
1.)

Apply a torque, get a rotation . . . 



The Island Series:

2.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  A large disk is set spinning with constant speed.  The 
translational velocity of two points on the disk are identified along with each 
point’s position relative to the axis of rotation.  It is pointed out that at a 
minimum, two bits of information are required to characterize the motion of 
each point.  Your captor is a minimalist, so the question is, “How can the 
motion of each point be characterized with only one bit of information?”  Put a 
little differently, if someone with another disk somewhere else on the island 
wanted to duplicate your disk’s motion, what single bit of information might 
you give that individual that would allow them to accomplish the task? 



And following a radial line out from the 
center will produce bits that all have the same 
DIRECTION, but each bit will have a different velocity 
magnitude (as you get out farther, the velocities will go 
up).  

If you want to characterize the velocity of the 
particles of a spinning disk, alluding to their 
translational velocities is REALLY inefficient.  Bits of 
mass that have a common radius from the center of the 
rotation will all have the same velocity MAGNITUDE, 
but each bit’s velocity vector will have a different 
direction.

Solution to Island Problem

3.)

What IS common to all of the bits is their angular velocity.  
Each bit will sweep out the same number of radians per second
as the disk rotates.  That’s why using rotational parameters for 
rotating systems is so useful.  It is suffused with economy.  

same velocity 
magnitude

same velocity 
direction

ω

ω



CHAPTER  10:
Rotational Motion

4.)

For every parameter that exists with the world of translational motion, 
there exists a rotational counterpart.  To get into that world, we need to begin with 
some definitions.

That is:
--whereas a body’s coordinate position is defined with an “x” or “y” (units 
meters), a body’s angular position is defined by a    (measured in radians);  
--whereas a body’s translational velocity (the number of meters it traverse per 
unit time) is defined with a “v” (units m/s), a body’s angular velocity (the 
number of radians it sweeps through per unit time) is defined using an     
(measured in radians/sec), and;  

θ

ω

--whereas a body’s translational acceleration (its velocity change per unit time) 
is defined with an “a” (units m/s/s), a body’s angular acceleration (its angular 
velocity change per unit time) is defined using an    (measured in rad/sec/sec).  α



x

position

θ   (radians) ω    (rad/s) α   (rad/s2 )

rate of change of 
position

rate of change of 
velocity

v   (m/s) a   (m/s2 )x   (meters)

5.)

a
v θ

ω
α

coordinate position translational velocity

angular position angular velocity

translational acceleration

angular acceleration



vavg =
x2 − x1
Δt

ωavg =
θ2 − θ1
Δt

x1 x2

translational

rotational

body translates
in time “t”

x2 − x1

average velocity average acceleration

vavg =
v1 + v2
2

body rotates
in time “t”

θ2 − θ1

θ1

θ2

θ2 − θ1

ωavg =
ω1 +ω2

2

aavg =
v2 − v1
Δt

αavg =
ω2 − ω1

Δt

6.)



Kinematics

x1

body with initial velocity 
accelerates between                 
in time t

x2 − x1

translation motion

x2 = x1 + v1 Δt( ) + 1
2
a Δt( )2

θ1

θ2

θ2 − θ1

v1 body with initial angular velocity 
angularly accelerates between                     
in time t

θ2 − θ1
ω1

angular motion

Δx = v1 Δt( ) + 1
2
a Δt( )2or

or

ω2 = ω1 + αΔt

ω2
2 = ω1

2 + 2α Δθ( )

α =
ω2 − ω1

Δt
or

ω2
2 = ω1

2 + 2α θ2 − θ1( )

θ2 = θ1 +ω1 Δt( ) + 1
2
α Δt( )2 Δθ = ω1 Δt( ) + 1

2
α Δt( )2or

or

v2 = v1 + aΔt

v2
2 = v1

2 + 2a Δx( )

a = v2 − v1
Δt

or

v2
2 = v1

2 + 2a x2 − x1( )

x2

v1

7.)



The relationship                 is really code.  It is telling you three 
things:

 
!v = −(3m / s)î

 
!
ω = −(3 rad/sec)î

Rotational Vectors

You know how to decode the above expression.  The following is also a code.  

a.) the magnitude of the velocity (in this case, it’s 3 m/s); 

b.) the line of the velocity (the tells you the vector is along the x-axis, 
versus being along the y-axis or z-axis or some combination thereof); and 

c.) the + or – tells you the actual direction along the line (in this case, it’s 
in the NEGATIVE x-direction, versus the POSITIVE x-direction); 

î

8.)

The question is, “What three things does this coding tell you?”



The relationship                     tells you:ω = −(3 rad/sec)î

In short, though, if you know how to do the decoding, the notation is as simple as                          
.

a.) the magnitude of the angular velocity (in this case, it’s 3 rad/s); 

b.) the DIRECTION OF THE AXIS about which the angular velocity proceeds 
(this will be perpendicular to the plane of the motion, so an “ “ tells you the 
motion is in the y-z plane); and 
c.) the + or – tells you the whether the rotation is clockwise or counterclockwise, 
as viewed from the positive side of the axis (in this case, it’s NEGATIVE, so the 
rotation will be clockwise—more about this later). 

î

9.) 
!v = −(3m / s)î

Clarification concerning parts c above.  Both physics and standard mathematics 
use what is called a right-handed coordinate system.  That means that if you place 
your right hand along the +x direction and curl your fingers in the +y direction, 
your thumb will point in the +z direction.  The reason this is significant is that in 
doing so, you will be curling your fingers counterclockwise.  So if you want to 
characterize a body moving counterclockwise in the x-y plane, giving the direction 
as +k makes sense as that is the direction your thumb would point if you made the 
fingers of your right hand curl along the direction of motion.



defines the axis about which the rotation takes place.  It is perpendicular to 
the plane of the rotation.  If you place your right hand on the record so your 
finger’s rotate with the record, your thumb will point into the page in the 
direction.  THAT is the “direction” of the angular velocity direction.  In 
whole, the vector can be written as:  

Summary Example 1: A turntable
(record player) is rotating as shown in the sketch 
(courtesy of Mr. White).  The magnitude of its 
angular speed is .3 rad/sec.  After rotating half a 
turn, its angular speed as a vector is .1 rad/sec.   

a.) Write out its initial angular velocity as a 
vector.

î

10.)

−k̂

Vector direction in a rotational setting

 

!
ωo = .3 rad/sec( ) −k̂( )
     = − .3 rad/sec( ) k̂

Kindly note: The record is rotating clockwise.  Clockwise rotation, as viewed 
from the positive side of the axis, always denotes a negative vector.



assuming its initial position is             and final position                             (if 
its angular velocity is negative, its angular displacement will be negative, 
also), we can write:

This is a rotational kinematic problem.  
Tracking a point on the table with an initial 
angular velocity of                              , and

Summary Example 1: A turntable (record 
player) is rotating as shown in the sketch (courtesy of 
Mr. White).  The magnitude of its angular speed is .3 
rad/sec.  After rotating half a turn, its angular speed as 
a vector is .1 rad/sec.   

b.) What is the record’s angular acceleration?
î

11.)

θ1 = 0 θ2 = −π radians
ω1 = −.3 rad/sec

ω2( )2 = ω1( )2 + 2α θ2 − θ1( )
⇒   α =

ω2( )2 − ω1( )2

2 θ2 − θ1( )
          = .1 r/s( )2 − −.3 r/s( )2

2 −π − 0( )
          = .0123 r/s2



Summary Example 1: A turntable (record 
player) is rotating as shown in the sketch (courtesy of 
Mr. White).  The magnitude of its angular speed is .3 
rad/sec.  After rotating half a turn, its angular speed as 
a vector is .1 rad/sec.   

c.) Through how many radians will it have 
moved during the first 2 seconds of its rotation? î

12.)

α = .0123 rad/sec2

ω1 = −.3 rad/sec

θ2 = θ1 +ω1Δt + 1
2α Δt( )2

  ⇒   Δθ = ω1Δt + 1
2α Δt( )2

               = −.3 rad/sec( ) 2 sec( ) + 1
2 .0123 rad/sec2( ) 2 sec( )2

               = −.5754 rad



Rotational versus Translational 
Parameters

Definition of a radian?

θ = 1 radian

R s = R
If you lay out a one radius arc-length, the angle 
subtended is defined as one radian (see sketch). 

13.)

And what is the arc length associated with a       radian angle?

So what arc-length is associated with a 2 radian angle?

Δθ

And what arc-length is associated with a 1/2 radian angle?
s2 = 2R

s1/2 =
1
2

⎛
⎝⎜

⎞
⎠⎟
R

s = Rθ

where R’s units are meters per radian and units are in radians.θ 's



Taking the derivative of both sides yields:

   ds
dt

   =        R             dθ
dt

v (m/s) = R m/rad( )  ω  rad/sec( )

Taking the derivative of both sides again yields:

more commonly written as: v = Rω

more commonly written as:

These are NOT kinematic relationships! They work whether the acceleration is 
a constant or not.

14.)

    dv
dt

   =       R              dω
dt

a (m/s2 ) = R m/rad( )  α rad/sec2( )

a = Rα

where v is the velocity of a point moving with angular 
velocity     upon an arc R units from the fixed center.ω

R
ω

v = Rω

Fixed point

or



Looking at the sketch makes it clear that the velocity of the point of contact of a 
rolling object is ZERO!

Rolling Point-of-Contact Action

15.)

Additional justification:  The wheel’s 
velocity is clearly zero in the y-direction 
as the point of contact, as that point is 
executing a turn-around at that point.  
And in the x-direction, the table top is not 
moving (i.e., it’s velocity is zero) and the 
wheel is not sliding over the table top, so 
the contact point must also be zero 
velocity.  

Note that tonight’s homework is on moment of inertia, which this and the next several sections do not 
address.  These topics are important, but they will be fitted in at the end of daily lectures as time allows.

Question: An object is rolling across at tabletop.  What the instantaneous velocity
of object’s contact point with the table?



16.)

vtop = 120 mph

vaxle = 60 mph
vcontact = 0vcontact = 0

vaxle = 60 mph

As a wild sidepoint: Think about a car traveling 60 mph.  What happens to the 
section-of-tire that goes from contact with the ground to the top of the tire and back 
down to contact with the road?  

--But when at the level of the axle, the section will move at the speed of the car.
--And when at the top of its motion, the section will be moving at twice 
the speed of the car, or 120 mph (as                      suggests).

--At the contact point, the section won’t be moving at all. 

vtop = 2R( )ω
In other words, the wheel’s circumference will accelerate from zero to 120 mph 
and back to zero over a few meters distance, over and over and over again as the 
car moves down the freeway.  CRAZY, eh!



As an additional bit of craziness, if you know the angular velocity 
about one point on a rotating object, that will be the the angular velocity about ALL 
points on the object.  How so?

17.)

ω

Consider a rotating platform with a chair at its center that 
is rigged to ALWAYS face toward the wall:

You sit in the seat.  It takes 10 seconds for the platform to 
rotate through one complete rotation.

a.) What does the motion look like from your perspective, 
assuming a constant angular velocity?

(It will move around you.)
b.) Relative to the axis you are sitting on, what will be the platform’s
angular velocity?

ω = 2π rad
10 sec

   = .2π rad/sec

the wall

chair



The chair is now placed at the edge of the platform.  It is 
still rigged to always face toward the wall.  Just as was the 
previous case, it takes 10 seconds for the disk to move 
through one rotation.  From your perspective, what does the 
motion look like, and what is the angular velocity of the disk 
about your position?

18.)

Following the motion as seen by you in the chair at the edge:

ω

the wall

chair

the wall

chair
You start facing away from the disk, 
seeing none of it (looking at the wall).

As the disk rotates, you continue to face 
the wall and the disk begins to come into 
view on your right. In other words, the 
disk appears to be rotating around the axis 
upon which you sit.

at start as time proceeds



Progression 
of motion 
from watcher’s 
perspective 
(remember, the 
watch is 
ALWAYS facing 
the wall!).

19.)

Time 1

Time 2

Time 3

Time 4
And what is the 
angular velocity 
of the disk about 
your vantage 
point?

ω = 2π rad
10 sec

   = .2π rad/sec

You will sweep out radians in 
10 seconds, so you’ll get:

2π
The same as about 
the central axis!!!!!



The point: The amount of time it takes the for the platform to rotate around 
you is the same in both the “center seat” situation and the “edge seat” situation.  
Additionally, the angular displacement in both cases during one revolution’s 
worth of time is 2π radians.  

20.)

Sooooo (in other words), if the object appears to be rotating around you, the 
angular velocity you observed will be the same no matter where on the platform 
you are standing. 

Translation: If you know the angular velocity of an object about any point on 
the object, you know the angular velocity about any other point on the object.



pin

The consequence of this is the acknow-
ledgement that if you were to see a moving disk 
covered as shown to the right, you wouldn’t 
know if:

21.)

The disk was rolling on a floor; or

The disk was pivoting about a fixed point.

vcm

vcm

vcm



pin

vcm = Rω

ω

What is hugely important about this is that it means we can relate the 
velocity of a rolling object’s center of mass to the angular velocity of the rolling 
object about it’s center of mass.  How so?

22.)

ω

Consider a disk rotating with constant angular 
velocity     around a pin at its edge.  What is the 
velocity of a point at it’s center of mass?

ω

The velocity of a point R units from a fixed point on 
an object (like, at the body’s center of mass) moving 
with angular velocity    about a pin point is:ω

vcm = Rω

R

vcm = Rω    ⇒    acm = Rα

BUT BECAUSE you can’t tell the difference 
instantaneously between a pinned, rotating disk and a 
disk that is rolling on a tabletop, that means the 
relationship between the angular velocity     of a rolling 
object and its center of mass velocity must be:

ω

This is mucho importante!

vcm = Rω



But why is this important, really?

23.)

Consider a ball rolling across a table.  It’s 
center of mass has some velocity and all of 
the body’s mass is rotating about the center of 
mass with some angular velocity    .  So how
do we relate those two parameters (and how do 
we justify that relationship)?

vcm

ω

We only have one relationship between the angular velocity of a 
mass moving in a circular path and its instantaneous velocity in 
that motion, and that is              , but that requires rotation around 
a fixed point.

v = Rω

vcm

ω

v = Rω
ω

R

But if the contact point of the rolling ball is 
instantaneously fixed (zero velocity), and if the angular 
velocity about the center of mass is the same as the 
angular velocity about that fixed point (instantaneously), 
then, as the sketch shows, it follows that                  .vcm = Rω

vcm = Rω

ω

R

zero velocity pointThis is important!!!



There is a rotational counterpart for every translational concept and para-
meter out there.  So what can we say about the energy content of a rotating disk?

More Minutia: Rotational Inertia 
and the Moment of Inertia

24.)

Moved a distance    units from the center of a 
disk rotating with angular velocity     and you will 
find the      mass       moving with translational 
velocity    .  It’s kinetic energy calculates as:

ω

vi
miith

ri
vi

KEi =
1
2
mi vi( )2

To get the total kinetic energy for the entire 
mass, this process has to be done for all the 
masses with the results summed, or.

mi

ω

KE = KEi∑ = 1
2
mi vi( )2∑



25.)

ω

vi = riω
ri

Noting that            , we can rewrite that summation 
yielding:

KE = KEi
i
∑

     = 1
2

mi vi( )2

i
∑

     = 1
2

mi riω( )2

i
∑

     = 1
2

miri
2

i
∑⎛⎝⎜

⎞
⎠⎟
ω2

Comparing this to                             leaves us with ½ and a velocity term 
squared, and a mass related term in parentheses.

KE = 12 m( )v2

This mass-related term is                    .  It is called moment of inertia. It is 
always defined relative to an axis and it is the rotational counterpart to mass . . . 
which is to say, it is a relative measure of a body’s resistance to changing its 
rotational motion, or its rotational inertia.

I = miri
2∑

vi = riω



m1 = 3kg

Example 2: Consider two masses m and 3m located a distance 1.0 meter apart.  
Relative to the coordinate axes shown:

 

Iy = mi xi( )2∑
     = m1 x1( )2 + m2 x2( )2

     = 3 kg( ) −.25 m( )2 + 1 kg( ) .75 m( )2

     = .75 kg i m2

a.) Determine the moment of inertia about 
the y-axis through the x-axis center of mass:

26.)

m2 = 1kg

x1 = −.5 x2 = .5

y

x

m1 = 3kg m2 = 1kg

x1 = −.25 x2 = .75

y

x

b.) Determine the moment of inertia about 
the y-axis as shown:

 

Iy = mi xi( )2∑
     = m1 x1( )2 + m2 x2( )2

     = 3 kg( ) −.5 m( )2 + 1 kg( ) .5 m( )2

     = 1.0 kg i m2



Notice the moment of inertia about the center of mass is smaller than about the 
other axes denoted.  This is always true.       is always a minimum.

 

Iy = mi yi( )2∑
     = m1 + m2( ) y1( )2

     = 3 kg+1 kg( ) 2 m( )2

     = 16 kg i m2

c.) Determine the moment of inertia 
about the x-axis:

27.)

m1 = 3kg m2 = 1kg

x1 = .25 x2 = 1.25

y

x

y1 = 2So what is this approach asking you to 
do?  It is asking that you begin at the axis 
of interest, proceed outward until you run 
into some mass, multiply the mass by the 
distance-out-quantity-squared, and sum 
all those quantities up.  For this problem, that will look like:

Note:  The closer a body is to an axis of rotation, the 
smaller its moment of inertia is about that axis.

Icm

I1

I2
I1 > I2



Example 3: Keeping in mind what this approach is 
asking you to do, what is the moment of inertia of a thin 
cylindrical shell of mass M and radius R about its 
central axis?

This doesn’t really take any math.  If you move out 
from the axis until you find some mass, you find all 
the mass a distance R units out (assuming the cylinder 
really is THIN).  Multiplying that mass by that 
distance-squared yields:

28.)

R

M

Ithincylinder =MR
2

In other words, although this won’t be the case in general, this was more of a 
conceptual exercise than anything else.

In general, when you need a moment of inertia expression for an object, you 
can either derive it or find it on page 287 of your text (or page 257 of Fletch’s
text).



The table from Fletch’s book is 
shown to the right.  Notice that 
the moment of inertia of a hoop
(which is just a very short, thin 
cylinder) about its central axis is 
quote as:

22b
.)

M

Ithincylinder =MR
2

just as we surmised.  Still, you 
need to know generally how to 
do the derivations . . . 



Example 4: Remembering what
the approach is asking you to do, derive
an expression for the moment of inertia 
of a homogeneous rod of length L about 
one end.

x

y

Although this is a continuous mass, the principle is the same.  Move out along 
the x-axis until you find some mass, multiply by the distance-squared, then sum 
that quantity for all the masses found. 

The problem?  The system is not made up of discrete pieces of mass.  That 
means that after moving an arbitrary distance “x” units down the axis, you need 
to create a differentially thin section of the rod of width “dx” to define a 
differentially small piece of mass “dm,” do the required multiplication, then 
sum all such pieces using integration.  Doing this yields:

x

y

x dx

dm
I = x2 dm∫

30.)



As we did with center of mass problems, we need to relate the position x of the bit 
of mass to the amount of mass dm that is there.  To do that, we need to invoke a 
density function.

Due to the geometry, we will use a linear density function.  With that in mind, 
we can write:

λ = M
L

31.)

and λ = dm
dx

  ⇒   dm = λdx
And with all that, we have:

Iend = x2 dm∫
     = x2 λdx( )

x=0

L

∫
     = λ x2 dx

x=0

L

∫
     = M

L
⎛
⎝⎜

⎞
⎠⎟

x3

3
⎛
⎝⎜

⎞
⎠⎟ x=0

L

     = 1
3

mL2



Example 5: Derive an expression 
for the moment of inertia of a 
homogeneous rod of length L about its 
central bisecting axis.

x

y

To define dx and dm:

x

y

x dx

dm

32.)

Iend = x2 dm∫
     = x2 λdx( )

x=−L/2

L/2

∫
     = λ x2 dx

x=−L
2

L
2∫

     = M
L

⎛
⎝⎜

⎞
⎠⎟

x3

3
⎛
⎝⎜

⎞
⎠⎟ x=−L

2

L/2 = M
3L

⎛
⎝⎜

⎞
⎠⎟

L
2

⎛
⎝⎜

⎞
⎠⎟

3

− − L
2

⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢

⎤

⎦
⎥

     = 1
12

mL2



Noting that the differential volume of the 
differentially thin cylindrical shell will equal 
the shell’s differential area (it’s circum-
ference times its thickness dr) times the 
cylinder’s height,

Example 6: Derive an expression for the moment 
of inertia of a cylinder of mass M and radius R about its 
central axis?

This requires a differentially thin cylindrical shell of
radius r and thickness dr, which means we will need a 
volume density function.  One way to write this is: 

33.)

R

M

r
dr

dm

h

ρ = dm
dV

  ⇒   dm = ρdV = ρ dA( )h
                           = ρ 2πr dr( )h

ρ = M
Ah

= M
πR2( )h   

we can also write: dV



With that information, we can do our integral.  

34.)

R

M

r
dr

dm

h

I = r2 dm∫
      = r2 ρdV( )

r=0

R

∫ = r2 ρ 2πr dr( )h⎡⎣ ⎤⎦r=0

R

∫
      = 2πρh r3 dr

r=0

R

∫
      = 2π M

πR2h
⎛
⎝⎜

⎞
⎠⎟ h r3 dr

r=0

R

∫
      = 2π M

πR2h
⎛
⎝⎜

⎞
⎠⎟ h r4

4 r=0
R⎛

⎝⎜
⎞
⎠⎟

      = 2π M
πR2h

⎛
⎝⎜

⎞
⎠⎟ h R4

4
⎛
⎝⎜

⎞
⎠⎟

      = 1
2

MR2    

2

2

dV

Note: We could as easily have used a surface 
density function    , with                                          
and   

σ =M πR2 = dm dAσ

I = r2 dm =
r=0

R

∫ r2 σdA( )
r=0

R

∫ .



If you know the moment of inertia about an axis through the center of mass (     ), 
and want the moment of inertia about an axis parallel to that axis and a distance d units 
away (   ), the parallel axis theorem will allow you to determine that value.  That 
expression is:

Parallel Axis Theorem

35.)

Ip = Icm +Md
2

Example 7: Given that the moment of inertia of a 
beam about a central axis is               , use the 
parallel axis theorem to determine the moment of 
inertia of the beam about one end.

Icm

Ip

1
12ML

2

y

x

Icm = 112ML
2

y

x
Ip = ?

Ip = Icm + Md2

   = 1
12ML2 + M L

2( )2

   = 1
3ML2

. . . as calculated previously!

d = L 2



Torque

36.)

 
!r

 
!
F

 F!

θ

F⊥ = Fsinθ

The product of    and      generates the rotational counterpart to force, a 
vector called torque.  When a net torque is applied to a stationary object that is free 
to rotate, the object will angularly accelerate.

Consider the wrench shown below. Notice that the amount of rotational umph
(this is a technical term) provided by the wrench on the bolt depends upon:

--how far out the force is applied (   ), and 
!r

--how big the force is (     ), and
 
!
F

--the component of the force (    ) perpendicular to    . 
!rF⊥

F⊥  
!r



 
!
τ = !r  F⊥

F

 F!

θ

F⊥ = Fsinθ

 
!r

So formally defined, the MAGNITUDE of the torque      generated by the 
force on the wrench is mathematically equal to:

37.)

As can be seen in the graphic, the perpendicular component of the force is equal to:

where    is defined as the angle between the line of the force and the line of the 
position vector    .  (This definition is going to be important later.) 

!r
θ

This means the torque can also be written as:

 

!
τ = !r  F⊥

   = !r
!
F sinθ

F⊥ = Fsinθ

 
!
τ



 
!
F = 5 N

In fact, there are three ways to calculate a torque using polar information:

θ = 37o

38.)

Definition approach:

 

!
τ = !r

!
F sinθ

   = 2 m( ) 5 N( )sin 37o

   = 6 N i m

 
!r = 2 m

 
!
F = 4 î + 3 ĵ

F-perpendicular approach:

 

!
τ = F⊥

!r
   = 3 N( ) 2 m( )
   = 6 N i m

r-perpendicular approach:

 

!
τ = r⊥

!
F

   = 1.2 m( ) 5 N( )
   = 6 N i m

 
!r = 2î

 
r⊥ = !r sin 37o

   = 1.2 m

 
!
F = 5 N

 
!r = 2 m



Why is the r-perpendicular approach so powerful (and mostly preferred)?

39.)

Can you find the shortest distance between a point and a line?  If so, you can 
find     for any situation.  Called the moment arm, that is what     is, the shortest 
distance between the point about which you are taking the torque and the line of 
the force.  With it, 

r⊥

 
!
τ = r⊥

!
F .

r⊥

Example 6: A ladder sits against a wall.  Using the     
approach, determine the torque generated by the 
wall’s normal force N about the ladder’s contact 
with the floor.

r⊥ line of the force

θ

θ

1. Identify the position vector    for the normal force. 
!r

 
!r2. Identify the line of N.  

N

3. Identify shortest distance between floor contact 
and line of N, then express in terms of     . 

!r

r⊥
 
!r sinθ( )

4. Determine the torque with
 
!
τ = r⊥

!
F .

floor

shortest 
distance



where    is the angle between the line of and the line of .

Note that if     and     are in the x-y plane, the direction of the cross product will be 
in the + or – -direction.

φ

40.)

Side point: Although we started by looking at a wrench, there are all sorts of 
instances in physics when we want to product of the magnitude of one vector and
the perpendicular component of the second vector.

!
Dx
!
C =

!
D
!
C sinφ,

Because it pops up so often, this process is called a cross product.  For two vectors     
and     , the magnitude of          is defined such that: 
!
C  

!
D  

!
Dx
!
C

 
!
C  

!
D

The direction of a cross product will be perpendicular to the plane 
determined by     and , and can be determined using the right hand rule. 

!
C  

!
D

 
!
F 

!r
k̂



Then

Question is, how do you evaluate a matrix like this?
41)

This is all fine and swell if you are dealing with polar notation, but what about 
vectors in unit vector notation?  Specifically, if:

 
!
A = Axî +Ay ĵ+Azk̂

 
!
B= Bx î +By ĵ+Bzk̂

and

 

!
Bx
!
A =

î ĵ k̂
Bx By Bz
Ax Ay Az

 

!
Bx
!
A = Bx î + By ĵ+ Bzk̂( )x Ax î + Ay ĵ+ Azk̂( )

       = Bx î( )x Ax î( )⎡
⎣

⎤
⎦ + By ĵ( )x Ax î( )⎡

⎣
⎤
⎦ + . . .

But                                                   , so all the like-terms go to zero, and                  Bx î( )x Ax î( ) = BxAx sin0
0 = 0

By ĵ( )x Ax î( ) = ByAx sin90
0 = ByAx in the -k direction, so we end up with 6 non-

zero parts.

What’s interesting is that 
those six parts fall out with the 
evaluation of the matrix:



 

!
Bx
!
A =

î ĵ k̂
Bx By Bz
Ax Ay Az

î
Bx
Ax

ĵ
By
Ay

42.)

The operation is fairly simple (something you do over and over again).  

= î By( ) Az( )− Bz( ) Ay( )⎡⎣ ⎤⎦

Blank out the column and row in which exists the unit vector   .î
Evaluate the two-by-two matrix that is to the immediate right, and multiply it by   .î



Adding in the    term looks like:

43.)

 

!
Bx
!
A =

î ĵ k̂
Bx By Bz

Ax Ay Az

î
Bx

Ax

ĵ
By

Ay

       = î By( ) Az( ) − Bz( ) Ay( )⎡⎣ ⎤⎦ + ĵ Bz( ) Ax( ) − Bx( ) Az( )⎡⎣ ⎤⎦

Finishing off with the     term gives us:

 

!
Bx
!
A =

î ĵ k̂
Bx By Bz

Ax Ay Az

î
Bx

Ax

ĵ
By

Ay

       = î By( ) Az( ) − Bz( ) Ay( )⎡⎣ ⎤⎦ + ĵ Bz( ) Ax( ) − Bx( ) Az( )⎡⎣ ⎤⎦ + k̂ Bx( ) Ay( ) − By( ) Ax( )⎡⎣ ⎤⎦

ĵ

k̂

DON’T MEMORIZE the end result.  Know the approach!



Example 8:  Determine 

 

!
Dx
!
C =

î ĵ k̂
4 5 6
−1 2 0

î
4
−1

ĵ
5
2

 
!
C = −1( ) î + 2( ) ĵ

 
!
D = 4( ) î + 5( ) ĵ+ 6( ) k̂

 
!
Dx
!
C if:

44.)



 

!
Dx
!
C =

î ĵ k̂
4 5 6
−1 2 0

î
4
−1

ĵ
5
2

 
!
C = −1( ) î + 2( ) ĵ

 
!
D = 4( ) î + 5( ) ĵ+ 6( ) k̂

 

!
Dx
!
C = î 5( ) 0( ) − 6( ) 2( )⎡⎣ ⎤⎦ + ĵ 6( ) −1( ) − 4( ) 0( )⎡⎣ ⎤⎦ + k̂ 4( ) 2( ) − 5( ) −1( )⎡⎣ ⎤⎦

       =         −12î                           − 6 ĵ                           +13k̂

 

!
Dx
!
C =

î ĵ k̂
4 5 6
−1 2 0

î
4
−1

ĵ
5
2  

!
Dx
!
C =

î ĵ k̂
4 5 6
−1 2 0

î
4
−1

ĵ
5
2

+ +

Solution:

445)

Example 8: (con’t) Determine  !Dx
!
C if:



Just as a net force acting on a mass is proportional to the acceleration of the 
body, with a proportionality constant being the mass of the body (i.e., a relative 
measure of the body’s resistance to change its motion), the net torque a body 
experiences about a point will be proportional to the angular acceleration of the 
body about that point, with the proportionality constant being the moment of 
inertia about that point (i.e., a relative measure of the body’s resistance to 
changing its rotational motion about that point).  In other words, just as:

Newton’s Second Law Problems

46.)

 
!
Fnet = m

!a
so also is:

 
!
τnet = I

!
α

Because all of our problems are going to have rotation in the plane of the page, 
they will all have rotational vector directions of       .  We will need to keep track of 
signs, but we won’t need the unit vector.  As a consequence, the rotational version 
of N.S.L. can be written as:

±k̂

τnet = Iα



Example 9: A beam of mass and length 
L is pinned at an angle     a quarter of the way up the 
beam (i.e., at L/4).  A hanging mass       is attached at 
the end.  Tension in a rope three-quarters of the way
from the end keeps it stationary.  What is known is:

mb,mh,L, g, θ, φ and Icm,beam = 1
12

mbL
2

a.) Draw a f.b.d. identifying all the forces acting on the beam.

T

θ

φ
pin

θ

φ

θ mbg

T

H

V

47.)

mh

mb

mhg



b.) Derive an expression for the tension in the line.

φ

T
The clever thing to do here is to sum the 
torques about the pin.  That will eliminate 
both H and V leaving you with only one 
unknown, T.  What’s even more clever is to 
use the F-perpendicular approach on T as 
that component is REALLY easy to 
determine (given    ).φ

r⊥ = L 4cosθ

F⊥ = Tsinφ

θ mbg
r⊥

 
!r = L 2

For T:

For mg’s:τpin :∑
  Tsinφ L

2
⎛
⎝⎜

⎞
⎠⎟ − mbg

L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ − mhg

3L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ = Ipinα

        ⇒      T =
mb + 3mb( )g

2
cosθ
sinφ

⎛
⎝⎜

⎞
⎠⎟

0

4le8)

mhg

mb,mh,L, g, θ, φ and Icm,beam = 1
12

mbL
2



c.) Derive an expression for the angular acceleration 
of the beam about the pin just after the cable is cut.  

This is the same problem you just did with 
one major difference.  You don’t have to do 
a torque calculation for the tension because 
T is no more, and the       term (where I is 
the moment of inertia about the pin) is no 
longer zero.  With the non-zero torques 
about the pin being gravity and the hanging 
mass, and we can write:

τpin :∑
  − mbg

L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ − mhg

3L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ = −Ipinα

r⊥ = L 4cosθ

θ mg
r⊥Iα

Problem:  We weren’t given      , we were given      .  Enter the parallel axis 
theorem! 

Ipin Icm

49.)

mhg

mb,mh,L, g, θ, φ and Icm,beam = 1
12

mbL
2



The parallel axis theorem states:

τpin :∑
  − mbg

L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ − mhg

3L
4

cosθ⎛
⎝⎜

⎞
⎠⎟ = −Ipinα

                                                         = − 7
48

mbL
2⎛

⎝⎜
⎞
⎠⎟ α

       ⇒    α =
12 mb + 3mh[ ]gcosθ

7mbL

Iα

Ip = Icm +Md
2

where d is the distance between the two parallel axes.  
In this case, that distance is L/4, so we can write:

Ip = Icm + Md2

   = 1
12

mL2 + m L
4

⎛
⎝⎜

⎞
⎠⎟

2

   = 7
48

mL2and

50.)

mb,mh,L, g, θ, φ and Icm,beam = 1
12

mbL
2

12



Example 10: A ball of radius R rolls 
without slipping down an incline of angle .  
a.) What is the acceleration of the center of 
mass, and b.) what is its speed after it has 
dropped a distance h?  

Assume you know:

m, R, g, θ, and Icm,ball =
2
5

mR2

Before we can do this problem, there is something that needs to be noted about 
objects rolling up or down an incline.  We need to talk about rolling friction and, 
more specifically, the direction of rolling friction. 

θ

51.)

θ

mR

Thinking back to what we said about static friction and its cause.  The molecular 
structure of the bodies in contact meld into one another, and the electron-repulsion of 
their elements create a kind of bonding that needs to be released before motion can 
occur (the slide I used to animate this idea is shown on the next page).  With sliding, 
that release takes the form of shearing and translates into what we call kinetic 
friction.  With rolling, that release takes the form of pealing and is called rolling 
friction.  What is important to note is that both have the underlying melding 
mechanism associated with static friction.



52.)

A little closer look is instructive.  
As the electrons of the upper object (in 
blue) nestle into the electron 
configuration of the lower object (in 
red), they apply a repulsive force to one 
another (see sketch).

The horizontal components add to 
zero.  The vertical components 
producing the normal force that 
supports the upper object. 

But try to move the upper body 
to the right and the horizontal 
components will no longer cancel. 

 i i  i
 i  i  i  i  i i  i  i  i  i  i i  i  i  i i i  i  i i  i  i  

i
 i
 i
 i
 i

This net horizontal force is known as the static frictional force between the 
two bodies.  It is the force that has to be overcome before the upper body can 
actually accelerate to the right.  Put a little differently, for the top body to 
accelerate, an external force to the right that is large enough to effectively shearing 
the repulsive bonds that exist between electrons has to be applied.

e−1( )
1

e−1( )
2

F2 F1

 i  i  i
 i  i  i  

i
 i
 i
 i
 i i

 i  i  i  i  i i  i  i  i  i  i i  i  i i i  ie−1( )
1

e−1( )
2

F2
F1



53.)

What changes if the one of 
the bodies is round and the second 
object, the underneath object, is an 
incline.  The round body’s weight 
will motivate it to slough down 
against the repulsing (green) 
electrons of the incline (see sketch).  
That tendency to ease down the 
incline is what produces the static 
frictional force UP the incline 
(again, notice offset of electrons in 
sketch).  

In fact, it doesn’t matter whether 
the round body is rolling up the 
incline or down it, that electron 
interaction will always produce a 
static friction force that is UP the 
incline.  

 i i
 i

 i
 i
 i

 i

 i

 i
 i

 i

 i
 i

 i i
 i

 i

 i

 i  i
 i

 i
 i  i  i i  i
 ie−1( )

1

e−1( )
2

F2
F1  i

rolling friction UP the incline



Example 10: A ball of radius R rolls 
without slipping down an incline of angle .  
a.) What is the acceleration of the center of 
mass, and b.) what is its speed after it has 
dropped a distance h?  

Assume you know:

m, R, g, θ, and Icm,ball =
2
5

mR2

a.) What is the acceleration of the center of mass of the ball?

θ

54.)

θ

mR

mg
f
N

Because we are going to be taking torques, we 
need to place the forces on our f.b.d. where they 
actually act on the body.

y

x

There are two ways to do a problem like this.  
We’ll execute both.

The first approach looks at the motion from the perspective 
of the center of mass.



m, R, g, θ, and Icm,ball =
2
5

mR2

a.) con’t.

55.)

mg

f
N

The center of mass both accelerates and has mass angularly accelerate about 
itself.  

mgsinθ mgcosθ

θ

Dealing with the translational motion first:

Fx :∑
      f − mgsinθ = −macm     (Equ. A)

y

x
According to Newton’s Second, summing
the forces along the line of the acceleration 
will equal the mass times the acceleration of 
the center of mass along that line.  

Our f.b.d. shows the forces and force 
components along the line (and 
perpendicular to the line) of acceleration.  
Doing the summation yields:



m, R, g, θ, and Icm,ball =
2
5

mR2

a.) con’t.

56.)

mg

f
N

Dealing with the rotational motion:

According to the rotational version of Newton’s 
Second, the sum of the torques about the center 
of mass will equal the moment of inertia about 
the center of mass times the angular acceleration 
of the body about the center of mass.  

A dressed down f.b.d. showing the forces
without axes or components allowing us to 
identify any vectors and     quantities.  With 
those, the torque summation yields:

 
!r r⊥

τcm :∑
       fR = Icmα   
           = 2

5mR2( )α   

   ⇒     f = 2
5mR( )α    (Equ. B)

 
!rf = r⊥



a.) con’t.

57.)

Remembering that                  for a rolling object, 
Equ. B becomes:

acm = Rα 

f = 2
5mR( )α 

  ⇒   f = 2
5mR( ) acm

R
⎛
⎝⎜

⎞
⎠⎟

  ⇒   f = 2
5macm

From Equ. A, then:

f − mgsinθ = −macm

   ⇒    2
5macm( )− mgsinθ = −macm

   ⇒    acm = 5
7

gsinθ

m, R, g, θ, and Icm,ball =
2
5

mR2

α

R
acm = Rα



m, R, g, θ, and Icm,ball =
2
5

mR2

a.) con’t.

58.)

The second approach looks at the motion 
from an instantaneous fixed point at the 
point of contact perspective (remember, you 
can’t tell the difference between the motion 
of the two situations, instantaneously).  
From that perspective, summing the torques 
about the contact point eliminates the 
normal and friction leaving only a torque 
due to gravity, and we can write:

 

τp :∑
       r⊥

!
F = Ipα   

      Rsinθ( )mg = Ipα    

mg

f

N

 
!r

r⊥

θ

The torque is about the axis at P, so the moment of inertia must be about P.  Enter 
(again) the parallel axis theorem.

r⊥ = Rsinθ



59.)

The parallel axis theorem maintains:

Rsinθ( )mg = Ipα

   ⇒   mgRsinθ = 7
5

mR2⎛
⎝⎜

⎞
⎠⎟

acm

R
⎛
⎝⎜

⎞
⎠⎟

   ⇒   acm = 5
7

gsinθ  

Ip = Icm + Md2   

    = 2
5

mR2 + mR2

    = 7
5

mR2

That means:

This is the same solution we got using the previous approach.

So which approach should you use in a given problem?  Use the one that most 
naturally reflects the situation.  In this case, the body’s center of mass was both 
accelerating and had mass angularly accelerating around it, so the c.of m. 
approach was the most reasonable.  In the case of a pinned beam, the mass is 
angularly accelerating around a fixed pin, so the fixed point approach is best.  
Use the approach that best reflects what’s actually happening in the system.



Example 10 continued: A ball of 
radius R rolls without slipping down an incline of 
angle    .  What is the speed of its center of mass 
after it has dropped a distance h?  Assume you 
know:

m, R, g, θ, and Icm,ball =
2
5

mR2

b.) What is the velocity of the center of mass after the ball drops a distance h?

θ

60.)

θ

mR

There are two ways to do this problem, one using kinematics and one using 
energy considerations.  We’ll do the kinematics approach, first.
We’ve already determined the acceleration of the center of mass down the 
incline to be                           .  We know the initial velocity is ZERO, and 
we know the body travels d, or:

acm = 5
7gsinθ  

h
d

θ
sinθ = h

d
   ⇒    d = h

sinθ

h
vcm ω2



m, R, g, θ, and Icm,ball =
2
5

mR2

With that information, we can write:

61.)

θ

mR

v2( )2 = v1( )2 + 2ad

   ⇒    v2 = v1( )2 + 2ad

                = 2 5
7

gsinθ⎛
⎝⎜

⎞
⎠⎟

h
sinθ

⎛
⎝⎜

⎞
⎠⎟

                = 10
7

gh

This is all fine and swell if you already know the ball’s acceleration (or angular 
acceleration), but if you don’t, doing the Newton’s Second Law evaluation just 
so you can use kinematics is kinda dumb . . . especially when you have an 
approach that is MADE to deal with velocities . . . conservation of energy!!!!!

0



When we derived the general expression for a rotating body’s moment of 
inertia, we introduced the idea of rotational kinetic energy.  That expression was:

Energy Considerations

62.)

How might this play into a conservation of energy problem with rotational 
motion?  In essence, we do NOT define potential energy functions for work being 
done by rotational agents, so the only terms that are generally affected in the 
conservation of energy relationship are the kinetic energy terms and, maybe, the 
extraneous work quantities.

KErot =
1
2
Iω2

But first . . . 



Let’s say you have a block sliding down a 
frictionless ramp, and a ball rolling down an identical 
frictional ramp (same angle).  If both are released 
from rest at the same time and same height, which 
object will get to the bottom of the incline first, and 
which will have the greatest speed?

A Preliminary Observation

63.)

The answer: The block will get to the bottom first and be moving fastest, though 
possibly not for the reason you might think.  

Specifically, both objects start with the same amount of potential energy, so it 
might be a temptation to assume that friction does extraneous work on the ball 
and, hence, it’s velocity at the bottom will be less than that of the block moving 
over the frictionless surface.  That isn’t the key, and you need to understand why.



Think back to our discussion of friction.  Objects in contact with one another 
nestles into one another at the molecular structure.  What stops the incursion is 
repulsion between the electrons of the two structures.  Try to move one of the 
objects and that electron repulsion becomes imbalanced, producing a retarding 
force that on the macroscopic level is called static friction.  To move one of the 
objects, you have to exert enough force to overcome this bonding-like situation.  
Doing so produces motion.  During relative motion, the melding continues to exist, 
just not as much.  The need to continually overcome the electron repulsion set up 
by this lesser melding is what we associate with kinetic friction.  When a body 
ROLLS over a surface, there is no shearing. Instead, the surfaces peal back from 
one another.  This removes VERY LITTLE energy from the system.

64.)

Bottom line: It isn’t friction that makes the ball move slower.  It’s the fact that in 
the case of the block, all of the gravitational potential energy goes into changing the 
body’s translational kinetic energy.  In the case of the ball, where not only the 
center of mass is accelerating but also there is angular acceleration around the 
center of mass, some of that initial gravitational potential energy goes into changing 
the body’s translational KE (and, hence, it’s translational velocity) but some also 
has to go into changing the body’s rotational KE.  Having less energy for 
translational KE, the ball moves slower than the block at the bottom of the ramp. 



m, R, g, θ, and Icm,ball =
2
5

mR2

b.) What is the velocity of the center of 
mass after the ball drops a distance h.

65.)

θ

mR

Starting from scratch, energy consideration is the way to go here.  Remem-
bering that the ball started from rest, we can write:

h

KE1∑ + U1∑ + Wext∑ =             KE2∑             + U2∑
     0    +  mgh +     0     = 1

2
m vcm( )2 + 1

2
Icmω

2⎡
⎣⎢

⎤
⎦⎥
+    0

      ⇒      mgh = 1
2

m vcm( )2 + 1
2

2
5

mR2⎛
⎝⎜

⎞
⎠⎟

vcm

R
⎛
⎝⎜

⎞
⎠⎟

2

      ⇒  vcm = 10
7

gh

Example 10 continued: A ball of 
radius R rolls without slipping down an incline of 
angle    .  Assume you know:  θ

vcm ω2



Example 11: So let’s go back to the 
swinging beam of length L pinned at an angle    a 
quarter of the way up the beam (i.e., at L/4).  The 
cable is cut and the beam swings down.  What is 
the velocity of it’s center of mass as it passes 
through its lowest point.  We know:

m, L, g, θ, φ and Icm,beam = 1
12

mL2

In this case, the object is rotating about the pin, 
so it makes sense to evaluate its motion relative 
to the fixed axis at the pin.  Tracking the center 
of mass drop for potential energy positions (see 
sketch), we can write:

θ
pin

θ

66.)

cable cut

ω2

 i
c. of  m.

 ic. of  m. y = 0

L
4

L
4( )sinθ

and we calculated earlier the moment of inertia 
about the pin as:

Ipin =
7
48
mbeamL

2



m, L, g, θ, φ and Icm,beam = 1
12

mL2,  Ipin =
7

48
mL2

67.)

KE1∑ +           U1∑                + Wext∑ =    KE2∑   + U2∑
     0    +  mg L

4 + L
4( )sinθ⎡

⎣
⎤
⎦ +     0     = 1

2
Ipin ω2( )2 +    0

      ⇒       mg L
4 + L

4( )sinθ⎡
⎣

⎤
⎦ =

1
2

7
48

mL2⎛
⎝⎜

⎞
⎠⎟

vcm

L
4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

               ⇒        vcm = 3
14

g L + Lsinθ[ ]

We could have looked at this from the perspective of the center of mass.  That 
would look like:

KE1∑ +            U1∑              + Wext∑ =             KE2∑                  + U2∑
     0    +  mg L

4 + L
4( )sinθ⎡

⎣
⎤
⎦ +     0    = 1

2
m vcm( )2 + 1

2
Icm ω2( )2⎡

⎣⎢
⎤
⎦⎥
+    0

Try the math.  It will yields the same result.



Starting simple—Example 11: Consider a 
hung pulley with a rope around it and a mass attached 
to its end.  If the pulley is massive, and WITHOUT 
using kinematics:

You have seen a problem in which a body has both translated and rotated
(a ball rolling down an incline), but we haven’t yet dealt with pulleys and 
situations with multiple masses.  With that in mind, consider:

Rotation, Translation and Pulleys

68.)

a.) Derive an expression for the system’s acceleration. m1

mp

Starting with the translational version of N.S.L. on the 
hanging mass:

m1g

T
Fy :∑

      T− m1g = −m1a

Two unknowns (a and T)—require another equation.

R



69.)

a.) con’t.

m1

mp
Assuming the pulley is a disk, so it’s moment of inertia 
can be approximated at:

τpully :∑
      TR = Iα

   ⇒    TR = 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

a
R

⎛
⎝⎜

⎞
⎠⎟

   ⇒    T = 1
2

mpa

Combining our two relationships yields:

I = 1
2
mpR

2

we can write:

T− m1g = −m1a

  ⇒   1
2

mpa
⎛
⎝⎜

⎞
⎠⎟ − m1g = −m1a

    ⇒     a = m1

m1 + 1
2mP

g

R



70.)

b.) How fast is the hanging mass moving after it has 
fallen a distance h?

m1

mp

Without using kinematics, this is a conservation of 
energy problem.  Remembering that the disk will have 
rotational kinetic energy, we can write:

Interesting note:  The calculated work tension did on the hanging mass as it 
fell was negative; the calculated work tension did on the pulley as it rotated 
was positive; and the two are equal summing to zero.  That internal force 
did no net work on the system.

KE1∑ + U1∑ + Wext∑ =             KE2∑             + U2∑
     0    +  m1gh +     0     = 1

2
m1 vcm( )2 + 1

2
Ipullyω

2⎡
⎣⎢

⎤
⎦⎥
+    0

      ⇒      m1gh = 1
2

m1 vcm( )2 + 1
2

1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

v
R

⎛
⎝⎜

⎞
⎠⎟

2

                     ⇒  vcm = 2m1gh
m1 + 1

2mp

R

h
y = 0



Note that we’ve done this problem before!  So what’s 
different?  The tension in the lines can no longer be 
equal.  How so?  If they were, the torques provided by 
the two tensions would be equal and opposite, so the net 
torque would be ZERO, hence no angular acceleration.  
But there is angular acceleration, so the tensions must 
be different.  So . . .  

Example 12: something a little more 
complex:  An Atwood Machine with a massive pulley 
of radius R (see sketch).  Without using kinematics:

71.)

a.) Derive an expression for the system’s acceleration.

m1

m2

mp
R

Fy :∑
      T1 − m1g = m1a
   ⇒    T1 = m1g + m1am1g

T1

m2g

T2 Fy :∑
      T2 − m2g = −m2a
   ⇒    T2 = m2g − m2a

f.b.d. on m1
f.b.d. on m2



With        acceleration defined downward,

There are three unknowns,                      Your third 
equation is coming from summing torques about the 
pulley.  

72.)

a.) con’t.

m1

m2

mp
R

τpin :∑
         T1R − T2R = −Iα T1 T2

T1,  T2  and a.

P

Substituting tensions

               T1         R −          T2         R =  −     Ipully      α

⇒   m1g + m1a( )R − m2g − m2a( )R = − 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

a
R

⎛
⎝⎜

⎞
⎠⎟

        ⇒   a = −m1g + m2g
1
2

mp + m1 + m2
⎛
⎝⎜

⎞
⎠⎟

T1 = m1g +m1a T2 = m2g −m2aand
and we get:

the pulley’s angular acceleration 
must be clockwise and negative, so:

m1's



73.)

b.) How fast are the hanging masses moving after they 
have traversed a distance h?

Again, this is a conservation of energy problem.  Defining
the zero-potential energy levels, then writing out the 
governing equation for the system without solving yields:

So two morals here:
1.) The tension on either side of a massive pulley is different; and
2.) You can assign each mass its own zero potential energy level for gravity (near 
the surface of the earth), independent of any other mass in the system.
3.) Although it may not be obvious at first glance, the extraneous work done by 
the two tensions added to the work done by the torque produced by those tensions 
on the pulley will add to zero (that’s why        is zero).

KE1∑ + U1∑ + Wext∑ =             KE2∑             + U2∑
     0    +  m2gh +     0     = 1

2
m1v

2 + 1
2

m2v
2 + 1

2
Ipullyω

2⎡
⎣⎢

⎤
⎦⎥
+ m1gh   

m1

m2

mp
R

h

y = 0

y = 0

h

	Wext



74.)

Example 13: Consider a string 
attached to a hanging mass at one end and 
to a block on an incline of angle    at the 
other.  The string is hung over a massive 
pulley of radius R and known I.  What is 
given is:

a.) Derive an expression for the hanging mass’s acceleration when the system is 
released.

m1,  mh,  mp, R, g, θ, and Ipulley =
1
2

mpR
2

θ

Fy :∑
      T2 − mhg = mha
   ⇒    T2 = mhg + mhamhg

T2

For hanging mass (assuming acceleration upward):

θ

m1
mp

mh



75.)

a.) con’t

m1,  mh,  mp, R, g, θ, and Ipulley =
1
2

mpR
2

For block (assuming acceleration
down the incline):

Nm1g

T1

Fm1,x∑
          T1 − m1gsinθ = −m1a
         ⇒    T1 = m1gsinθ− m1a

For pulley (assuming angular acceleration clockwise):

T1

T2

τpin∑
          − T2R + T1R = Ipulleyα

         ⇒    − T2R + T1R = 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

a
R

⎛
⎝⎜

⎞
⎠⎟

m1
mp

mh
θ

P

mpg



76.)

a.) con’t

m1,  mh,  mp, R, g, θ, and Ipulley =
1
2

mpR
2

Remembering that:
T1 = m1gsinθ−m1a

−T2R + T1R = 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

a
R

⎛
⎝⎜

⎞
⎠⎟

    ⇒    − T2 + T1 =
1
2

mpa

         ⇒    − mhg + mha( ) + m1gsinθ− m1a( ) = 1
2

mpa

                      ⇒    a = −mhg + m1gsinθ
1
2

mp + m1 + mh
⎛
⎝⎜

⎞
⎠⎟

T2 = mhg +mhaand

we can write:

m1
mp

mh
θ



77.)

Example 13 (con’t): Consider 
a string attached to a hanging mass at one 
end and to a block on an incline of angle    
at the other.  The string is hung over 
massive pulley of radius R and known I.  
What is given is:

b.) Derive an expression for the hanging mass’s velocity after it has risen a 
distance h.

m1,  mh,  mp, R, g, θ, and Ipulley =
1
2

mpR
2

θ

This is a conservation of energy problem:

Note that when the hanging mass rises a distance h, the block slides down the 
incline a distance h but drops a distance d:

d
h

θ
sinθ = d

h
   ⇒    d = hsinθ

m1
mp

mh
h

h

θ



78.)

Assuming the zero level for the hanging 
mass is where it starts out, and the zero 
level for the block is where it ends up, 
we can write:

m1,  mh,  mp, R, g, θ, and Ipulley =
1
2

mpR
2 m1

mp

mh h

h

KE1∑ +    U1∑        + Wext∑ =             KE2∑                         + U2∑
     0    + m1g hsinθ( ) +     0     = 1

2
m1v

2 + 1
2

mhv
2 + 1

2
Ipullyω

2⎡
⎣⎢

⎤
⎦⎥
+ mhgh 

   ⇒   m1g hsinθ( ) = 1
2

m1v
2 + 1

2
mhv

2 + 1
2

1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

v2

R2

⎛
⎝⎜

⎞
⎠⎟
+ mhgh 

                  ⇒       v =
2m1g hsinθ( )− 2mhgh

m1 + mh + 1
2mp

  

y = 0

y = 0θ

Where do we define the zero potential 
energy levels?



Problem: An arm of length “L” is 
welded to a pulley of radius R. The 
system is pinned at the pulley’s center of 
mass.  A lump is glued to the pulley/arm’s 
end whose length is 2R.  The system is 
initially stationary.  Known:

79.)

mn,  ma,  mp, R, g, L, Iarm's c. of m. =
1

12
maL

2

a.) Draw a f.b.d. for the forces 
acting on the pulley/arm system. 
(Hint:  Note that as there is only a 
vertical force initially acting at the 
pin, and there are 5 of these forces).

mp

mn

R
ma

L

Ffinger

and Icm,pully =
1
2

mpR
2

2
3
L

mng
mpg

V

mag
Ffinger



80.)

b.) Determine the moment of inertia of 
the system about the pulley’s pin. mp

R
ma

L

Ffinger

and Icm,pully =
1
2

mpR
2

2
3
L

mn

mn,  ma,  mp, R, g, L, Iarm's c. of m. =
1

12
maL

2

Ipin =         Inub        +      Ipulley    +                   Iarm

     =     mnr
2( )      + 1

2
mpR

2⎛
⎝⎜

⎞
⎠⎟ +     Iarm,cm    +     marmd2( )

     = mn R + L( )2( )+ 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟ +

1
12

maL
2⎛

⎝⎜
⎞
⎠⎟ + ma R + L

2
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

     = mn R + 2R( )2( )+ 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟ +

1
12

ma 2R( )2⎛
⎝⎜

⎞
⎠⎟ + ma R +

2R( )
2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     = 3mn +
1
2

mn +
13
3

mn
⎛
⎝⎜

⎞
⎠⎟ R2

parallel axis 
theorem



81.)

d.) The finger is removed and the system 
released.  Derive an expression for its 
initial angular acceleration?

mL,  ma,  mp, R, g, L, Iarm's c. of m. =
1

12
maL

2

and Icm,pully =
1
2

mpR
2

c.) How would you determine how large a force the finger would have to be to keep 
the system in equilibrium?

Sum the torques about the pin . . . 

mng

V

mag

R + 2R( )( ) = 3R
R +R = 2R

Γpin :∑
      − mag 2R( )− mng 3R( ) = −Ipinα

            ⇒    α =
2ma + 3mn( )gR

Ipin

mpg
r⊥



82.)

mL,  ma,  mp, R, g, L, Iarm's c. of m. =
1

12
maL

2

and Icm,pully =
1
2

mpR
2

e.) Is the angular acceleration constant?  That is, if you wanted to determine, say, the 
angular velocity of the ensemble as it swung down through its lowest point, could 
you use rotational kinematics?

To see, we need to determine the angular 
acceleration expression for an arbitrary 
orientation.  Consider:

mpg

mng

V

mag

3Rcosθ

2Rcosθ

Γpin :∑
      − mag 2R cosθ( )− mng 3R cosθ( ) = −Ipinα

            ⇒    α =
2ma + 3mn( )gR

Ipin

cosθ

θ

Apparently the angular acceleration is a function of 
the angular displacement from the horizontal, which 
means the angular acceleration is not constant . . . 
which means you can’t use rotational kinematics to 
solve for anything . . . 

r⊥



83.)

f.) The entire system rotates down with the 
the arm passing through the vertical.  At that 
point, what is the system’s angular velocity?

KE1∑ +      U1∑                 + Wext∑ = KE2∑ +      U2∑   

     0   + mbg 2R( )+mlumpg 3R( )⎡⎣ ⎤⎦ +     0     =          KElump            +          KEarm          +          KEpulley        ⎡⎣ ⎤⎦ + 0

                                                                    = 1
2

mlump     vlump
2    ⎛

⎝⎜
⎞
⎠⎟ +

1
2

   Ibeam,pin  ω2  ⎛
⎝⎜

⎞
⎠⎟ +

1
2

     Ipulley     ω2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+ 0

                                                                     = 1
2

mlump 3R( )ω( )2⎛
⎝⎜

⎞
⎠⎟ +

1
2

13
3

maR
2⎛

⎝⎜
⎞
⎠⎟ ω

2⎛
⎝⎜

⎞
⎠⎟
+ 1

2
1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟ ω

2⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

  

We need to identify the potential energy in the system 
to start with.  As there are no rotational potential 
energy functions, all we need to worry about is 
gravitational PE for each piece of the system.  From 
there, we can either approach this as a pure rotation 
of the entire system, or as individual pieces rotating 
with one another.  We’ll do both, starting with the 
latter:

ω

vcm 3R

2R

(“I” from parallel 
axis theorem)

(treated like 
point mass)



84.)

If we had treated this as a 
pure rotation of the entire 
ensemble, it would have 
looked like:

vnub = 3R( )ω

 ω =
2mbgR + 3mlumpgR

3
2

mlumpR
2 + 1

2
13
3

maR
2⎛

⎝⎜
⎞
⎠⎟ +

1
2

1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

   =
4mbg + 6mlumpg

3mlump +
13
3

ma +
1
2

mp
⎛
⎝⎜

⎞
⎠⎟ R

g.) (con’t.)  Equating the right and left side, the beast yields an 
angular velocity of:

vcm

ω

h.) Lastly, what would the nub’s velocity be at the bottom of the motion?

KE1∑ +      U1∑                  + Wext∑ =  KE2∑     + U2∑   
     0    + mbg 2R( )+mlumpg 3R( )⎡⎣ ⎤⎦ +      0    =      KErot     +    0

                       ⇒       mbg 2R( )+mlumpg 3R( ) = 1
2

Isystem,pinω
2 +   0  



85.)

Example 14: Hinged beam and ball demo: plank hinged at one 
end rotating down with end achieving acceleration greater than g.  (demo) 

θ

	m



86.)

mg

	m

θ

Ignore the mass of the catch, ball and 
tee.  The moment arm for gravity if 
the torque is taken about the pin is:

shortest distance between 
pin and line of force

Note: for           when board 
horizontal, the acceleration of 
the end of the board is “1.5g”, 
which is greater than “g.”

θ = 0

r⊥ = L
2
cosθ

τpin∑ :
                r⊥( )   mg( ) =     Ipin     α

           
L
2

cosθ
⎛
⎝⎜

⎞
⎠⎟

 mg = 1
3

mL2⎛
⎝⎜

⎞
⎠⎟
α

       ⇒     α = 3
2

g
L

cosθ

so N.S.L. yields:

and the end’s acceleration is:
a = Lα = L

3
2

g
L

cosθ
⎛
⎝⎜

⎞
⎠⎟

  = 3
2

gcosθ



87.)

Example 15: Lastly, a stinker: A 
hanging mass is attached to a string which is 
threaded over a massive pulley of radius R, and 
wound around a ball of radius R/2 sitting on an 
incline.  The pulley is positioned so as to let the 
string always be parallel to the plane of the 
incline.  We know:

a.) Derive an expression for the hanging mass’s acceleration when the system is 
released.

Fy :∑
      T2 − mhg = −mhahangingmass

   ⇒    T2 = mhg − mhahangingmass
mhg

T2

For hanging mass (assuming acceleration downward):

θ
mh

m1

mp

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

For reasons of clarity, I’m going 
to redefine this acceleration as the 
acceleration of the string          
and rewrite this N.S.L. equation 
as:

astring

T2 = mhg −mhastring



88.)

The ball is experiencing both an acceleration
of its center of mass AND and angular 
acceleration about it’s center of mass.  Noting 
that friction is up the incline (if the ball broke

Fm1,x∑
          T1 + f − mbgsinθ = mbaballcm

         ⇒    T1 = −f + mbgsinθ+ mbaballcm

For ball’s translational motion (assuming acceleration upward) with components:

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

Nm1g

T1

f

θ
mh

m1

mp

y

x

m1gsinθ

traction, it would spin clockwise), we can take each type of motion, translational 
and rotational, as a separate entity.



89.)

The problem with this expression is that we 
have the hanging mass’s acceleration in terms 
of what the string is doing, and the ball’s 
acceleration in terms of what its center of mass 
is doing.  To relate the two, notice that if the

θ
mh

m1

mp

⇒  acm =
1
2

astring

acontact point = 0

acm

astring = 2acm

T1 = −f + mbgsinθ+ mbaballcm

   ⇒    T1 = −f + mbgsinθ+ mb
astring

2
⎛
⎝⎜

⎞
⎠⎟

so

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

contact point has zero instantaneous acceleration, we can write:

instantaneously



90.)

a.) con’t
For ball’s rotation (assuming angular 
acceleration clockwise and summing 
torques about the center of mass):

Problem?  We need an expression for the angular acceleration of the ball in 
terms of the acceleration of the string.

θ
mh

m1

mp

Nm1g

T1

f

τball,cm∑
          f R

2( )− T1
R

2( ) = −Iball,cmαball

          f R
2( )− T1

R
2( ) = − 2

3
mbR

2⎛
⎝⎜

⎞
⎠⎟ αball

     ⇒         f = T1 −
4
3

mbR
⎛
⎝⎜

⎞
⎠⎟ αball

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2



91.)

a.) con’t
For the angular acceleration of the ball in 
terms of the acceleration of the string 
(which is to say, the acceleration of a point 
on the outer edge of the ball):

With that:

θ
mh

m1

mp

 f = T1 −
4
3

mbR
⎛
⎝⎜

⎞
⎠⎟ αball

   ⇒     f = T1 −
4
3

mbR
⎛
⎝⎜

⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

astring = R( )αball

fixed point
αball

⇒   αball =
astring

R

R
2

R
2

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

instantaneously



92.)

a.) con’t
For pulley (assuming angular acceleration
clockwise):

T1

T2 τpin∑
          − T2R + T1R = −Ipulleyα

         ⇒    − T2R + T1R = − 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

θ
mh

m1

mp

So we have everything in terms of the string.  It’s time to compile.

mb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

P

mpg



93.)

a.) con’t
m1,  mh,  mp, R, g, θ, Ipulley =

1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

(from hanging mass)    T2 = mhg − mhastring    

(from translation of ball)   T1 =                 − f                   + mbgsinθ+ mb
astring

2
⎛
⎝⎜

⎞
⎠⎟    

                                           = − T1 −
4
3

mbR
⎛
⎝⎜

⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ mbgsinθ+ mb

astring
2

⎛
⎝⎜

⎞
⎠⎟

                              ⇒   2T1 = + 4
3

mbR
⎛
⎝⎜

⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟
+ mbgsinθ+ mb

astring
2

⎛
⎝⎜

⎞
⎠⎟

                                                  ⇒   T1 =
2
3

mb + mb
⎛
⎝⎜

⎞
⎠⎟ astring + 2mbgsinθ

                                                             = 5
3

mb
⎛
⎝⎜

⎞
⎠⎟ astring + 2mbgsinθ

(from angular motion of ball)     f = T1 −
4
3

mbR
⎛
⎝⎜

⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

   



94.)

a.) con’t

(from pulley)  − T2          R +                     T1                      R = − 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

   

  ⇒   − mhg − mhastring( )R + 5
3

mb
⎛
⎝⎜

⎞
⎠⎟ astring + 2mbgsinθ⎛

⎝⎜
⎞
⎠⎟

R = − 1
2

mpR
2⎛

⎝⎜
⎞
⎠⎟

astring

R
⎛
⎝⎜

⎞
⎠⎟

               ⇒    mhastring( ) + 5
3

mb
⎛
⎝⎜

⎞
⎠⎟ astring +

1
2

mp
⎛
⎝⎜

⎞
⎠⎟ astring = mhg − 2mbgsinθ

                                ⇒    astring =
mhg − 2mbgsinθ

mh( ) + 5
3

mb
⎛
⎝⎜

⎞
⎠⎟ +

1
2

mp
⎛
⎝⎜

⎞
⎠⎟

m1,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2

T2 = mhg − mhastring( )  T1 =
5
3
mb

⎛
⎝⎜

⎞
⎠⎟ astring + 2mbgsinθ

⎛
⎝⎜

⎞
⎠⎟

with and



 KE1∑ + U1∑ + Wext∑ =                                 KE2∑                                          +    U2∑
     0    + mhgh[ ]+    0     = 1

2
m1vb,cm

2 + 1
2

Iball,cmωb
2⎛

⎝⎜
⎞
⎠⎟ +

1
2

mhvstring
2 + 1

2
Ipulleyωpulley

2⎡
⎣⎢

⎤
⎦⎥
+ m1g hsinθ( )⎡⎣ ⎤⎦

95.)

b.) Derive an expression for the hanging 
mass’s velocity after dropping a distance h.

This is very much like a standard conservation of energy problem with the 
exception that you have to keep track of subscripts and make the 
appropriate substitutions when it’s time to solve.  I’ll not solve it, but 
writing it out looks like:

θ
mh

m1

mpmb,  mh,  mp, R, g, θ, Ipulley =
1
2

mpR
2,  and Icm of ball =

2
3

mbR
2


