additional .2 meters from equilibrium means 
m will oscillate about the equilibrium point .2 meters above and 
below, which means the motion’s amplitude is .2 meters. m

k

c.) What is the motion’s angular frequency?

Knowing m and k, we can write:

d.) What is the motion’s frequency?
ω = 2πν

 ⇒  ν = ω
2π

= 4.04 rad/sec
2π

  = .643 cycles/sec   (or Hertz)
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e.) What is the period of the motion?

m

k

f.) What is the maximum velocity?

g.) Where is the velocity a maximum?

T = 1
ν
= 1

.643 cycles/sec
  = 1.56 sec/cycle   

vmax = ωA
       = 4.04 rad/sec( ) .2 m( )
       = .81 m/s   

at equilibrium

f.) What is the maximum acceleration?

g.) Where is the acceleration a maximum?

amax = ω2A
       = 4.04 rad/sec( )2 .2 m( )
       = 3.26 m/s2    

at the extremes
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h.) How much mechanical energy is in the system?

m

kE = 1
2

kA2

  = 1
2

6.53 N/m( ) .2 m( )2

  = .13 joules   

i.) How would this problem have changed if the spring had 
been inverted?

it wouldn’t
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Consider a spring of spring constant k that has a mass m attached to it.  What 
happens to the spring constant if:

	mg = kd		

Physical Characteristics of Springs

a.) You cut the spring in half?
It doubles for each new spring, but how so?  

Assume the mass m elongates the spring a distance d down to its 
equilibrium position.  In that case,

If we put a mark halfway down the spring and think of it as two 
springs, one on top of the other, with each having its own new 
spring constant     , and if we notice that the force on the upper 
spring has to be the same as the force on the lower spring (note 
that this is called a series combination and is associated with 
situations in which the stress is the same for all parts involved) 
we can write:

	d

	m

	k

	d/2

	m

	k1 	d/2

	k1

	k1

	

mg = k1y1
						 = k1

d
2

⎛
⎝⎜

⎞
⎠⎟
= kd			⇒ 			k1 =2k			
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U= 12kd

2 		

a.) What happens if you cut the spring in half? (con’t.)

Another way to look at it is through energy.  The spring potential energy for an 
elongated spring stretched from its equilibrium position is:

If we think of the spring as two springs attached one on top of the 
other, the energy content won’t change and we can write:

	d

	m

	k

	m

	k1 	d/2	

U= 12kd
2 = 12k1

d
2

⎛
⎝⎜

⎞
⎠⎟

2

+ 12k1
d
2

⎛
⎝⎜

⎞
⎠⎟

2

											⇒ 								kd2 =2k1
d2
4

⎛

⎝⎜
⎞

⎠⎟

													⇒ 		k1 =2k
Still another way to look at it:  Elongating the original spring to the 1.0 
meter mark is relatively easy because there is a lot of spring to unfurl (so 
k, the force/unit length required to hold the spring at a particular length, 
is relatively small).  But cut the spring in half and you are physically 
stretching a lot less spring to that 1.0 meter point, which means more 
force/length will be required to hold at that point (so bigger k).  
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Fnet =F1 +F2 = k1y+k2y
			⇒ 			mg = k1 +k2( )d
						⇒ 			knew = k1 +k2

c.) What happens if you put two springs side by side?

This is a parallel combination where the stress is 
distributed between the members, and in it the 
effective spring constant is the sum of the 
individual spring constants involved.  How so?

	d

	m

	k1 	k2

b.) What happens if you double the spring’s length? 

Playing off the reasoning from above, the spring constant would 
halve.  
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Example 2: A simple pendulum of length L is observed as 
shown to the right.  What is its period of motion?

If we can show that this system’s N.S.L. expression conforms to simple 
harmonic motion, we have it.  As the motion is rotational, we need to 
sum torques about the pivot point.  The torque due to the tension is zero.   
Noting that r-perpendicular for gravity is           , we can write:

θ
L

m
τpin :∑

        − mg( ) Lsinθ( ) = Ipiinα

                                  = mL2( ) d2θ
dt2

            ⇒    d2θ
dt2 + g

L
⎛
⎝⎜

⎞
⎠⎟ sinθ = 0

Lsinθ

This isn’t quite the right form, but if we take a small angle approximation, we 
find that for                           and we can write:θ <<,  sinθ→ θ

d2θ
dt2

+ g
L

⎛
⎝⎜

⎞
⎠⎟ θ = 0

r⊥ = Lsinθ

 ipin

mg

mg
L

T
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Minor Note: How do we know that the                            ?

The Taylor expansion for a sine function is:

sinθ = θ− θ3

3!
+ θ5

5!
− θ7

7!
+ . . .

sinθ = θ for θ <<

which suggests that for small angles, sinθ⇒θ.
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With 

θ

L

m

d2θ
dt2

+ g
L

⎛
⎝⎜

⎞
⎠⎟ θ = 0

We can see we are dealing with simple harmonic motion, which 
means:

ω = g
L

⎛
⎝⎜

⎞
⎠⎟
1
2

and
ω = 2πν
  ⇒   ν = ω

2π

  ⇒   ν = 1
2π

g
L

⎛
⎝⎜

⎞
⎠⎟

1
2

and
T = 1

ν

  ⇒   T = 2π L
g

⎛
⎝⎜

⎞
⎠⎟

1
2

And wasn’t that fun . . . 
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Example 3: A physical pendulum of length L takes the 
form of a beam pinned at one end as shown to the right.  What 
is its period of motion?

Again, starting with N.S.L.:
θ

L

τpin :∑
        − mg( ) L

2
sinθ⎛

⎝⎜
⎞
⎠⎟ = Ipiinα

                                  = 1
3

mL2⎛
⎝⎜

⎞
⎠⎟

d2θ
dt2

            ⇒    d2θ
dt2 + 3g

2L
⎛
⎝⎜

⎞
⎠⎟ sinθ = 0

Again, this isn’t quite the right form, but if we take a small angle approximation, 
we find that for                           and we can write:θ <<,  sinθ→ θ

d2θ
dt2

+ 3g
2L

⎛
⎝⎜

⎞
⎠⎟ θ = 0

mg
r⊥ = L

2
sinθ

 ipin

mg

L
2

center of  mass
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With 

θ

L

m

d2θ
dt2

+ 3g
2L

⎛
⎝⎜

⎞
⎠⎟ θ = 0

We can see we are dealing with simple harmonic motion, which 
means:

ω = 3g
2L

⎛
⎝⎜

⎞
⎠⎟
1
2

and
ω = 2πν
  ⇒   ν = ω

2π

  ⇒   ν = 1
2π

3g
2L

⎛
⎝⎜

⎞
⎠⎟

1
2

and
T = 1

ν

  ⇒   T = 2π 2L
3g

⎛
⎝⎜

⎞
⎠⎟

1
2

And wasn’t THAT fun . . . 
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Example 4: An oddball physical pendulum consists of a 
disk of mass m and radius R with a wad of mass .2m attached at 
its edge as shown. What is its period of motion?

mwg

θ

ω i
pin

wad
mdg

Using the parallel axis theorem on the disk and the definition of 
moment of inertia for a point mass on the wad, we can determine 
the net moment of inertia about the pin as:

	

Ipin = Icm/disk +MdiskR2( )+mwad 2R( )2

				 = 1
2mR

2 +mR2⎛
⎝⎜

⎞
⎠⎟
+ .2m( ) 2R( )2

				 =2.3mR2
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τpin:∑
								− mg( ) Rsinθ( )− .2mg( ) 2Rsinθ( ) = Ipinα
			⇒ 				−1.4mgRsinθ= 2.3mR2( )d

2θ
dt2

												⇒ 					 d
2θ
dt2 +

.61g
R

⎛
⎝⎜

⎞
⎠⎟
sinθ=0

With                        andθ <<,  sinθ→ θ d2θ
dt2

+ .61g
R

⎛
⎝⎜

⎞
⎠⎟ θ = 0

	r⊥ =Rsinθ

 ipin

mg

	R

Taking the torque about the pin, yields:

⇒   ω = .61g
R

⎛
⎝⎜

⎞
⎠⎟

1
2

  ⇒   ν = ω
2π

= 1
2π

.61g
R

⎛
⎝⎜

⎞
⎠⎟

1
2

⇒   T = 1
ν
= 2π R

.61g
⎛
⎝⎜

⎞
⎠⎟

1
2

mwg

θ

ω i
pin

wad
mdg
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Example 5--an old AP question: A spring whose force magnitude is 
equal to                 is displaced a distance A and released whereupon its period is 
determined to be T.  If it is then displaced a distance 2A, will its period go up, go 
down or stay the same?   

 
!
F = −kx3

This is a very cool problem because it makes you think about what you know, 
then extrapolate to this new situation.

What you know is that for a “normal,” Hooke’s Law spring where the force 
magnitude is                 , the period will be constant.  That is, if the 
displacement is small, the force will be small and it will take some amount of 
time to cover one cycle.  And if the displacement is large, the proportionally 
larger force will allow the additional distance to be covered in the same time . 
. . hence a constant period.

 
!
F = −kx

In this scenario, increasing the displacement means that the force will be 
larger, but not proportionally larger—it will be GREATER than proportionally 
larger.  With the larger than expected force, the mass should cover the ground 
in less time than “usual,” meaning the period should diminish.  Bizarre, but 
that the case.
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Example 6: A great problem!  A kid jumps into a 
tunnel drilled through the earth from pole to pole. He 
accelerates toward the center of the earth, reaches that 
point whereupon he begins to negatively accelerate as 
he travels back toward the surface on the other side of 
the planet.  Once at the surface on the other side, he 
stops, then start back toward the center of the earth 
again. In other words, the kid oscillates back and forth.  
His father, wanting to see his kid occasionally, commi-
sions a satellite to orbit in just the right circular path so  

r

The key to this problem is in finding the frequency (or period) of motion of the 
kid’s oscillation between the poles.  This will be the same as the period of the 
satellite’s motion.  So how do you determine that period? 

as to be overhead every other time the kid’s head emerges from the hole.  
Remembering that the force due to gravity inside a solid sphere is                               
(this was derived in the last chapter), what altitude above the earth’s surface must
the satellite be to effect this feat?

If we could show that the kid was executing simple harmonic motion, complete 
with its characteristic equation, we’d be set.  So let’s try that! 

 

!
Fg = Gm M

R3( )r
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r

Writing out Newton’s Second Law on the kid yields:

Fr∑ :

       −Gmk
me

R3( )r = mk
d2r
dt2

              ⇒     d2r
dt2 + Gme

R3( )r = 0

ω = Gme
R3( )12

ω = 2πν = 2π
T

   ⇒ T = 2π
ω

= 2π

GM
R3( )1

2

This is the characteristic equation of S.H.M. (an acceleration plus a constant times 
a position equals zero).  That means the angular frequency of the oscillation is:

But:
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r
Knowing that:

T = 2π

Gme
R3( )12

the satellite’s velocity will be:

v =
2π R + rorbit( )

T
=

2π R + rorbit( )

2π

Gme
R3( )1

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  = R + rorbit( ) Gme
R3( )1

2
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Fr∑ :

							−G mems

R + rorbit( )2
= −ms

v2
R + rorbit( )

														⇒ 				−G mems

R + rorbit( )2
= −ms

Gme
R3

⎛
⎝⎜

⎞
⎠⎟

1
2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

R + rorbit( )2

R + rorbit( )

														⇒ 				−G mems

R + rorbit( )2
= −ms

R + rorbit( )2 Gme
R3

⎛
⎝⎜

⎞
⎠⎟

R + rorbit( )
														⇒ 				R3 = R + rorbit( )3 			
														⇒ 				R =R + rorbit 								
																					⇒ 						rorbit =0
which	is	to	say,	the	sattellite	has	to	skim	the	earth's	surface	to	do	the	deed						

We can use Newton’s Second Law on the satellite:

	rorbit


