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CHAPTER 13:
Universal Gravitation

“Why do celestial
objects move the way

» Kepler (1561-1630)
Tycho Brahe' s
assistant, analyzed
celestial motion
mathematically

e Galileo (1564-1642)
Made celestial
observations by
telescope

« Newton (1642-1727)
Developed Law of
Universal Gravitation

courtesy of Richard White
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Newton observed that there exists a force between any two masses that is
proportional to the product of the masses and inversely proportional in some way
to the distance between the center of masses of the bodies (he didn’t originally
know if it was lr or %2 or /5 or what). The proportionality constant was/is
called the universal gravitational constant GG. In polar-spherical notation, this
attractive, radial force is denoted as:

LT

F =G r

grav n

r

To determine the power n, he made another interesting observation. The same

force that accelerates an object like an apple close to the surface of the earth
accelerates the moon 1n its path around the earth. Taking that path to be circular,
and noting that it takes 27.3 days for the moon to orbit the earth once, he wrote:
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acceleration at earth:

. 2
a0 = 9.8 M/s
centm’yemf acceleration at moon:
_ (Vmoon )2
moon R .
2K Y’
T ) 4n°R

= -

47’ (3.85x10° m)

=2.73x107° m/s>

using calculated accelerations:

Lo - 98 _ 3600

a_  2.73x107°

moon

[(27.3 days)(24 hr/day)(3600 sec/hr) ]

using the radii:
(rmoon jn

I.earth
Joutting everytﬁing to(getﬁer:

aapple — I’mﬂ '
amoon I.earth
(3600)=(60)"
= n=2

3.85x10° m |
6.38x10° m

(60)'

In other words:

m,m ~
F,, =G ()

grav
r

Note: Newton shelved this theory for several years because the accepted distance to the moon was off
and the exponent he originally calculated was something like 1.7—not something he thought nature

would do.
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ﬂﬁer initial experiments were done by

Charles Coulomb, Henry Cavendish used a
torsion balance 1n a vacuum to measure the
attraction between two masses 7 and M to one
another. The calculated value of G was:

G=6.672x10"Nem” /kg’

torsion in
wire (k)

@
Ca%e
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fxamy[e 1. A 2000 kg space shuttle orbits /

/
the earth at a distance of 13,000 km above the {' O
earth’s surface. You know: \\

r‘earth = 638X106 meters, G — 6-67X10_11 N hd mz/ng; \\
Inearth = 5'98X1024 kg = 600 kg

astronaut

a.) Derive an expression for, then determine the AR
acceleration of the satellite in itsorbat. ~ T=————7

statellite
G —
(r +1, }Y( !

to orb1t

(5.98x10* kg)

=(6.67x10"'N+m*/kg’) .
(6.38x106meters + 13.Ox106meters)

=1.06 m/s*

b.) What is the acceleration of an c.) What is her weight?
astronaut inside the orbiting
satellite?

9t will be the same!

F, =ma,
= (60 kg)(1.06 m/s*)
=63.6 N (around 15 pound)
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—6 38x10°meters, G =6.67x10""'Nem’/kg’, /
o =5 98x1024kg, r. .. =13.0x10°meters, m =2000kg /

eanh

l'l
d.) Derive an expression for, then determine the | O
velocity the satellite must maintain to keep its orbit. \

meormnt point: Orbital motion has two masters. There \
m_mg

is Newton’s general gravitational force G—— > s(=t),and I

there 1s the centripetal acceleration (v ) réquired to

keep the body from plummeting into the ‘celestial body it 1s traveling around.
What that means 1s that for a given orbital radius, there is only ONE speed that

will hold the body in orbit!

2 Fsatellite
2
G m ;X{S _ }X( [ Vv j
S
(I' T I.'[0 orbit )Z/ ,(/rej_/too%)/

= V= \/(6.67X1011N-m2/kg2)

\\~_-——//

(5.98x10* kg)
(6.38X106meters + 13.0X106meters)

= 4537 m/s
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e.) What 1s the radius of a geosynchronous orbit? {l O
|

A geosyncﬁronous orbit is a circular orbit in which \

the satellite is always over the same point on the \
earth. In other words, the satellite’s angular velocity \
is the same as the earth’s angular velocity. v, \\\\
We know: 0, = _ . = 637;1;2111(1 60 soc 7.27x10rad / sec T |
(24 hr)( )( : ) and v, —(r +r0rblt)(x)
hr min

2 Fsatellite : V{
m A% s
G > =m, >
o

(r +rto orblt) L +1,

to orbit

:7{ r + I.to orbit yf(l)
3 Gm
= (r + I.to orb1t /

Gm
= to orbit ( / )

. Iz
=[(6.67x10 N - m? kg’ )(5.98x10* kg)] A0S

(7.27x107)

= Tyo = 3.59x10" m
0 9.)




’.Key[er’s Laws

As a consequence of data taken by Tycho
Brahe, a Danish astronomer (last of the naked-
eye celestial observers), Kepler was able to
deduce three “laws” about planetary motion.
They are:

‘.Ke]o[er’s First (called the Law of orbits):

Planets move in elliptical orbits with the Sun
at one focal point.

Earth's orbit

‘.Ke]o[er’s Second (called the Law of areas): A
radius drawn from the Sun to any planet sweeps f e
out equal areas in equal time intervals.

‘.Ke]o[er’s Third (called the Law of Jaem’oc[s): The square of a planet’s period 1s
proportional to the cube of its semi-major axis.
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K?}? [61’ gener atea[ ﬁlS Laws by using observational data from Brahe.

Each of the laws do, though, have a theoretical justification. To wit:

‘.Kejo[er’s First (called the Law of orbits): Planets move in elliptical orbits
with the Sun at one focal point.

‘Using conservation of angular momentum and conservation of energy, it
is possible to derive an expression for the radial position of a planet as a
function of its angular position in the orbit (i.e., r(@)). The derived
expression 1is that of an ellipse.

‘.Kejo[er’s Second (called the Law of areas): A radius drawn from the Sun to
any planet sweeps out equal areas in equal time intervals.

The derivable expression for a planet’s area-sweep with time (i.e., dA/dt)
looks just like the derived expression for a planet’s angular momentum
(give or take a constant). As the angular momentum of a torque-free body
1s constant, dA/dt must also be constant.
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QZXCLWL]?[@ 2. Derive an expression for the

period of motion of a planet of mass m, as it orbits
the center of mass of a two planet system, where 2
the mass of the second planet is m, (see sketch). /

This is a Newton’s Second Law problem. m

e ————
- =~

Summing the forces on m;:

\
° \
Z Fradial : \

g mm, _ ( v, ]
2 1 N
I, +r I
(5 +1,) ((27&% )2 )
The velocity in G im, - i T
2 . 1
emsotthe Ty
period is: v, = —* \ )
o . m, 47t2rf/
Substituting this into = G 5 = T
our relationship (1, +1,) !
yields: 471t
= T’ = T I (1r1+r2)2
Gm,

~
i
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e —————
-
- ~

g\/btiC €. If we let the planet become very small so
that m, >>m,, then r, — 0, the system’s center of ’

mass migrates toward the center of m, and we can
write:
T2 41 ( + )2 i<
= I|\T ! I
1\ 2 '
IIl2 \\ 1 1'2 % 0

-~ -
~ -
ey

This is 7(?}9[61’ s Third Law, which is to say, the square of the period is
proportional to the cube of the radius (or semi-major axis).

Note that of Kepler’s three laws, this is the only one that is an approximation.
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Conservation @C ﬂngu[m ‘Momentum

tati are s emmmmmTTTTTII
‘Because TOWH'QHOTLOL[ 01CésS are RADIAL B .

they don’t produce torques. With no external torques m, /~ ‘mz
acting, planetary motion adheres to conservation of N F, = Gml—Iznz

angular momentum. With that in mind: et

Examyfe 3. If aplanet moving in an

elliptical orbit has a velocity at its farthest LT m j
point (its aphelion) of v,, what is its velocity "1 ’2 _ CAE
. . . . . N I /!

at 1ts closest point (its perihelion)? Assume vy ! ! o

S~a --"
-~ -
S ——— _—————

you know the distances identified on the

sketch.) SO L+ YT A=) L,

TﬁlS is a zL +2TextAt:2L fi’ I(D + 0 — I(D2
conservation of LXp, + = r2Xp2 OR Al v
' Y2
angular — gﬁ{ }/ : = (9’( (};r(lrp )
momentum p
lem: < r
problem = Vv, = ; V1 “ = v, =l
P \ T
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Point @C Order about FIELDS

For CL[[ SOrts (Zf 1easomns, Newton didn’t really like his theory of gravity. . .

even though it does do a great job of predicting how the real world acts (we put a
man on the moon using it). First, why should two objects be attracted to one
another simply by virtue of each having mass (that’s what his universal
gravitational force equation F = MM/, suggests). And second, contact forces

on m

makes sense (push on something, it pushesrback), but forces acting at a distance . . .
how does that work?

‘An a[temate VIEW is to think of a mass as creating ( G (mﬂd producingylg ) )
a disturbance in the region around it (called it a F, r’
gravitational field), and define it as the amount of force m, B 922/

per unit mass AVAILABLE at a point due to the presence

of that field-producing mass. Such quantities would be k y,
field-producing, force-related, but would be independent _ (g) "

of any mass feeling the affect. That is, they would exist \ 2 ) fldproducine

whether a mass resided at a point of interest or not.
The math for the gravitational field due to any mass would look like:

g\/bl' SO important here, but the idea will become more important in £&M.
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Gravity Near and Far

C [056 to tﬁe Smface of the earth, the magnitude of the force on a mass m,

due to the presence of the earth’s mass m_is
meml

2
I

€

F, =G

where denominator is the square of the distance between the center of mass of the
two objects or, in this case, the radius of the earth.

?utting numbers into this expression for G, the mass and radius of the

earth, that relationship becomes:
_ 2 _
F, =(9.8 m/s’)m, =m g
with a potential energy function that we’ve derived as:

U grav near earth - mlgy
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TOL?’fT OMN the earth (or any celestial body), the r m,

magnitude of the force on a mass m, due to the
presence of the earth’s mass m_is

F, =G

I'

where denominator is the square of the distance between the center of mass of the
two objects which, in this case, i1s NOT the radius of the planet.

Ml’iﬂg tﬁ&tf there is a AU = — J Eedf

preferred F = 0 point at =0 G, A
infinity, which will be our = U(r U/Z/ I T | (dr)
zero potential energy point, m,m, . |
the potential energy function = U(r)= J.r—oo(G 2 drw
for this far-field gravitational Gmm 1,
force derives as: B P2 plr=e 0

:_(GmlmZ_Gm 2)

r oo
— _G mlme
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fxamy[e 4. Derive an expression for the TV
escape

escape velocity required for a mass to free itself
from the earth’s gravitational field.

earth's surface

This is an energy problem. Realizing that for an object to become completely

free of the earth, it must move to infinity, and remembering that the
gravitational potential energy for far-field situations is not zero at the earth’s

surface, conservation of energy yields:

DKE,  + U +XYW, =>KE+ YU
1
57{1(Vescape)2+(—G%j+ 0 = 0 +(— m

= \% = [2G M.

escape r
e

5.98x10”* kg)
(6.38){106 m)
=1.12x10"m/s (this 1s approximately 7 mi/sec)

escape

= v :\/2(6.67X10“N-m2/kg2)(
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fxamjo[e 5. An apple 1s released from a height

of 10,000 meters above the earth’s surface. How
fast 1s 1t moving just before it hits the earth,
assuming no air friction.

earth's surface

Again, a classic conservation of energy problem.

D) KE, + YU, +Y W, =>KE,+ YU,
0 +[—G( p.m, j+ 0 :%PKVZJF(—G%]

r/+10,000)

= V=\/2Gm (l— I J
“\r. (r.+10,000)

. ~1IN] ¢ 10 2 2 4 ! — !
= Vescape—\/2(6-67X10 N-m*/kg’)(5.98x10 kg)[(6.38x106 m) (6.38x106+1X104)m}

=442.4 m/s

Note that using mgy as your potential energy function, the velocity comes out
to be 442.7 m/s, so even at 10,000 meters up, the mgy approximation is a fairly
good one.
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Potential fnergy of ‘Mufnjofe ‘Mass Systems

Tt takes no energy to draw a mass m, from infinity ry @
mA

to some position in space. Once there, that mass will
produce a potential energy field around that point.

The amount of energy required to draw a second mass my in from infinity to a
distance 1, units for the first mass is equal to the amount of work you need to put
into the system to effect the deed. This will be minus the amount of energy the
field does (assuming you come in with constant velocity). As the amount of work
the field does 1s equal to —AU , , where U is the fields potential energy function

equal to —GMaMs - the amount of work you must do will be +AU ,. That is:
Wyou =+AU 5 = (Ufinal,AB — Uinitial,AB)
0
— (_ij_Gm B:|:_GmAmB
TaB e TaB

(That’s ’m’gﬁt, you need to apply a force opposite the direction of motion, hence
the negative work, to keep the body from accelerating as 1t comes in.)
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The amount of energy required to draw a third mass m_.
in to a distance 1, from m, and 1, from m will equal

. . @
the amount of work you have to do to bring the mass in y \ch
from infinity. That will be: M

@< >@

W,.., =+AU ac T AUBC — (Ufinal AC Uinitial,AC ) + (Ufinal,BC _ Uinitial,BC)

you :
0 0
:|:(_GmAmcj Gm c:|+|:(_G%j_G/mﬂ:|__Gm AN _Gm
Tac e Tgc e Tac Ipc
ﬂofcfing this to the original bit of work done to bring in the second piece, and we
get the potential energy wrapped up in the system as:

U e am, +£_Gm_ij

I'AB I'AC I.BC

Bottom line: Each added mass must interact with all the masses already present.
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Total fnergy in an Orﬁiting System
Where the Orbit is Eﬁjatica[

fxamp[e O: Assuming an eliptical orbit, M
what is the rotal mechanical energy wrapped up m (\(r.
in an orbiting satellite. v
E,.=>KE + > U,
1 mM
=—mv’ + (—G—)
2 r
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Total fnergy in an Orﬁiting System
Where the Orbit is Circular

e ——-— —-———
- =<
- ~

fxamjofe /. Assuming an eliptical orbit,

what is the rotal mechanical energy wrapped up m r
in an orbiting satellite. TN
E,.=>KE + > U,
1 M
= EIIIV2 + (—Gm—)

r

To relate the velocity, look at what Newton s Second has to say about the system:

2 Fradial :

Al
: 1%

M
= v=G—
r
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Comﬁining:

e mm e ———
— -~ -~

- ~ -~

- ~

T
/’/, M
:lm(GM)+(—G—mMj m(\(r‘
r r <-..
| Vo -
b
2 T
|
=—U
2

Bottom [ine: The total amount of mechanical energy wrapped up in circular
orbital motion is equal to half the potential energy in the system. This
relationship i1s still good with elliptical orbits if you make the » term into the semi-

major axis.
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A Particle’s Interaction with a Larger ‘Mass

Case 1 (spherical shell with particle outside): M R

The net force on m 1s due to all the bits of mass inside T °
the sphere of radius R. Newton created Calculus to '
justify the claim that there 1s no difference between
this situation and the situation in which all of the mass 1s located at the system’s
center of mass. (as the math yields the same relationship). For the ring of mass
M shown, this is: B M

F, =G 2

Case 2 (spherical shell with particle inside):

(-1) forr>R

Tnside the ring, the net fm’ce on the mass m due to all the
bits of mass encompassed in the ring will, because gravity
is an inverse square function, vectorially add to zero, so:

ngO forr<R
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Case 3 (spherical solid with particle outside): M

The net force on the mass m is, again, due to all the bits <« @
of mass encompassed in the ring of radius R. And just as g
before, this will equal:

- mM
Fg =G 7

Case 4 (spherical solid with particle inside):

(—f) forr >R

This is a little trickier. Think of the mass as sitting on a
sphere of radius ». From Case 2, all the mass outside that
radius provides no nef gravitational force, whereas from
Cases 1 and 3, the gravitational force from the mass inside
that radius will be as though all of thaf mass was located at
the sphere’s center of mass. In other words:

- mjr dM

F,=G—=—(-f) forr=R

2
r

no net effect
generated from
mass outside r

where J-_O dM is the fraction of the sphere’s mass inside the sphere of radius r.

25.)




’fﬁe mass ins ldé 1" can be determine in two ways. One only works if the

mass 1f homogeneous. The other uses differentially thin spherical shells and
works whether the mass distribution is uniform or not. We’ll do the easy way
first, then I’ll show you the more complex approach.

Assuming the mass is uniformly distributed, the volume mass density function
(mass per unit volume) p can be written in two ways:

mass inside r m

_ totalmass = M and p= _ _Mhingide
p= total volume (4 3j volume inside r ( i T 3j
—T7R r
3 3
m r’
Equating: e =—M

M = = minside_ 3
) (AR ‘
- (M)

So: F, =Gm-~—2%2(—1)

g

_f):(Gﬂjr (<) forr<R
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Tt shouldn’t be terribly surprising that the force would be a function of 7.

You would expect the force to be zero at the sphere’s center (i.e., at r = 0), which
this function satisfies (whereas a%z function wouldn’t).

In any case, the more exotic way to do this would ~ p= total mass _ M
be to create a differentially thin spherical shell, total volume (inRﬂ
determine the mass in it, then integrate to 3M

determine the total mass inside. ~ 4nR’

The differential volume is the surface area (dS = 4ma’) of a
spherical shell times the differential thickness da, which

: _ dm — dminsi e — 2
means p= Vo (47‘5&2)(1(1& = dm= P(47ta )da
- fr dm
So: ‘F ‘ =Gm =

g

Jipea

oo Bp 5t () 5o

|
Q
=
]
B
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Grap fis

’Magnitucfe of force on Joarticfe ‘Magnitucfe of force on
due to a spherical shell: Jocm“icfe due to a solid shell:
M M

R0 | o]
R | R |
. - M
F|=0 forr<R F,|=Gm g r forr<R
- mM _ mM
Fg =G—; forr>R Fg =G—; forr>R
I r
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‘AP fxamjo[e /. Two satellites of masses

m and 3m, respectively, are in the same circular
orbit about the Earth's center, as shown in the /
diagram above. The Earth has mass A/, and ,/
radius R,. In this orbit, which has a radius of
2R, the satellites initially move with the same ;'
orbital speed v, but in opposite directions. {
a.) Derive an expression for the orbital speed VO\\

of the satellites in terms of G, M, and R.. \\

Z Fradial :
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b.) Assume that the satellites collide
head-on and stick together. In terms of v,
determine the speed v of the combination
immediately after the collision.

You should be able to use either
conservation of momentum (no external
impulses acting) or conservation of
angular momentum (no external torque-
related impulses). We’ll start with
conservation of angular momentum, and \ N7
because these are both point masses (and ~ e

to be a little exotic), we’ll calculate the =

angular momentum using both Iw and the

cross product rxp:

Q\foting that:
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We can write: P “pin

ZLI +ZtextAt= sz :l f:‘"h Re

~_I3m0)3m T rmXpm ] + 0 — _r4mXp4m \\\

— \\\ \;/
_(mr2)(2\l]£ ]+(|ﬁﬂ|)(|§m|)81n900:| = _(|ﬁm|)(|ﬁ4m|)8in900 \\“‘—""/

FEEE R T R——

= —4mR v, =-8mvR,
v VA
= 4)24/1(6((}21{6] =8}Y{VR/G:
)
N V=l£G M, ] 2
2\ 2R,

where the negative sign suggests the final angular velocity that is clockwise, as
expected.
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’ , P ~ <
ﬂSlng conservation Ofmomentum: // \@Jm
,// \\l:'o
B j Earth R. *,
Zpl +ZFextAt _ sz i‘ M } Yo
1 ¢ om
\
[—(Bm)vO +mVO]+ 0 =—(4m)v \ . v
\ \:’//
\
:> - 2 VO - _4 A N ™o g
1

v
%
= v=—|G M,
2\ 2R,

where again, the negative sign suggests the final velocity is in the same direction
as the original direction-of-motion of the 37 mass.

C [ear[y, the conservation of momentum 1s the easier way to go here, but both are
educational.
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c.) Calculate the total mechanical energy of the system
immediately after the collision in terms of G, m, M,, and R..

E = %(41@1)V2 + (—G M. (4m))

8 2R,
As the gravitational potential energy is U = [_G N;GZ(I;LI;I))
apparently: 7
E=—-U
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Note: For this new combo-satellite to carry the new velocity el e -
in a circular orbit, its new radius would have to be: s \@\\Uo
‘l, Earth R, \‘,’
(v 2 i Me i
G Me (41?) — (4m) VneW ] 1\ ?
(I’new) \ Lew % 2Re //
( /32 ) o - -7
1( M, ]A ((1 M )\ T
2 2R 290
e 4
MM _ (4m) = (4m)| LR | g M.
(rnew ) I.new I‘new 2Rernew
\ J
\ J
GMG(41;1):G mM, 4 _ 1
(rnew ) 2 Rernew (rnew ) 2Re

This wouldn’t ﬁa}ojoen, though, as the new motion
would become elliptical looking something like:




With the new radius, the total mechanical energy V. gy s
/ m
becomes: /’ \@\\u{,
1 / Earth R: :
E — _U f ‘ Yo
2 e om
\ /
_ 1 GMe(4m) \\\ 2R, ///
= —| — N
2 (rnew) S~ _ -7
M m
=-2G—
(8R.)
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Weird stuﬁ[ to think about...
Courtesy of Mr. White

It’s the cﬁﬁérent escape speeds required for different planets

that explains why some planets have atmospheres and others
don’t. Gas molecules have speeds that depend on their
temperatures: the greater the temperature, the greater the
average speed of the molecules, and the greater the chance 1s
that they’ll have a velocity that allows them to escape the
planet.

Mercury? No atmosphere
Earth? Light molecules gone, heavier molecules remain

Jupiter? Even hydrogen can’t escape!
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