
1.)

Earth from space . . . 



CHAPTER  13:
Universal Gravitation

2.)

“Why do celestial 
objects move the way 

they do?”

• Kepler (1561-1630) 
Tycho Brahe’s 
assistant, analyzed 
celestial motion 
mathematically
• Galileo (1564-1642) 
Made celestial 
observations by 
telescope
• Newton (1642-1727) 
Developed Law of 
Universal Gravitation

courtesy of Richard White



3.)

Newton observed that there exists a force between any two masses that is 
proportional to the product of the masses and inversely proportional in some way 
to the distance between the center of masses of the bodies (he didn’t originally 
know if it was       or         or        or what).  The proportionality constant was/is 
called the universal gravitational constant G.  In polar-spherical notation, this 
attractive, radial force is denoted as:  

1
r

1
r2

1
r3

Fgrav = G
m1m2

rn
− r̂( )

To determine the power n, he made another interesting observation.  The same 
force that accelerates an object like an apple close to the surface of the earth 
accelerates the moon in its path around the earth.  Taking that path to be circular, 
and noting that it takes 27.3 days for the moon to orbit the earth once, he wrote:



4.)

G
mapplemearth

rearth( )n = mappleaapple

   ⇒    aapple = G mearth

rearth( )n

acceleration of apple using the theory:

G mmoonmearth

rto  moon( )n = mmoonamoon

   ⇒    amoon = G mearth

rto  moon( )n

ratio of two accelerations yields:

aapple

amoon

=
G mearth

rearth( )n

G mearth

rmoon( )n

   ⇒    
aapple

amoon

= rmoon

rearth

⎛
⎝⎜

⎞
⎠⎟

n

acceleration of moon using the theory:



5.)

acceleration at earth:
aapple = 9.8 m/s2

amoon =
vmoon( )2

R

       =

2πR
T

⎛
⎝⎜

⎞
⎠⎟

2

R
= 4π2R

T2

       =
4π2 3.85x108  m( )

27.3 days( ) 24 hr/day( ) 3600 sec/hr( )⎡⎣ ⎤⎦
2

                    = 2.73x10−3  m/s2

          

rmoon

rearth

⎛
⎝⎜

⎞
⎠⎟

n

= 3.85x108  m
6.38x106  m

⎛
⎝⎜

⎞
⎠⎟

n

             = 60( )n

centripetal acceleration at moon:

using calculated accelerations:

aapple

amoon

⎛
⎝⎜

⎞
⎠⎟
= rmoon

rearth

⎛
⎝⎜

⎞
⎠⎟

n

 3600( ) = 60( )n

   ⇒   n = 2

aapple
amoon

= 9.8
2.73x10−3 = 3600

using the radii:

putting everything together:

In other words:

Fgrav = G
m1m2

r2
− r̂( )

R

Note: Newton shelved this theory for several years because the accepted distance to the moon was off 
and the exponent he originally calculated was something like 1.7—not something he thought nature 
would do.



6.)

After initial experiments were done by 
Charles Coulomb, Henry Cavendish used a 
torsion balance in a vacuum to measure the 
attraction between two masses m and M to one 
another.  The calculated value of G was:

 G = 6.672x10−11N im2 / kg2

 i

M

M m

m

θ

torsion in
  wire (k)



Example 1: A 2000 kg space shuttle orbits 
the earth at a distance of 13,000 km above the 
earth’s surface.  You know:

7.)

a.) Derive an expression for, then determine the 
acceleration of the satellite in its orbit.

b.) What is the acceleration of an 
astronaut inside the orbiting 
satellite?

 

Fsatellite∑
            G mems

re + rto  orbit( )2 = msa

 ⇒  a = 6.67x10−11N i m2 /kg2( ) 5.98x1024  kg( )
6.38x106 meters+13.0x106 meters( )2

          = 1.06 m/s2

It will be the same!

	 
rearth =6.38x106meters,	G=6.67x10−11Nim2/kg2 ,
			mearth =5.98x1024kg								mastronaut =60.0	kg

vs

c.) What is her weight?

Fg = mag

   = 60 kg( ) 1.06 m/s2( )
   = 63.6 N      (around 15 pound)



Important point: Orbital motion has two masters.  There 
is Newton’s general gravitational force                    , and 
there is the centripetal acceleration            required to

8.)

d.) Derive an expression for, then determine the 
velocity the satellite must maintain to keep its orbit.

vs

 

rearth = 6.38x106 meters,  G = 6.67x10−11N i m2 /kg2,
   mearth = 5.98x1024 kg,  rto  orbit = 13.0x106 meters,  ms = 2000kg

 

Fsatellite∑
            G mems

re + rto  orbit( )2 = ms
v2

re + rto  orbit( )
⎛

⎝⎜
⎞

⎠⎟

 ⇒  v = 6.67x10−11N i m2 /kg2( ) 5.98x1024  kg( )
6.38x106 meters+13.0x106 meters( )

          = 4537 m/s

keep the body from plummeting into the celestial body it is traveling around.  
What that means is that for a given orbital radius, there is only ONE speed that 
will hold the body in orbit!

Gmems

r2
− r̂( )

vs( )2
r



9.)

vs

e.) What is the radius of a geosynchronous orbit?
A geosynchronous orbit is a circular orbit in which 
the satellite is always over the same point on the 
earth.  In other words, the satellite’s angular velocity 
is the same as the earth’s angular velocity.

We know:
vs = re + rorbit( )ωand

ωs = ωearth =
2π rad

24 hr( ) 60 min
hr

⎛
⎝⎜

⎞
⎠⎟

60 sec
min

⎛
⎝⎜

⎞
⎠⎟
= 7.27x10−5 rad / sec

 

Fsatellite :∑
               G  mems

re + rto  orbit( )2     = ms
vs

2

re + rto  orbit( )
⎛

⎝⎜
⎞

⎠⎟

                                              = ms
re + rto  orbit( )2 ω2

re + rto  orbit( )
⎛

⎝
⎜

⎞

⎠
⎟

           ⇒         re + rto  orbit( )3 = Gmc
ω2

              ⇒         rto  orbit =
Gmc

ω2( )1
3
− re

                                     =
6.67x10−11N i m2 /kg2( ) 5.98x1024  kg( )

7.27x10−5( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
3

− 6.38x106

                                ⇒         rgeo = 3.59x107  m



Kepler’s Laws

10.)

Kepler’s First (called the Law of orbits): 
Planets move in elliptical orbits with the Sun 
at one focal point.

As a consequence of data taken by Tycho
Brahe, a Danish astronomer (last of the naked-
eye celestial observers), Kepler was able to 
deduce three “laws” about planetary motion.  
They are:

Kepler’s Second (called the Law of areas):  A 
radius drawn from the Sun to any planet sweeps 
out equal areas in equal time intervals.

Kepler’s Third (called the Law of periods): The square of a planet’s period is 
proportional to the cube of its semi-major axis.



11.)

Kepler’s First (called the Law of orbits): Planets move in elliptical orbits 
with the Sun at one focal point.

Kepler generated his Laws by using observational data from Brahe.  
Each of the laws do, though, have a theoretical justification.  To wit:

Kepler’s Second (called the Law of areas):  A radius drawn from the Sun to 
any planet sweeps out equal areas in equal time intervals.

Using conservation of angular momentum and conservation of energy, it 
is possible to derive an expression for the radial position of a planet as a 
function of its angular position in the orbit (i.e.,        ).  The derived 
expression is that of an ellipse.

r θ( )

The derivable expression for a planet’s area-sweep with time (i.e., dA/dt) 
looks just like the derived expression for a planet’s angular momentum 
(give or take a constant).  As the angular momentum of a torque-free body 
is constant, dA/dt must also be constant.



12.)

Example 2: Derive an expression for the 
period of motion of a planet of mass       as it orbits 
the center of mass of a two planet system, where 
the mass of the second planet is      (see sketch).

Fradial :∑
         G m1m2

r1 + r2( )2 = m1
v1

2

r1

⎛
⎝⎜

⎞
⎠⎟

r1 r2
m2m1

v1 =
2πr1
T

The velocity in 
terms of the 
period is:

G m1m2

r1 + r2( )2 = m1

2πr1
T( )2

r1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   ⇒   G m2

r1 + r2( )2 = 4π2r1
2

r1T
2

   ⇒  T2 = 4π2

Gm2

⎛
⎝⎜

⎞
⎠⎟

r1 r1 + r2( )2

Substituting this into 
our relationship 
yields:

m1

m2

This is a Newton’s Second Law problem.  
Summing the forces on      :m1



 ⇒    T2 = 4π2

Gm2

⎛
⎝⎜

⎞
⎠⎟

r1
3

Notice: If we let the planet become very small so 
that                  , then            , the system’s center of 
mass migrates toward the center of

13.)

r1 r2 → 0

m2m1

m2 >>m1 r2 → 0

This is Kepler’s Third Law, which is to say, the square of the period is 
proportional to the cube of the radius (or semi-major axis).

Note that of Kepler’s three laws, this is the only one that is an approximation.

T2 = 4π2

Gm2

⎛
⎝⎜

⎞
⎠⎟
r1 r1 + r2( )2

r1 r1 + r2( )2 ⇒  r1
3

0
>>m1

m2 and we can 
write:                                   



L1∑ + τextΔt∑ = L2∑
  I1ω1 +       0     =  I2ω2

  ⇒  m1ra
2( ) v1

ra

⎛
⎝⎜

⎞
⎠⎟
= m1rp

2( ) v2

rp

⎛

⎝⎜
⎞

⎠⎟

      ⇒    v2 =
ra

rp

v1

Conservation of Angular Momentum

14.)

Example 3:  If a planet moving in an 
elliptical orbit has a velocity at its farthest 
point (its aphelion) of     , what is its velocity 
at its closest point (its perihelion)?  Assume 
you know the distances identified on the 
sketch.)

Because gravitational forces are RADIAL, 
they don’t produce torques.  With no external torques 
acting, planetary motion adheres to conservation of 
angular momentum.  With that in mind:

m2m1

Fg = G
m1m2

r2

m2m1

v1

v2
ra rp

v1

This is a 
conservation of 
angular 
momentum 
problem:

 

L1∑ + τextΔt∑ = L2∑
 !r1x
!p1 +       0     =  !r2x

!p2

  ⇒  m1v1( )ra = m1v2( )rp

      ⇒    v2 =
ra

rp

v1

OR



An alternate view is to think of a mass as creating 
a disturbance in the region around it (called it a 
gravitational field), and define it as the amount of force 
per unit mass AVAILABLE at a point due to the presence 
of that field-producing mass.  Such quantities would be 
field-producing, force-related, but would be independent 
of any mass feeling the affect.  That is, they would exist 
whether a mass resided at a point of interest or not.  

Point of Order about FIELDS

15.)

For all sorts of reasons, Newton didn’t really like his theory of gravity. . . 
even though it does do a great job of predicting how the real world acts (we put a 
man on the moon using it).  First, why should two objects be attracted to one 
another simply by virtue of each having mass (that’s what his universal 
gravitational force equation                            suggests).  And second, contact forces 
makes sense (push on something, it pushes back), but forces acting at a distance . . . 
how does that work?

Fon m1
= Gm1m2

r2

The math for the gravitational field due to any mass would look like: 

Not so important here, but the idea will become more important in E&M.

Fg

m2

=

G
mfld producingm2( )

r2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

     = G
r2

⎛
⎝⎜

⎞
⎠⎟ mfld producing



Gravity Near and Far

16.)

Close to the surface of the earth, the magnitude of the force on a mass      
due to the presence of the earth’s mass      is        

Fm1 = G
mem1

re
2

m1

me

where denominator is the square of the distance between the center of mass of the 
two objects or, in this case, the radius of the earth.

Putting numbers into this expression for G, the mass and radius of the 
earth, that relationship becomes: 

Fm1
= 9.8 m/s2( )m1 = m1g

with a potential energy function that we’ve derived as:

Ugrav near earth = m1gy



17.)

Far from the earth (or any celestial body), the 
magnitude of the force on a mass      due to the 
presence of the earth’s mass      is        

Fm1 = G
m1me

r2

m1

me

where denominator is the square of the distance between the center of mass of the 
two objects which, in this case, is NOT the radius of the planet.

Noting that there is a 
preferred F = 0 point at 
infinity, which will be our 
zero potential energy point, 
the potential energy function 
for this far-field gravitational 
force derives as: 

m1r

me

ΔU = −
!
F i d!r∫

   ⇒    U r( )−U r = ∞( ) = − −Gm1m2

r2
!r⎛

⎝⎜
⎞
⎠⎟r=∞

r

∫ i drr̂( )

            ⇒    U r( ) = − Gm1m2

r2
⎛
⎝⎜

⎞
⎠⎟ dr cos 180

o( )
r=∞

r

∫
                             = −Gm1m2

1
r r=∞

r⎛
⎝⎜

⎞
⎠⎟

                             = − G m1m2

r
−G m1m2

∞
⎛
⎝⎜

⎞
⎠⎟

                             = −G m1me

r

≡ 0

−1

0



 

   KE1∑      +      U1∑      + Wext∑ = KE2∑ +     U2∑
1
2

m1 vescape( )2
+ −G m1me

re

⎛
⎝⎜

⎞
⎠⎟
+      0    =       0   + −G m1me

∞
⎛
⎝⎜

⎞
⎠⎟

                   ⇒            vescape = 2G me

re

    ⇒    vescape = 2 6.67x10−11N i m2 /kg2( ) 5.98x1024  kg( )
6.38x106  m( )

                     = 1.12x104 m/s          (this is approximately 7 mi/sec)

This is an energy problem.  Realizing that for an object to become completely 
free of the earth, it must move to infinity, and remembering that the 
gravitational potential energy for far-field situations is not zero at the earth’s 
surface, conservation of energy yields:

18.)

Example 4: Derive an expression for the 
escape velocity required for a mass to free itself 
from the earth’s gravitational field. earth's surface

vescape

0



 

KE1∑ +          U1∑            + Wext∑ = KE2∑ +     U2∑
     0    + −G mame

re +10,000( )
⎛

⎝⎜
⎞

⎠⎟
+      0    = 1

2
mav

2 + −G mame

re

⎛
⎝⎜

⎞
⎠⎟

                   ⇒            v = 2Gme
1
re

− 1
re +10,000( )

⎛

⎝⎜
⎞

⎠⎟

    ⇒    vescape = 2 6.67x10−11N i m2 /kg2( ) 5.98x1024  kg( ) 1
6.38x106  m( ) −

1
6.38x106 +1x104( )m

⎛

⎝
⎜

⎞

⎠
⎟

                     = 442.4 m/s          

Again, a classic conservation of energy problem.  

19.)

Example 5: An apple is released from a height 
of 10,000 meters above the earth’s surface.  How 
fast is it moving just before it hits the earth, 
assuming no air friction.

earth's surface

v

Note that using mgy as your potential energy function, the velocity comes out 
to be 442.7 m/s, so even at 10,000 meters up, the mgy approximation is a fairly 
good one.



Potential Energy of Multiple Mass Systems

20.)

It takes no energy to draw a mass       from infinity 
to some position in space.  Once there, that mass will 
produce a potential energy field around that point.

mA

The amount of energy required to draw a second mass       in from infinity to a 
distance       units for the first mass is equal to the amount of work you need to put 
into the system to effect the deed.  This will be minus the amount of energy the 
field does (assuming you come in with constant velocity).  As the amount of work 
the field does is equal to           , where U is the fields potential energy function 
equal to                    , the amount of work you must do will be           .  That is:

rAB

mA

mB

−ΔUA

mB

rAB

Wyou = +ΔUAB = Ufinal,AB − Uinitial,AB( )
       = −G mAmB

rAB

⎛
⎝⎜

⎞
⎠⎟
−G mAmB

∞
⎡

⎣
⎢

⎤

⎦
⎥ = −G mAmB

rAB

−GmAmB
r +ΔUA

(That’s right, you need to apply a force opposite the direction of motion, hence 
the negative work, to keep the body from accelerating as it comes in.)

0



21.)

The amount of energy required to draw a third mass      
in to a distance       from       and      from       will equal 
the amount of work you have to do to bring the mass in 
from infinity.  That will be:

mA

mC

rBC

rAC
Wyou = +ΔUAC + ΔUBC = Ufinal,AC − Uinitial,AC( ) + Ufinal,BC − Uinitial,BC( )
      = −G mAmC

rAC

⎛
⎝⎜

⎞
⎠⎟
−G mAmC

∞
⎡

⎣
⎢

⎤

⎦
⎥ + −G mBmC

rBC

⎛
⎝⎜

⎞
⎠⎟
−G mBmC

∞
⎡

⎣
⎢

⎤

⎦
⎥ = −G mAmC

rAC

−G mBmC

rBC

Bottom line: Each added mass must interact with all the masses already present.

mC
rAC rBC mB

Adding this to the original bit of work done to bring in the second piece, and we 
get the potential energy wrapped up in the system as:

U = −GmAmB

rAB
+ −GmAmC

rAC
−GmBmC

rBC

⎛
⎝⎜

⎞
⎠⎟

0

mA

mB

rAB

0



Total Energy in an Orbiting System 
Where the Orbit is Eliptical

22.)

Example 6: Assuming an eliptical orbit, 
what is the total mechanical energy wrapped up 
in an orbiting satellite.

M
m

Etot = KE∑  +   U1∑
     = 1

2
mv2 + −G mM

r
⎛
⎝⎜

⎞
⎠⎟

v

r



Total Energy in an Orbiting System 
Where the Orbit is Circular

22.)

Example 7: Assuming an eliptical orbit, 
what is the total mechanical energy wrapped up 
in an orbiting satellite.

M
m

Etot = KE∑  +   U1∑
     = 1

2
mv2 + −G mM

r
⎛
⎝⎜

⎞
⎠⎟

v

r

To relate the velocity, look at what Newton’s Second has to say about the system:

Fradial :∑
         G mM

r2 = m v2

r
⎛
⎝⎜

⎞
⎠⎟

     ⇒    v2 = G M
r



23.)

M
m

Etot =
1
2

mv2 + −G mM
r

⎛
⎝⎜

⎞
⎠⎟

     = 1
2

m G M
r

⎛
⎝⎜

⎞
⎠⎟ + −G mM

r
⎛
⎝⎜

⎞
⎠⎟

     = − 1
2

m G M
r

⎛
⎝⎜

⎞
⎠⎟

     = 1
2

U

v

r

Combining:

Bottom line: The total amount of mechanical energy wrapped up in circular 
orbital motion is equal to half the potential energy in the system.  This 
relationship is still good with elliptical orbits if you make the r term into the semi-
major axis.



this situation and the situation in which all of the mass is located at the system’s
center of mass. (as the math yields the same relationship).  For the ring of mass 
M shown, this is:

A Particle’s Interaction with a Larger Mass

24.)

Case 1 (spherical shell with particle outside): M

The net force on m is due to all the bits of mass inside 
the sphere of radius R.  Newton created Calculus to 
justify the claim that there is no difference between

m
Fg

 

!
Fg = G mM

r2 − r̂( )        for r ≥ R

Case 2 (spherical shell with particle inside):

Inside the ring, the net force on the mass m due to all the 
bits of mass encompassed in the ring will, because gravity 
is an inverse square function, vectorially add to zero, so:

M

m

 
!
Fg = 0       for r ≤ R

R



25.)

Case 3 (spherical solid with particle outside): M

The net force on the mass m is, again, due to all the bits 
of mass encompassed in the ring of radius R.  And just as 
before, this will equal:

m
Fg

 

!
Fg = G mM

r2 − r̂( )        for r ≥ R

Case 4 (spherical solid with particle inside):

This is a little trickier. Think of the mass as sitting on a 
sphere of radius r. From Case 2, all the mass outside that 
radius provides no net gravitational force, whereas from 
Cases 1 and 3, the gravitational force from the mass inside 
that radius will be as though all of that mass was located at 
the sphere’s center of mass.  In other words:

M
  no net effect
generated from 
 mass outside r

 

!
Fg = G

m dM
r=0

r

∫
r2 − r̂( )        for r ≥ R

where            is the fraction of the sphere’s mass inside the sphere of radius r.  dM
r=0

r

∫

r
m
Fg



Assuming the mass is uniformly distributed, the volume mass density function 
(mass per unit volume)    can be written in two ways:

26.)

The mass inside r can be determine in two ways.  One only works if the 
mass if homogeneous.  The other uses differentially thin spherical shells and 
works whether the mass distribution is uniform or not.  We’ll do the easy way 
first, then I’ll show you the more complex approach.

ρ = total mass
total volume

= M
4
3
πR3⎛

⎝⎜
⎞
⎠⎟

 

!
Fg = Gm

minside( )
r2 − r̂( )        

   = Gm

r3

R3 M⎛
⎝⎜

⎞
⎠⎟

r2 − r̂( ) = G mM
R3

⎛
⎝⎜

⎞
⎠⎟ r − r̂( )        for r ≤ R

ρ

ρ = mass inside r
volume inside r

= minside

4
3
πr3⎛

⎝⎜
⎞
⎠⎟

and

Equating: M
4
3
πR3⎛

⎝⎜
⎞
⎠⎟
= minside

4
3
πr3⎛

⎝⎜
⎞
⎠⎟

  ⇒   minside =
r3

R3 M

So:



ρ = dm
dV

= dminside

4πa2( )da
  ⇒   dm = ρ 4πa2( )da

 

!
Fg = Gm

dm
r=0

r

∫
r2

    = Gm
ρ 4πa2( )da

r=0

r

∫
r2 = Gm 3M

4πR3
⎛
⎝⎜

⎞
⎠⎟ 4π( )

a2 da
a=0

r

∫
r2

     = Gm 3M
R3

⎛
⎝⎜

⎞
⎠⎟

1
r2

⎛
⎝⎜

⎞
⎠⎟

a3

3 a=0
r⎛

⎝⎜
⎞
⎠⎟
= Gm 3M

R3
⎛
⎝⎜

⎞
⎠⎟

1
r2

⎛
⎝⎜

⎞
⎠⎟

r3

3
⎛
⎝⎜

⎞
⎠⎟
= Gm M

R3
⎛
⎝⎜

⎞
⎠⎟ r       

In any case, the more exotic way to do this would 
be to create a differentially thin spherical shell, 
determine the mass in it, then integrate to 
determine the total mass inside.  

27.)

It shouldn’t be terribly surprising that the force would be a function of r.  
You would expect the force to be zero at the sphere’s center (i.e., at r = 0), which 
this function satisfies (whereas a       function wouldn’t).

ρ = total mass
total volume

= M
4
3
πR3⎛

⎝⎜
⎞
⎠⎟

           = 3M
4πR3

So:

The differential volume is the surface area (                ) of a 
spherical shell times the differential thickness da, which 
means:  

1
r2

dS = 4πa2

da

a



 

!
Fg = Gm M

R3
⎛
⎝⎜

⎞
⎠⎟ r      for r < R

28.)

Graphs
Magnitude of force on particle 

due to a spherical shell:
Magnitude of force on 

particle due to a solid shell:

 

!
Fg = G mM

r2        for r ≥ R
 

!
Fg = G mM

r2       for r ≥ R

 
!
Fg = 0             for r < R

 

!
Fg = GmM

R2
 

!
Fg = GmM

R2

M M



AP Example 7:  Two satellites of masses 
m and 3m, respectively, are in the same circular 
orbit about the Earth's center, as shown in the 
diagram above. The Earth has mass Me and 
radius Re.   In this orbit, which has a radius of 
2Re, the satellites initially move with the same 
orbital speed vo but in opposite directions.

Fradial :∑
         G Mem1

2Re( )2 = m1
vo

2

2Re

⎛
⎝⎜

⎞
⎠⎟

    ⇒     vo = G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2

a.) Derive an expression for the orbital speed vo
of the satellites in terms of G, Me, and Re.

29.)



b.)  Assume that the satellites collide 
head-on and stick together. In terms of vo,
determine the speed v of the combination 
immediately after the collision.

You should be able to use either 
conservation of momentum (no external 
impulses acting) or conservation of 
angular momentum (no external torque-
related impulses).  We’ll start with
conservation of angular momentum, and 
because these are both point masses (and 
to be a little exotic), we’ll calculate the 
angular momentum using both      and the 
cross product       :

Iω
 
!rx!p

vo = G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2

Noting that:

30.)



 

           L1∑           + τextΔt∑ =  L2∑
−I3mω3m + !rmx!pm[ ]+       0     = −!r4mx!p4m

− mr2( ) vo

2Re

⎛
⎝⎜

⎞
⎠⎟
+ !rm( ) !pm( )sin90o⎡

⎣
⎢

⎤

⎦
⎥ = − !r4m( ) !p4m( )sin90o

− 3m( ) 2Re( )2( ) vo

2Re

⎛
⎝⎜

⎞
⎠⎟
+ 2Re( ) mvo( )sin90o⎡

⎣
⎢

⎤

⎦
⎥ = − 2Re( ) 4mv( )sin90o

        ⇒                − 4mRevo = −8mvRe

           ⇒       4mRe G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2

= 8mvRe

                  ⇒           v = 1
2

G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2

We can write:

00

where the negative sign suggests the final angular velocity that is clockwise, as 
expected.

31.)



           p1∑         + FextΔt∑ =   p2∑
− 3m( )vo + mv0⎡⎣ ⎤⎦ +       0     = − 4m( )v

     ⇒       − 2mvo = −4mv     

       ⇒    v = 1
2

G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2

  

Using conservation of momentum:

where again, the negative sign suggests the final velocity is in the same direction 
as the original direction-of-motion of the 3m mass.

Clearly, the conservation of momentum is the easier way to go here, but both are 
educational.

32.)



c.)  Calculate the total mechanical energy of the system 
immediately after the collision in terms of G, m, Me, and Re.  

33.)

E = 1
2

4m( )v2 + −G Me 4m( )
2Re( )

⎛

⎝⎜
⎞

⎠⎟

  = 1
2

4m( ) 1
2

G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

+ −G Me 4m( )
2Re( )

⎛

⎝⎜
⎞

⎠⎟

  = 1
8

G Me 4m( )
2Re

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+ −G Me 4m( )

2Re( )
⎛

⎝⎜
⎞

⎠⎟

  = − 7
8

G Me 4m( )
2Re

⎛
⎝⎜

⎞
⎠⎟

As the gravitational potential energy is U = −GMe 4m( )
2Re( )

⎛

⎝⎜
⎞

⎠⎟
apparently:

E = 7
8
U



Note: For this new combo-satellite to carry the new velocity 
in a circular orbit, its new radius would have to be:

33.)

This wouldn’t happen, though, as the new motion 
would become elliptical looking something like:

G Me 4m( )
rnew( )2 = 4m( ) vnew

2

rnew

⎛
⎝⎜

⎞
⎠⎟

G Me 4m( )
rnew( )2 = 4m( )

1
2

G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

1
2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

rnew

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= 4m( )
1
4

G Me

2Re

⎛
⎝⎜

⎞
⎠⎟

rnew

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= G mMe

2Rernew

G Me 4m( )
rnew( )2 = G mMe

2Rernew

   ⇒    4( )
rnew( ) =

1
2Re

  ⇒    rnew = 8Re



With the new radius, the total mechanical energy 
becomes:

34.)

E = 1
2

U

  = 1
2

−G Me 4m( )
rnew( )

⎛

⎝⎜
⎞

⎠⎟

  = −2G Mem
8Re( )



Weird stuff to think about...
Courtesy of Mr. White

It’s the different escape speeds required for different planets 
that explains why some planets have atmospheres and others 
don’t. Gas molecules have speeds that depend on their 
temperatures: the greater the temperature, the greater the 
average speed of the molecules, and the greater the chance is 
that they’ll have a velocity that allows them to escape the 
planet.

Mercury? No atmosphere

Earth? Light molecules gone, heavier molecules remain

Jupiter? Even hydrogen can’t escape!

35.)


