
CHAPTER  12:
Rigid Bodies and Static Equilibrium

1.) 

This chapter is amazingly out of place.  Back when you were learning 
about torques and Newton’s Second Law, it would have made sense to do some 
problems that required you to calculate torque quantities without having to deal 
with angular accelerations (i.e., problems in which the right side of the N.S.L. 
equation was zero).  That is exactly what rigid body/static equilibrium problems 
require.  In short, we should have dealt with the material in this chapter two 
chapters ago (I have no idea what the authors of our book were thinking).  Having 
fomented that rant: 

For a body to be in static equilibrium, the sum of the forces on the body in 
any direction must add to zero (that is, it must not be accelerating in those 
directions), and the sum of the torques about any point on the body must add 
to zero (no angular acceleration). 
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Formally defined, the MAGNITUDE of the torque      generated by the 
force on the wrench is mathematically equal to: 

2.) 

As can be seen in the graphic, the perpendicular component of the force is equal to: 

where    is defined as the angle between the line of the force and the line of the 
position vector    .  (This definition is going to be important later.)  
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This means the torque can also be written as: 
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A Recap of Torque Calculations
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F = 5 N

Three ways to calculate a torque using polar information: 

θ = 37o

3.) 

Definition approach: 
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   = 2 m( ) 5 N( )sin 37o

   = 6 N i m
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F-perpendicular approach: 
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   = 3 N( ) 2 m( )
   = 6 N i m

r-perpendicular approach: 
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Why is the r-perpendicular approach so powerful (and mostly preferred)? 

4.) 

Can you find the shortest distance between a point and a line?  If so, you can 
find     for any situation.  Called the moment arm, that is what     is, the shortest 
distance between the point about which you are taking the torque and the line of 
the force.  With it,  
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Example: A ladder sits against a wall.  Using the     
approach, determine the torque generated by the 
wall’s normal force N about the ladder’s contact 
with the floor. 

r⊥ line of the force

θ
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1. Identify the position vector    for the normal force.  
!r

 
!r2. Identify the line of N.   

N

3. Identify shortest distance between floor contact 
and line of N, then express in terms of     .  
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!r sinθ( )

4. Determine the torque with 
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Example 1: A standard rigid body problem: Derive expressions 
for all the forces acting at the floor and wall of an upright, stationary 
ladder of length L and mass       against a frictionless wall (that is, a 
wall that provides no vertical force component) if a man of mass  
stands a distance 3L/4 from the floor. 

5.) 

θ

f.b.d. 

Fx :∑
     N − H = mLax

       ⇒    N = H

N

mLg

H
V Yes, H is friction and V is a normal, but 

conventionally, this is the way they are denoted. 

Fy :∑
     V− mLg − mmg = mLax

       ⇒   V = mLg + mmg

Need one more equation.  Where to get it?  By summing 
torques about ANY point and putting the sum equal to zero! 
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To get a third equation, you could sum the torques ABOUT ANY 
POINT and put that sum equal to zero (nothing is angularly accelerating).  
To start with, we’ll sum about the ladder’s center of mass. 
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Γcm :∑
                 τN              + τmLg +         τmmg          +         τH      +          τV      = 0
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Justification for for normal force N using definition 
approach: 
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!r = L 2

φ = 180o-θ

θ
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N motivates the ladder to angular accelerate about 
the c. of m. counterclockwise, so the torque is 
positive (as prescribed by the right-hand rule). 

line of

line of N
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7.) 

Justification for for vertical force V using F-perpendicular 
approach: 

 

τV = !r F⊥
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2( ) Vcosθ( )
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V motivates the ladder to angular accelerate about 
the c. of m. clockwise, so the torque is negative (as 
prescribed by the right-hand rule). 

Justification for for horizontal force H using r-
perpendicular approach (shortest distance between c. 
of m. and line of H): 

 

τH = r⊥
!
F

     = L
2sinθ( )H

H motivates the ladder to angular accelerate about 
the c. of m. counterclockwise, so the torque is 
positive (as prescribed by the right-hand rule). 
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Point of order: When a force acts through the point about 
which a torque is taken, its torque about that point will be ZERO.  
Summing the torques about the center of mass, then, eliminated the 
torque due to         .  If we had been clever, though, we’d have 
summed the torques about contact point at the floor.  In doing so, 
the torque due to both H and V would have been zero, which would 
have left us with only one unknown, the one we were looking to 
determine, N.  Using the r-perpendicular approach on everything, 
that torque summation yields:  

8.) 

N
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Γ floor :∑
         τN      +           τmLg       +           τmmg         + τH + τV = 0
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9.) 

Justification for for the gravitational force mg on the ladder using 
r-perpendicular approach (shortest distance between contact point 
and line of mg): 

 

τmg = r⊥
!
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θ
mg motivates the ladder to angularly accelerate 
about the floor clockwise, so the torque is negative 
(as prescribed by the right-hand rule). 

Justification for for normal force N using r-perpendicular 
approach (shortest distance between floor and line of N): 

 

τN = r⊥
!
F

    = Lsinθ( )N
N motivates the ladder to angular accelerate about 
the floor counterclockwise, so the torque is positive 
(as prescribed by the right-hand rule). 
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a.) Draw a f.b.d. identifying all the forces acting on the beam. 

10.) 

mb,mh,L, g, θ, φ and Icm,beam = 1
12

mbL
2

T

θ

φ
pin

Example 9: A beam of mass       and length 
L is pinned at an angle     a quarter of the way up the 
beam (i.e., at L/4).  A hanging mass       is attached at 
the end.  Tension in a rope three-quarters of the way 
from the end keeps it stationary.  What is known is: 
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b.) Derive an expression for the tension in the line. 

φ

T
The clever thing to do here is to sum the 
torques about the pin.  That will eliminate 
both H and V leaving you with only one 
unknown, T.  What’s even more clever is to 
use the F-perpendicular approach on T as 
that component is REALLY easy to 
determine (given    ). φ
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For T: 
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11.) 
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mb,mh,L, g, θ, φ and Icm,beam = 1
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Example 3: A handle is attached to the 
central axis of a cylinder of radius R and mass m.  
The cylinder is rolled along a flat surface until it 
reaches a curb of height R/3.  You may assume 
you know: 

m, R, g, and Icyl,cm = 1
2

mR2

a.) Derive an expression for the minimum force F the handle must apply to lift 
the cylinder over the curb if it is to be kept in the horizontal.   

12.) 

handle

mg
H

V

y

x

f.b.d. 

F

The farther the cylinder gets lifted up over the 
curb, the less force will be required to 
continue the motion, so the maximum force 
will be required when the cylinder just lifts off 
the flat surface.  At that point, the normal 
force at the surface will go to zero, there will 
be a horizontal and vertical force at the curb 
and the f.b.d. for the situation looks like: 

F



m, R, g, and Icyl,cm = 1
2

mR2

forces in x-direction: 

13.) 

mg
H

V

y

x
F

That leaves us with three unknowns, V, H, and F, and the need for a third equation. 
That third comes from summing the torques about any point we choose. 

Fx :∑
      F − H = max
       ⇒    F = H

forces in y-direction: 

Fy :∑
      V− mg = may
       ⇒    V = mg

The clever choice is to sum about the contact point between the curb and the 
cylinder.  In doing so, we eliminate H and V,  and in doing so come to a 
horrible realization.  We could have solved this problem without ever 
summing the forces if we had just start with this step. 

Most people start a problem like this by summing forces, which we can do. 

0

0



m, R, g, and Icyl,cm = 1
2

mR2

14.) 

mg

H

V

F

Noting from the geometry that the angle is: 

τcurb :∑
        F Rsinθ( )− mg R cosθ( ) = Icmα

       ⇒    F = mgcosθ
sinθ

So 

R
Rsinθ

Rcosθ

θ

θ

R
3

torques about the curb 
       (using r-perpendicular approach): 

R
3

R
⇒    sinθ =

R
3

R
   ⇒    θ = 19.47o

F =
mgcos 19.47o( )
sin 19.47o( ) = .35mg

θ

0



Example 3: Show that the effect of all 
the bits of mass along a beam are the same as 
thinking of all the mass centered at the beam’s 
center of mass.  That is, show that the torque 
about the pin is the same for both cases.  Known 
is m, L, and g.                     

Torque, assuming all the mass is centered at the beam’s center of mass: 

15.) 

mg

H
V

But what’s really happening? 

τpin :∑
      − mg L

2
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Identify an arbitrary bit of mass dm at an arbitrary position x. 
As before, the torque due to H and V about the pin is zero. 

16.) 

Tiny bits of mass all along the beam feel the effect of gravity, bearing down on the 
beam.  To justify our assumption, we need to determine how much torque each of 
those individual bits generate, then sum all of those differential torques to see if 
their magnitude comes out to be mg(L/2). 
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Fg = dm( )g

The assumption is a good one! 

dm = λdx = m
L( )dx

Define the differential gravitational force associated with dm, then do torque calc. 


