
1.)

Change your orientation, you change your motion . . . 
(courtesy of Yulia Lipnitskaya



A Little Non-AP Tom-Foolery

A wheel suspended from the ceiling is held motionless 
in the position shown. 

What happens when the wheel is released?

Now the same wheel is made to spin before 
it is released – will anything change?

It flops down . . . 

It doesn’t flops down . . . rather, it stays upright 
and begins to precess about its hold-point . . .  



In the same vein:

As demonstrated in class, a force quickly 
applying a torque to the pinned axle of a 
rotating wheel will not motivate the wheel to 
follow the direction of the applied force.  
Instead, it will jerk the wheel to the right or 
left, depending upon the direction of the 
wheel’s rotation.

pinned

!
F

By the end of this unit, you will have the tools to predict that this should happen!

ω



The Island Series:

2.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  You are on a street walking a bicycle toward a curb.  You 
want to lift the bike by its seat up and over the curb without having the front tire 
flopping around as you do it.  Your task is to divine a maneuver that will insure 
the wheel stays straight.



Just before you get to the curb, 
accelerate the bike so the front wheel is 
rotating as fast as possible.  The front 
wheel’s large angular momentum vector,
directed along the wheel’s axle, will keep 
the wheel orientated as set.  That is, as long 
as there are no external torques acting, the 
wheel will keep its orientation just as a 
gyroscope keeps its.

Solution to Island Problem

3.)

angular 
momentum

v



In the same sense, if you want to stop an object’s rotational motion in a 
given amount of time, the size of torque required to make the stop will be governed 
by two parameters: a relative measure of the body’s resistance to changing its 
rotational motion (i.e., it’s moment of inertia) and its angular velocity.  From this 
we define ANGULAR MOMENTUM (            ).

CHAPTER  11:
Angular Momentum

4.)

We began the Momentum Chapter with an observation.  If you want to stop an 
object in a given amount of time, the size of force required to make the stop will be 
governed by two parameters: the mass of the object (i.e., a relative measure of the 
body’s resistance to changing its motion) and its velocity.  From that observation, 
the idea of MOMENTUM ( ) was born. 

!p = m!v

 
!
L = I !ω

And just as we developed theory that led us to relationships between 
momentum and force through impulse, and to the conservation of momentum, all of 
those avenues can be followed in an exact parallel in the world of rotation.



5.)

Summary (with new stuff in red)

x,  v,  a

translational world rotational world

 

!
Fnet =

d!p
dt

  ⇒   
!
Fnetdt = d!p

   ⇒    
!
FnetΔt = Δ!p

p1,x + Fext,xΔt = p2,x∑∑∑ L1 + ΓextΔt = L2∑∑∑

 

!
τnet =

d
!
L

dt
  ⇒   !τnetdt = d

!
L

   ⇒    !τnetΔt = Δ
!
L

translational parameters:

conservation of energy

Newton’s Second Law:

rotational parameters: θ,  ω,  α

Fnet,x = max Newton’s Second Law: τnet = Iα
momentum: px = mvx angular momentum: L = Iω

(or for a point mass about a point):

force:  
!
F torque:  

!
τF =
!rx
!
F

 
!
L = !rx!p

impulse: angular 
impulse:

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
conservation of momentum

conservation of energy

conservation of angular momentum



Angular Momentum: There’s a lot here.  To make life easier, we are 
going to go after these ideas in pieces.

6.)

Example 1: A point mass m moves with 
velocity v in a circular path of radius R.  
Determine its angular momentum using:

a.) Translational parameters:

b.) Rotational parameters:

Note: the direction of the angular momentum is perpendicular to the plane of 
the motion ( direction), as would be expected of a counterclockwise rotation.+k̂

Ipt  mass = mR2

ω = vR

   = R( ) mv( )sin90o

   = mvR

 
!
L = !r x !p

L = Iω

  = mR2( ) v
R

⎛
⎝⎜

⎞
⎠⎟

  = mvR

 
!
L  

!
ω

R m
v•

Note the direction of the cross product!
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Example 2: What is the magnitude
and direction of the angular momentum, 
relative to the origin, for a 2 kg particle 
moving at constant velocity                             
at the instant it is at                         ?

Evaluating a cross product when given vectors in unit vector notation requires 
matrix manipulation (think back to torque calculations).  Noting that the 
momentum is

 
!r = 2î −1ĵ( )m 

!v = 1î + 2 ĵ( )m/s

 
!
L = !r x !p

 

!rx m!v( ) =
î ĵ k̂
2 −1 0
2 4 0

î
2
2

ĵ
−1
4

 
m!v = 2 1î + 2 ĵ( ) = 2î + 4 ĵ( )m/s

We can write:

	 ⇒ 			 8− −2( )( )k̂ = 10k̂( )kg im2/s

 
!r = 2î −1ĵ( )m

 
!v = 1î + 2 ĵ( )m/s−1

2 4

3

5
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Example 3: Our 2 kg particle (the 
one moving at constant velocity                             
when at                          at t = 0), what is 
its angular momentum at t = 3 seconds?

Using kinematics, at t = 3 seconds, the body’s 
position will be:

y

x

 
!r = 2î −1ĵ( )m  

!v = 1î + 2 ĵ( )m/s

 

!rx m!v( ) =
î ĵ k̂
5 5 0
2 4 0

î
5
2

ĵ
5
4

Momentum is still                                        , so

		 ⇒ 			 20− 10( )( )k̂ = 10k̂( )kg im2/s

 

!r2 =
!r1 +
!vΔt

   = 2î −1ĵ( ) + 1î + 2 ĵ( ) 3 sec( )
   = 5î + 5 ĵ( )

m!v = 2î + 4 ĵ( )kg im/s

 
!r2 = 5î + 5 ĵ( )m

after 3 seconds of constant velocity

1

−1

3

2 4

5



= mv(b) 

!
L = !r  x !p
    = r2 (mv)sinθ2
    = mv(r2 sinθ2 )

= mv b( ) 

!
L = !r  x !p
    = r1(mv)sinθ1
    = mv(r1 sinθ1)

9.)

From this, a HUGE observation: Objects moving in a straight line HAVE 
angular momentum, and the angular momentum is CONSTANT!

This seemingly insane bit of amusement is actually grounded in intuitively sound 
reasoning.  To see how, consider the simplest motion possible, a mass moving with 
constant velocity parallel to the x-axis.  How does the angular momentum 
calculate out at several points in that case?

θ1
r1 sinθ1 = b

r1
θ1

θ2
r2 sinθ2 = b

θ2r2

Same angular momentum! But how can a body moving STRAIGHT have 
angular momentum?

mv mv

A little bit later . . . 



p⊥

Consider a body moving in circular motion.  Its angular momentum will equal:     

θ

 

L = !r  x !p
    = p⊥r

p⊥

pradialθ

 
!r

p = mvθwhere       is the body’s momentum.  This 
momentum will be perpendicular to the 
position vector and tangent to the path.  
Nobody would argue that this body’s 
motion was without angular momentum, as 
its motion is circular!

p⊥

Now consider a particle moving parallel to the x-axis with momentum mv, as 
shown in the sketch.  

10.)

In other words, 
one of its components will be exactly like the momentum involved in the object 
that was executing a pure rotation, that had angular momentum.  Conclusion, 
this body, moving in a straight line, will also have angular momentum
(assuming its velocity vector doesn’t go thru the reference point).   

 
!r  p⊥

It will have a momentum component that is radial and outward from the origin, 
and a tangential component (     ) that is perpendicular to the .  



If we did a rotational analogue to that with two rotating objects interacting with 
an external torque acting in the mix, acknowledging that everything would be 
happening in “one dimension” (i.e., along the                   ), we could rearrange the 
impulse relationships likewise yielding:

Conservation of Angular Momentum

11.)

Remember how we proceeded through derivation of the conservation of 
momentum (start with the impulse relationship, apply it to two bodies that collide
with one another where one has an external force via a jet pack applied to it, add the 
impulse relationships written for each body over the course of the collision, then 
leave the external impulse terms on the lefts side of the equation accompanied by 
the beginning of the interval variables with the end of the interval variables on the 
right side of the equation).  

This relationship essentially says that as long as there are not external 
torque-related impulses acting, the angular momentum of a system will not change 
over time.  This is the conservation of angular momentum theorem.

L1 + ΓextΔt = L2∑∑∑

k̂-direction
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Example 4: An ice skater with arms out 
has an angular speed of      and a moment of 
inertia   .  She pulls her arms in.

a.) What happens to her moment of inertia 
as she pulls her arms in? I1 I2

ω1

II

(it decreases)

b.) What is her new angular momentum?
(no external torques, so it doesn’t change)

c.) What was her new angular speed?

There are no external torques acting on 
the woman, so conservation of angular 
momentum yields:

L1 + ΓextΔt = L2∑∑∑
 I1ω1   +       0       =  I2ω2

       ⇒        ω2 =  I1ω1

 I2

0

before after

. . . And as           , her angular velocity increases.I2 < I1



But             , so                and mechanical energy is NOT conserved.  This should 
not be a surprise.  When the moment of inertia diminishes and angular velocity 
gets proportionally LARGER due to conservation of angular momentum, KE must 
go UP as it is governed by velocity (remember,               ). 13.)

Example 4 (cont’) : An ice skater with arms out 
has an angular speed of      and a moment of 
inertia   .  She pulls her arms in.

d.) Is mechanical energy conserved during 
this action?  Justify and comment. I1 I2

ω1

II

Just by using your head, chemical energy in your muscles must be burned 
to force your arms inward, so you might expect that the mechanical energy 
in the system would not be conserved.  Looking at the math, though:

Eo =  1
2

I1 ω1( )2  for the initial mechanical energy

before after

E2 =  1
2

I2 ω2( )2

    = 1
2

I2
I1

I2

ω1
⎛
⎝⎜

⎞
⎠⎟

2

= 1
2

I2
I1

2

I2
2 ω1

2⎛
⎝⎜

⎞
⎠⎟
= 1

2
I1ω1

2⎛
⎝⎜

⎞
⎠⎟

I1

I2

⎛
⎝⎜

⎞
⎠⎟
= EO

I1

I2

⎛
⎝⎜

⎞
⎠⎟

I1
I2
>1 E2 > Eo

1
2Iω

2



14.)

•
kid

kid
walk

walk

As they walk inward, each kid applies a force, hence torque, to the m.g.r., 
that changes the m.g.r.’s angular velocity.  As a Newton’s Third Law 
action/action pair, the m.g.r. applies a force, hence torque, to the kids 
changing their angular velocity.  As these are all internal impulses, 
conservation of angular momentum is applicable.

Example 5: Another standard problem is the 
merry-go-round problem.   A merry-go-round, assumed 
to be a disk, has mass M and radius R.  It also has two 
kids who push the m.g.r.’s outer edge by running along 
side of it to get it up to an angular speed of     .  The 
kids, each of which have a mass of      , then jump on 
and start to walk toward the center of the m.g.r.  When 
they get to within units from the center, they stop.  
What is their speed at that point?  

ω1

mk

R
3

Interestingly, there are TWO ways we can go here with the kids:
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treating the two kids as rotating point masses:

                      L1                     + ΓextΔt =                   L2∑∑∑
2    Ikid,1    ω1 +        Imgr        ω1( )  +       0       = 2        Ikid,2      ω2 +       Imgr     ω2( )

  2 mkR
2( )ω1 +

1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

  +       0       = 2 mk
R
3

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝⎜
⎞

⎠⎟
ω2 +

1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω2

⎛

⎝
⎜

⎞

⎠
⎟  

              ⇒        ω2 =
 2mk + M

2
 2mk

9 + M
2
ω1 =

 18 4mk + M( )
 4mk + 9M

ω1

the kid’s velocities:

v = R
3

⎛
⎝⎜

⎞
⎠⎟ ω2 =

 18 4mk + M( )
 4mk + 9M( )

R
3

⎛
⎝⎜

⎞
⎠⎟ ω1

                    =
 6 4mk + M( )
 4mk + 9M( )Rω1

6



16.)

treating the kids as point masses:

 

                      L1                     + ΓextΔt =                     L2∑∑∑
2    !r1x

!p1          +      Imgr     ω1( )   +       0       = 2        !r2x
!p2      +        Imgr        ω2( )

 2 mkv1R( )     + 1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

  +       0       = 2 mkv2
R
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
MR2⎛

⎝⎜
⎞
⎠⎟

v2

R
3( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

2 mk Rω1( )R( ) + 1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

 +       0       = 2 mkv2
R
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
MR2⎛

⎝⎜
⎞
⎠⎟

v2

R
3( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

            ⇒        v2 =
 2mk + M

2
 2mk

3 + 3M
2

Rω1=
 6 4mk + M( )
 4mk + 9M

Rω1

Same solution either way.  What’s important is the set-up, not all the nasty math.



17.)

•

Example 6: In 1967 as a graduate student, Jocelyn 
Bell (aca Dame Jocelyn Bell Burnett) observed, in the 
face of scant support from her advisor, Antony Hewish, 
the first pulsar.  In 1974, in a classic “keep ‘em
barefoot and pregnant” move, the all male, presumably 
all white Nobel committee gave Hewish the Nobel 
Prize in Physics for the discovery while ignoring Bell altogether.  With that 
monumental injustice in mind, consider the lowly pulsars:

When a star with a core between 1.4 and 1.8 solar masses dies, it explodes spectac-
ularly in what is called a supernova.  (Example: In 1054, a supernova occurred that 
was observed by the Chinese and was visible during the day for two weeks.)  When 
a supernova happens, the outer part of the star blows outward creating what is called 
a nebulae (the supernova in 1054 created the Crab Nebulae) and the core is blown 
inward.  The implosion is so violent that it forces electrons into the nuclei of their 
atoms (removing all the space in the atoms in the process) where they combine with 
the protons there to produce neutrons that stop the implosion by literally jamming 
up against one another.  With all that space removed, the resulting structure is 
incredibly dense (think a thousand Nimitz class aircraft carriers compressed into 
the size of a marble) and small (think 10 to 15 kilometers across).

core implodes



18.)

(con’t) The significance of all of this is that nature provides us with a WICKED 
example of conservation of angular momentum.

How so? There are no external torques acting during the supernova, so angular 
momentum is conserved.  The enormously massive structure spread out over 
hundreds of thousands of kilometers starts out with a HUGE RADIUS and 
angular momentum even though its angular speed is low (the sun takes 25 days to 
rotate once about its axis).  In other words, its angular momentum looks like: 

L = Ibefore ωbefore



ωafter
19.)

After the supernova, the moment of inertial drops precipitously because the radius 
goes from several hundred thousand kilometers to, maybe, 15 kilometers during 
the explosion, BUT THE ANGULAR MOMENTUM STAYS THE SAME which 
means the angular velocity skyrockets.  In other words, the final angular 
momentum relationship will look like:

L = Iafter

In short, pulsars (neutron stars) are super dense structures that rotate anywhere 
from a few cycles per second all the way up the several hundred cycles per 
second, all as a consequence of conservation of angular momentum.



earth  
 in path
   of sweep

20.)

But what’s really cool is that they put out 
what is called synchronous radiation—
radiation that is very directional and that is 
in the radio frequency range.  So if the 
sweep of radiation of one of these fast 
rotating objects just happens to cross the

synchronous 
   radiation
(radio waves)

ω

fast rotating,
 super massive 
  neutron star

synchronous 
   radiation
(radio waves)

And as a small side-point, I’ve REALLY simplified 
what’s going on with these things.  According to Sterl
Phinney, Professor of Astrophysics at Caltech (and a 
Poly parent), the progenitor of the Crab Nebula lost 
99% of its angular momentum during and since its 
supernova.  More about this on the next slide (if I get 
the time to generate it).

earth’s path, a blast of radio wave will hit the earth 
every time the star completes one rotation.  In 
other words, we can hear them using a radio 
telescope. This is what you will experience on the 
next slide.  Pretty amazing!



21.)

Non-AP minutia about neutron stars:  According to Dr. Phinney,



22.)

Remembering that these are super dense (density of 1000 Nimitz-class aircraft 
carriers compressed to the size of a marble) stars that are, maybe, 15 km across, 
and that each rotation produces one beat, here is what a pulsar sounds like as 
observed by a radio telescope.  

AMAZING!!!



b.) Is angular momentum conserved through the collision?  If so, write out the 
conservation of angular momentum relationship.  If not, justify.

23.)

Example 7: Consider a meter stick of mass M pinned at its 
center.  A puck of mass m moving with velocity     strikes the 
meter stick a distance d units from the center and sticks to it.

a.) Is momentum conserved through the collision?  If so, 
write out the conservation of momentum relationship thru 
the collision.  If not, justify your response.

Momentum is NOT CONSERVED as the pin provides an 
external impulse.

vo

Angular momentum IS
conserved as all the torques 
about the pin are internal.

L1 + ΓextΔt =             L2∑∑∑
mvod +        0     =   Imω2     +        Ims      ω2

mvod +        0     = md2( )ω2 + 1
12Md2( )ω2  

   ⇒     ω2 = mvo

md( ) + 1
12Md( )

c.) Is energy conserved through the collision?  
Nope!  IT’S A COLLISION!!!!

m

 i

d

vo

ω2

pin



b.) Is angular momentum conserved through 
the collision?  

24.)

Example 8: Consider a stationary meter stick of mass M
sitting freely on a frictionless surface.  A puck of mass m moving 
with velocity     strikes the meter stick a distance d units from the 
center and stops dead.

a.) Is momentum conserved through the collision?  

vo

Angular momentum IS conserved as 
all the torques are internal.

	

L1 + ΓextΔt = 					 L2∑∑∑
mvod	+								0					 = 							Ims 					ω1
mvod	+								0					 = 1

12ML
2( )ω1 	

		⇒ 	ω1=
mvod
1
12ML

2( ) =
12md
ML2 vo

Momentum IS
conserved as there are 
no external impulses.

p1,x + Fext,xΔt = p2,x∑∑∑  
   mvo  +         0     =  Mvcm  
   ⇒     vcm = mvo

M

m

d

vo

ω1

vcm

NOTICE:  Momentum and angular momentum are both conserved but are INDE-
PENDENT of one another, and the center of mass velocity and angular velocity 
about the center of mass are NOT related by v = rω.



b.) Is angular momentum conserved through the collision?  

25.)

Example 9: A considerably more complex problem takes 
form if the mass sticks to the meter stick from the last problem.  In 
that case: the meter stick of mass M sitting freely on a frictionless 
surface.  A puck of mass m moving with velocity     strikes the 
meter stick a distance d units from the center and sticks to it.

m

d

vo
a.) What does conservation of momentum through the 
collision tell us?  

vo

Angular momentum IS conserved as all the torques are internal, but this is where 
things get sticky.  What we’ve done so far is to determine the angular momentum 
about the AXIS OR ROTATION of the system.  Think about it:

ω1

Momentum IS STILL conserved as there are no external impulses, so.

	

p1,x + Fext ,xΔt = p2,x∑∑∑ 	
			mvo 	+									0					 = 	 M+m( )vcm 	
			⇒ 				vcm=

mvo
M+m

vcm



b.) (con’t.)

26.)

For the pinned beam situation, we calculated the angular momenta about 
the pin (i.e., at the center of mass of the meter stick).

For the unpinned situation in which the puck stopped and all the after-
collision motion was around the meter stick’s center of mass, we 
calculated the angular momenta about the the center of mass of the 
meterstick (that was where the rotation was centered).

m

 i

d

vo

ω2

pin

	
mvod = md2( )ω2 + 1

12Md
2( )ω2 	

m

d

vo

ω1

vcm

	
mvod = 1

12ML
2( )ω1 	

For the unpinned situation in which the puck STICKS, the rotation is 
NOT around the meter stick’s center of mass.  It is around the center of 
mass of the two-body system.  That means to do this problem, we have 
to find the system’s new center of mass, determine the meter stick’s “I” 
about that new axis (parallel axis theorem), calculate the puck’s initial 
angular momentum relative to that new center of mass, then put that 
equal to the angular momentum of the two bodies rotating around that 
new center of mass after the collision.  Nasty . . . 

m

d

vo

ω2

vcm

c.of  m. not at
 center of m.s.
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This is the rotational analogue to the problem 
shown to the right: A mass m sitting at the top of a 
curved incline of radius R slides down the incline, 

Example 10: A mass m sits at the top of a 
curved, frictionless incline of radius R. It slides 
down the incline and executes a perfectly inelastic 
collision with the end of a pinned rod of mass 5m
and length d. The two rotate up to some angle    
before coming to rest.  If R = .4d, derive an 
expression for    .  You know:

θ

θ

m, d, R, g, and Icm,rod =
5

12
md2

 i

m

d θ

5m

m

executes a perfectly inelastic collision with a 5m mass, and proceeds up a ramp.  
How high up the ramp does it go?

So how would you do this problem?
(Energy up to the collision, momentum through the collision, energy after the collision!)
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 i

m

d θ

5m
How are the problems different as far as 
solving goes?  That is, why can’t we just use 
conservation of momentum when the two 
masses collide in the pinned beam problem?

To use conservation of momentum, we
need a system in which there are no external impulses.  The pin provides an 
external impulse (it keeps the rod from accelerating en-mass to the left through 
the collision), so conservation of momentum won’t work for this collision.  
There are no external torques acting about the pin, though, so conservation of 
angular momentum IS applicable.

m, d, R, g, and Icm,rod =
5

12
md2



29.)

 i

m

To begin, the velocity     of the mass m just before the collision can be determine 
using conservation of energy:

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
     0    + mgR +     0    =  1

2
mv1

2 +    0

                ⇒   v1 = 2gR( )1
2   

v1

v1

Because there are no external torques acting about the pin, conservation of 
angular momentum is the key to the collision.  Taking a time interval through the 
collision, and summing the angular momenta about the pin, we can write:

 

L1,pin∑ + τextΔt∑ =     L2,pin∑
     L1,mass +      0     =  L2,mass + L2,rod   
    ⇒     !rx!p1  =  Imassω2 + Ipinω2

We need those angular momentum quantities.  

 i

m

5m

m, d, R, g, and Icm,rod =
5

12
md2
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To determine the angular momentum of the mass 
about the pin, we can go two ways.  We can either 
treat the mass as a translating point mass and 
using , or we can use rotational parameters.  
I’ll show both (assuming the velocity of the mass 
at the bottom of the incline is ):

 

L1,m = !rx!p1

       = d mv1( )   

 
!rx!p  

translating point mass:

L1,m = Imass/pin ω1

       = md2( ) v1

d
⎛
⎝⎜

⎞
⎠⎟

       = md( )v1  

rotational parameters:

Same either way. 

v1 

After the collision, the mass’s 
angular momentum in terms of 
angular velocity: 

 

L2,m = !rx!p2

        = d mv2( )
        = d m dω2( )( ) = md2ω2  

OR

 i

ω1 =
v1
d

d

v1

Imass/pin = md
2

m, d, R, g, and Icm,rod =
5

12
md2
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We need the 
moment of inertia 
of the rod about 
the pin.  We’ll use 
the parallel axis 
theorem for that:

Icm = Icm + Md2

     = 5
12md2 + 5m( ) d

2( )2

     = 5
3

md2   

 i

m

d θ

5m

Putting everything together 
through the collision yields:

 

L1,pin∑ + τextΔt∑ =     L2,pin∑
    !rx!p1,mass        0      =  Imassω2 + Ipinω2

   ⇒    mdv1 = md2( )ω2 +
5
3

md2⎛
⎝⎜

⎞
⎠⎟ ω2

   ⇒    ω2 =
v1

d + 5
3d

= 3v1

8d

m, d, R, g, and Icm,rod =
5

12
md2

ω2 =
v2

d
,  v2 = ω2d = 3v1

8d
⎛
⎝⎜

⎞
⎠⎟ d

As

⇒   v2 =
3
8

v1 =
3
8

2gR



32.)

Knowing the after-collision velocities, we can 
use conservation of energy to determine how high 
the rod’s center of mass rises, and how high up 
the mass rises, before coming to a stop.  Without 
doing the math to its conclusion, assuming the 
time interval is from just after the collision to the
stop point and noting that the mass rises a 
distance                    (you should understand why 
by now) while the rod’s center of mass rises                        
that equation looks like:

 i

m

d θ

5m

m, d, R, g, and Icm,rod =
5

12
md2

        KE1∑                  + U1∑ + Wext∑ = KE2∑ +              U2∑
     KErod     +  KEmass( ) +   0     +     0     =       0     +            Umass       +                Urod           ( )
1
2

Irod/pinω2
2 + 1

2
mv2

2⎛
⎝⎜

⎞
⎠⎟ +   0     +     0     =       0    + mg d − dcosθ( ) + 5m( )g d

2
− d

2
cosθ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

d − dcosθ( )
d
2 −
d
2cosθ( ),

Δy = d − dcosθ



Back to the Non-AP Tom-Foolery
Remember the precessing wheel demonstration?

It was accompanied by a 
second demonstration in which 
a torque was quickly applied 
to the pinned axle of a rotating 
wheel, and instead of the 
wheel following the direction 
of the applied force, the wheel 
jerked to the right or left, 
depending upon the direction 
of the wheel’s rotation.

pinned

!
F

It’s time to make sense of both of these.



The mathematical key to these seemingly mysterious behaviors are wrapped 
up in the relationship between torque and angular momentum (or, Newton’s Second 
Law, rotation style).  That is, the relationship: !

τ = Δ
!
L
Δt

This relationship suggests one of two things.

1.) If the direction of the net torque applied to a body matches the direction of the 
angular momentum vector of the body (translation: it matches the direction of the 
body’s angular velocity), an applied torque will change the magnitude of the 
angular momentum (that is, the body will angularly speed up or slow down).  The 
translational parallel to this is a force along the line of motion making a body 
speed up or slow down.  

2.) If the direction of the net torque applied to a body does not match the 
direction of a body’s angular momentum vector, the body’s angular momentum 
will still change but the change will be in the angular momentum’s 
DIRECTION, not its magnitude.  The translational parallel to this is a force that 
is perpendicular to the line of motion creating a centripetal situation.  The 
precessing wheel circumstance falls into this latter category.

But:



Starting with the hanging wheel rotating as shown:

The system is pinned where the chain attaches to 
the axle.  The force being applied is due to gravity 
and happens at the center of mass of the wheel.

!
Fg

!r

!rx
!
Fg α Δ

!
L( )

With the torque 
(i.e.,       ) at right 
angle to    , the 
direction of the 
change of angular 
momentum 
demands that the 
body’s axle must 
precess! 

Δ
!
L!
L

The torque produced by gravity is at right angles 
to the plane defined by      and    .

!
Fg

!r

ω

Δ
!
L

!
L



--What about the jerking wheel?  Assume a clockwise rotation.  The angular 
velocity (and, hence, angular momentum) vector is shown below in the sketch with 
the view from above shown to the right (I’ve put a nub at point A for reference).

ω

eye looking down

ω

!
L

looking from above

A

A

L



--Let’s try to rotate the wheel about point A by applying a quick downward 
force F to point A.  

eye looking down

looking from above

(pin here)

A

F
F (quick impulse into page)

(pinned at point A)

A



--Note that the direction of the torque applied by     is NOT in the direction 
of the angular momentum vector, which is along the axle.  

A

!
F

!r

!rx
!
F

!r !
rx
!
F!

F

!
F



--If the torque is in the direction of the CHANGE OF angular momentum, then 
the NEW angular momentum direction must be as shown below . . . and hence we 
predict precession!  

A

!rx
!
F

  
!
Lo

!rx
!
F α Δ

!
L 

     (as 
!
τ = Δ

!
L
Δt

)

  
!
Lnew


