Conservation of

 Momentum

Newton: Quantity of Motion

"Forces applied for a period of time change an object's

$$
\overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$ quantity of motion."

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=m \frac{\Delta \overrightarrow{\mathbf{v}}}{t} \\
& \overrightarrow{\mathbf{F}} t=m \Delta \overrightarrow{\mathbf{v}}=m \mathbf{v}_{f}-m \mathbf{v}_{i} \\
& \overrightarrow{\mathbf{p}} \equiv m \overrightarrow{\mathbf{v}} \\
& \mathbf{F} t=\Delta \mathbf{p} \\
& \sum \mathbf{F}=\frac{d \mathbf{p}}{d t}
\end{aligned}
$$

Conservation?

Two particles that are interacting with each other via some force apply equal and opposite forces to each other (Newton's 3rd Law), for some amount of time t.

Law of Conservation of Momentum (isolated sys)

Whenever two or more particles in an isolated system interact, their total momentum remains constant.

$$
\begin{aligned}
& p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime} \\
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
\end{aligned}
$$

Example I

Alex ($m=75 \mathrm{~kg}$) sits on a 5 kg cart with no-friction wheels, and gets hit by a 7.0 kg bowling ball with a velocity of $5.0 \mathrm{~m} / \mathrm{s}$.
a) What is Alex's velocity after catching the ball?

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{\text {frul }} \\
& (7.0 \mathrm{~kg})(5.0 \mathrm{~m} / \mathrm{s})+(80 \mathrm{~kg})(0)=(7+80) v_{\text {frual }} \\
& v_{\text {fral }}=\frac{35 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{87 \mathrm{~kg}}=0.40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) What is Alex's velocity after the collision if the bowling ball bounces off with a velocity of $-0.50 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1-\text { final }}+m_{2} v_{2-\text { final }} \\
& (7.0 \mathrm{~kg})(5.0 \mathrm{~m} / \mathrm{s})+(80 \mathrm{~kg})(0)=(7)(-0.5)+(80) v_{\text {final }} \\
& v_{\text {final }}=\frac{35+3.5}{80}=0.48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Impulse (non-isolated sys)

= "Change in momentum"

$$
\begin{aligned}
& \mathbf{F}=\frac{d \mathbf{p}}{d t} \\
& d \mathbf{p}=\mathbf{F} d t \\
& \int d \mathbf{p}=\int_{t_{i}}^{t_{f}} \mathbf{F} d t \\
& \mathbf{J}=\int_{t_{i}}^{t_{f}} \mathbf{F} d t=\Delta \mathbf{p} \\
& \begin{array}{c}
\text { Note: for some } \\
\text { reason, our textbook } \\
\text { uses the symbol I to } \\
\text { indicate impulse. }
\end{array}
\end{aligned}
$$

Impulse

Area under the curve of a force-time curve

Example 2

Alex (still 75 kg) sits on the 5 kg cart and slams into the wall with an initial velocity of $90 \mathrm{~km} / \mathrm{h}$. The collision lasts 0.257 seconds.
a)What was the impulse in this collision?
b) What average force is exerted on Alex during the collision?

Example

A 4.00 kg gun with a 80 cm long barrel fires a 50 -gram bullet with at a velocity of $400 \mathrm{~m} / \mathrm{s}$. Find:
a) recoil velocity of gun
b) impulse on bullet
c) time the bullet accelerated
d) average acceleration of the bullet
e) force applied to the gun by the bullet

Example

A 4.00 kg gun with a 80 cm long barrel fires a 50 -gram bullet with at a velocity of $400 \mathrm{~m} / \mathrm{s}$. Find:
a) recoil velocity of gun
b) impulse on bullet
c) time the bullet accelerated
d) average acceleration of the bullet
e) force applied to the gun by the bullet
a) $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1 \text { final }}+m_{2} v_{2 \text { final }}$
$0=(4 \mathrm{~kg}) v_{1 \text { final }}+(0.050 \mathrm{~kg})(400 \mathrm{~m} / \mathrm{s})$
$v_{1 \text { final }}=-5.0 \mathrm{~m} / \mathrm{s}$
b) Impulse $=F t=m \Delta v$
$=(0.050 \mathrm{~kg})(400-0)=20 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
c) $t=\frac{\text { distance }}{\text { speed }}=\frac{0.80 \mathrm{~m}}{200 \mathrm{~m} / \mathrm{s}}=0.004 \mathrm{~s}$
d) $a=\frac{v_{f}-v_{i}}{t}=\frac{400 \mathrm{~m} / \mathrm{s}-0}{0.004 \mathrm{~s}}=1.0 \mathrm{e} 5 \mathrm{~m} / \mathrm{s}^{2}$
e) $F=m a=(0.050 \mathrm{~kg})\left(1.0 e 5 \mathrm{~m} / \mathrm{s}^{2}\right)$
$F=5000 N$

Collisions

Elastic

Collisions

Momentum (in isolated system) is always conserved

$$
\sum \Delta p=0, \text { or } p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

Energy (in isolated system) is always conserved

$$
\sum \Delta \mathrm{E}=0 \text {, or } \sum \mathrm{E}_{\mathrm{i}}=\sum \mathrm{E}_{\mathrm{f}}
$$

In some collisions, there is very little energy "lost" to heat (sound, deformation). In these elastic collisions, kinetic energy is conserved:

$$
\mathrm{K}_{1}+\mathrm{K}_{2}=\mathrm{K}_{1}{ }^{\prime}+\mathrm{K}_{2}{ }^{\prime}
$$

Collisions

Elastic

Collisions

- Elastic collisions: $\mathrm{K}_{1}+\mathrm{K}_{2}=\mathrm{K}_{1}{ }^{\prime}+\mathrm{K}_{2}{ }^{\prime}$ \& $\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{1}{ }^{\prime}+\mathbf{p}_{2}{ }^{\prime}$

$$
\begin{array}{r}
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{\prime}{ }^{2}+\frac{1}{2} m_{2} v_{2}^{\prime}{ }^{\prime 2} \& \\
m_{1} \mathrm{v}_{1}+m_{2} \mathrm{v}_{2}=m_{1} \mathrm{v}_{1},+m_{2} \mathrm{v}_{2}
\end{array},
$$

- Inelastic collisions:

$$
\begin{array}{r}
\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{1}^{\prime}+\mathbf{p}_{2}^{\prime} \quad \text { or } \\
m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}=m_{1} \mathbf{v}_{1}^{\prime}+m_{2} \mathbf{v}_{2}
\end{array}
$$

- Perfectly inelastic collisions:

$$
\begin{array}{cc}
\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{1}{ }^{\prime}+\mathbf{p}_{2}^{\prime} & \text { or } \\
m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}=\left(m_{1}+m_{2}\right) \mathbf{v}_{2},
\end{array}
$$

Example 4

A ballistic pendulum is used to measure the speed of a projectile: a 5gram bullet is fired into a l-kg block of wood, which swings up to a height of $5-\mathrm{cm}$.

Find the initial speed of the projectile, and the energy lost in the collision.

For pendulum swinging up, use Cons. of Energy:

$$
\begin{aligned}
& K_{i}=U_{f} \\
& \frac{1}{2} m v_{\text {bottom }}{ }^{2}=m g h \\
& v_{\text {bottom }}=\sqrt{2 g h}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.05 \mathrm{~m})} \\
& v_{\text {bottom }}=0.99 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For collision, use Cons. of Momentum:

$$
\begin{aligned}
& m_{\text {bullet }} v_{\text {bullet }}+m_{\text {block }} v_{\text {block }}=\left(m_{\text {bullet }}+m_{\text {block }}\right) v^{\prime} \\
& (0.005 \mathrm{~kg}) v_{\text {bulleet }}+0=(1.005 \mathrm{~kg})(0.99 \mathrm{~m} / \mathrm{s}) \\
& v_{\text {bullet }}=199 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 5

Tarzan (69 kg) is on the ground, about to be eaten by a tiger. Jane (62 kg) climbs 14 meters up a nearby tree and swings down towards the ground on a vine. She swings past Tarzan, grabbing him as she passes by, and they swing together up into another tree.

What is the maximum
height that Jane and Tarzan can reach on their upswing?

Example 6

A 100 gram rubber bullet is fired horizontally at an 800 gram block of wood which is sitting on top of a flat surface. The coefficient of kinetic friction between the block of wood and the surface is 0.70 ., and the block slides 50 cm before coming to rest.

If the bullet collided elastically with the block, what were its initial and final velocities?

Example 6

$$
\begin{aligned}
& \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& m_{1}\left(v_{1 i}^{2}-v_{1 f}^{2}\right)=m_{2}\left(v_{2 f}^{2}-v_{2 i}^{2}\right) \\
& m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)\left(v_{2 f}+v_{2 i}\right) \\
& m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)
\end{aligned}
$$

Divide eqns to get :
$\left(v_{1 i}+v_{1 f}\right)=\left(v_{2 f}+v_{2 i}\right)$

Useful relationship for 1-d elastic collision problems
$F_{n e t}=m a, F_{f}=m a, \mu m g=m a, a=(0.7)(9.80)=6.86 \mathrm{~m} / \mathrm{s}^{2}(a$ of block $)$ $v_{f}{ }^{2}=v_{i}^{2}+2 a \Delta x, v_{i}=\sqrt{2 a \Delta x}=\sqrt{2(6.86)(.50)}=2.62 \mathrm{~m} / \mathrm{s}\left(v_{i}\right.$ of block $)$ $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$
$0.1 v_{1 i}+0=0.1 v_{1 f}+(0.8)(2.62) \rightarrow v_{1 i}=v_{1 f}+20.96$
$\left(v_{1 i}+v_{1 f}\right)=\left(v_{2 f}+v_{2 i}\right)$
$v_{1 i}+v_{1 f}=(2.62+0)$
Combine eqns to get

$$
v_{1 f}=-9.17 \mathrm{~m} / \mathrm{s}, v_{1 i}=11.79 \mathrm{~m} / \mathrm{s}
$$

2-D Collisions

Example 7

A 1000 kg car traveling north at $4 \mathrm{~m} / \mathrm{s}$ collides with a 800 kg car traveling east at $3 \mathrm{~m} / \mathrm{s}$. After the masses of the two cars have locked together, what is the final velocity of the wreckage just after the collision?

2-D Collisions-"Glancing"

$x: m_{1} v_{1 i x}+0=m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \phi$
$y: 0+0=m_{1} v_{1 f} \sin \theta-m_{2} v_{2 f} \sin \phi$
$K: \frac{1}{2} m_{1} v_{1 i}{ }^{2}+0=\frac{1}{2} m_{1} v_{1 f}{ }^{2}+\frac{1}{2} m_{2} v_{2 f}{ }^{2}$

Example 8

In a billiard game, a player needs to sink the eight-ball into a corner pocket as shown. If the cue ball approaches at $1.00 \mathrm{~m} / \mathrm{s} .$. .
...what angle is the cue ball deflected? What are the final velocities of each ball? (Assume same mass, elastic collision.)

$$
\begin{gathered}
x: m_{\text {cue }} v_{\text {cue }-x}+m_{8} v_{8-x}=m_{\text {cue }} v_{\text {cue }-x}^{\prime} m_{8} v_{8-x}^{\prime} \\
(1)+(0)=v_{\text {cue }}^{\prime} \cos 55+v_{8}^{\prime} \cos 35 \\
y: m_{\text {cue }} v_{\text {cue }-y}+m_{8} v_{8-y}=m_{\text {cue }} v_{\text {cue }-y}^{\prime} m_{8} v_{8-y}^{\prime} \\
(0)+(0)=-v_{\text {cue }}^{\prime} \sin 55+v_{8}^{\prime} \sin 35 \\
v_{\text {cue }}^{\prime} \sin 55=v_{8}^{\prime} \sin 35 \\
v_{\text {cue }}^{\prime}=0.700 v_{8}^{\prime}
\end{gathered}
$$

Center of Mass

Center of Mass

A force applied at the center of mass will cause the system of total mass m to accelerate in the direction of F, without rotation.

The center-of-mass is located at the "weighted average position of the system's mass."

Center of Mass

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Example 9

Where is the center of mass in this system?

$$
\begin{aligned}
& x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
& x_{c m}=\frac{3 m(0)+m(1)}{3 m+m} \\
& x_{c m}=\frac{1}{4}
\end{aligned}
$$

Complex cm?

$$
\begin{aligned}
& x_{c m}= \frac{m_{1} x_{1}+m_{2} x_{2}+\ldots m_{n} x_{n}}{m_{1}+m_{2}+\ldots m_{n}}=\frac{\sum m_{i} x_{i}}{\sum m_{i}} \\
& y_{c m}= \frac{\sum m_{i} y_{i}}{\sum m_{i}} \\
& z_{c m}=\frac{\sum m_{i} z_{i}}{\sum m_{i}} \quad \overrightarrow{\mathbf{r}}_{c m}=x_{c m} \overrightarrow{\mathbf{i}}+y_{c m} \mathbf{j}+z_{c m} \overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{r}}_{c m}=\frac{\sum m_{i} x_{i} \overrightarrow{\mathbf{i}}+\sum m_{i} y_{i} \overrightarrow{\mathbf{j}}+\sum m_{i} z_{i} \overrightarrow{\mathbf{k}}}{M} \\
& \overrightarrow{\mathbf{r}}_{c m}= \frac{\sum m_{i} \overrightarrow{\mathbf{r}}_{i}}{M}
\end{aligned}
$$

Example 10

A 2 kg mass is located at position (2,3), and a 4 kg mass is located at position (-2,-I). Sketch this two-mass system, and calculate the position of its center of mass.

Example II

Calculate the center-ofmass for this 3 -particle system.

cm Continuous

Locating the center of mass for a large, extended object can be a little trickier, but the same basic principles apply: large objects have lots of particles, all located various distances from the $\mathbf{c m}$.

Densities

For these analyses, we're going to need some way of relating dm to the location of that mass.
We can do this by considering the

- linear density λ,
- surface area density σ, or
- volume density ρ of the object.

$$
\overrightarrow{\mathbf{r}}_{c m}=\frac{1}{M} \int \overrightarrow{\mathbf{r}} d m
$$

$$
\lambda=\frac{m}{L}=\frac{d m}{d L} \rightarrow d m=\lambda d x
$$

$$
\sigma=\frac{m}{A}=\frac{d m}{d A} \rightarrow d m=\sigma d A
$$

$$
\rho=\frac{m}{V}=\frac{d m}{d V} \rightarrow d m=\rho d V
$$

Example I2

Assuming that a long, thin, rod has a uniform linear density $\lambda=M / L$, show that the center of mass for the rod, with mass M and length L, is in the middle.

$$
\begin{aligned}
& x_{c m}=\frac{1}{M} \int x d m \\
& d m=\lambda \bullet d x \\
& x_{c m}=\frac{1}{M} \int x \lambda \cdot d x \\
& x_{c m}=\frac{\lambda}{M} \int_{0}^{L} x \bullet d x \\
& x_{c m}=\frac{\lambda}{M} \frac{1}{2} L^{2} \\
& \lambda=\frac{M}{L} \\
& x_{c m}=\frac{L}{2}
\end{aligned}
$$

Example 13

Assuming that a long,

$$
x_{c m}=\frac{1}{M} \int x d m
$$ thin, rod has a changing $\quad d m=\lambda \cdot d x$ linear density $\lambda=\alpha x$, calculate the location of

$$
\begin{aligned}
& x_{c m}=\frac{1}{M} \int x \lambda \cdot d x \\
& x_{c m}=\frac{1}{M} \int_{0}^{L} \alpha x^{2} \cdot d x \\
& x_{c m}=\frac{\alpha}{M} \frac{1}{3} L^{3}
\end{aligned}
$$ the center of mass.

$$
M=\int d m=\int_{0}^{L} \lambda \cdot d x=\int_{0}^{L} \alpha x \cdot d x=\frac{1}{2} \alpha L^{2}
$$

$$
x_{c m}=\frac{\alpha}{\left(\frac{1}{2} \alpha L^{2}\right)} \frac{1}{3} L^{3}=\frac{2}{3} L
$$

Example I4

Find the center of mass of the 2-d right triangle shown here, of constant density.

$$
\begin{aligned}
& x_{c m}=\frac{1}{M} \int x d m \\
& d m=\sigma d A \\
& x_{c m}=\frac{1}{M} \int x \sigma \cdot d A \\
& \mathrm{y}=\frac{\mathrm{b}}{\mathrm{a}} \mathrm{x} \text { is the height of a column } \\
& d A=\frac{b}{a} x d x \\
& x_{c m}=\frac{1}{M} \int_{0}^{a} x \sigma \frac{b}{a} x d x \\
& x_{c m}=\frac{\sigma b}{M a}\left(\frac{1}{3} a^{3}\right) \\
& \sigma=\frac{M}{A}=\frac{M}{\frac{1}{2} a b} \\
& x_{c m}=\left(\frac{M}{\frac{1}{2} a b}\right) \frac{b}{M a}\left(\frac{1}{3} a^{3}\right)=\frac{2}{3} a
\end{aligned}
$$

System in Motion

What happens if we take the time-derivative of r_{cm} ?

$$
\overrightarrow{\mathbf{r}}_{c m}=\frac{\sum m_{i} \overrightarrow{\mathbf{r}}_{i}}{M}
$$

$$
\begin{aligned}
& \frac{d}{d t} \overrightarrow{\mathbf{r}}_{c m}=\frac{d}{d t} \frac{\sum m_{i} \overrightarrow{\mathbf{r}}_{i}}{M} \\
& \overrightarrow{\mathbf{v}}_{c m}=\frac{\sum m_{i} \overrightarrow{\mathbf{v}}_{i}}{M} \\
& M \overrightarrow{\mathbf{v}}_{c m}=\sum m_{i} \overrightarrow{\mathbf{v}}_{i}=\sum \overrightarrow{\mathbf{p}}_{i} \\
& M \overrightarrow{\mathbf{v}}_{c m}=\overrightarrow{\mathbf{p}}_{\text {total }}
\end{aligned}
$$

What happens if we take the time-derivative of v_{cm} ?

$$
\begin{aligned}
& \frac{d}{d t} \overrightarrow{\mathbf{v}}_{c m}=\frac{d}{d t} \frac{\overrightarrow{\mathbf{p}}_{\text {total }}}{M} \\
& \overrightarrow{\mathbf{a}}_{c m}=\frac{\mathbf{F}_{\text {total }}}{M}
\end{aligned}
$$

Example I5

An exploding hockey puck of mass m is moving at $10 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction when it explodes into two pieces, one of them with mass $m / 3$ traveling in the $+x$ direction at $15 \mathrm{~m} / \mathrm{s}$.
a.What is the final velocity of the second piece?

$$
\begin{aligned}
& \left(m_{1}+m_{2}\right) v=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& m(+10)=\frac{m}{3}(+15)+\frac{2}{3} m v_{2}^{\prime} \\
& v_{2}^{\prime}=+7.5 m / s
\end{aligned}
$$

b. Where is the center of mass of the system 3 seconds after the explosion?

$$
\begin{aligned}
& v_{c m}=10 \mathrm{~m} / \mathrm{s} \\
& x=v t=(10 \mathrm{~m} / \mathrm{s})(3 \mathrm{~s})=30 \mathrm{~m}
\end{aligned}
$$

or
Find location of two particles and calculate cm manually.

AP Problem

Mech 1.

A motion sensor and a force sensor record the motion of a cart along a track, as shown above. The cart is given a push so that it moves toward the force sensor and then collides with it. The two sensors record the values shown in the following graphs.

AP Pryblem $\square_{\infty-\infty}-{ }_{-}$.

Mech 2. An open-top railroad car (initially empty and of mass M_{0}) rolls with negligible friction along a straight horizontal track and passes under the spout of a sand conveyor. When the car is under the conveyor, sand is dispensed from the conveyor in a narrow stream at a steady rate $\Delta M / \Delta t=C$ and falls vertically from an average height h above the floor of the railroad car. The car has initial speed v_{0} and sand is filling it from time $t=0$ to $t=T$. Express your answers to the following in terms of the given quantities and g.

