
The Island Series:

1.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  You are told you will be given 5 seconds to stop two 
different object using a constant force of your choice (it doesn’t have to be the 
same force for each object).  Before you see either object, though, you must say 
which will take the greatest force to stop.  You dissent saying you don’t have 
enough information to make the call, so you are given two questions (not 
“which force is bigger” or “which body experiences the largest acceleration”).  
From the responses to those two questions, you are to determine which body 
will require the larger force.  What are the questions? 



What governs stopping force requirements?  The two parameters that will 
matter are:  

Solution to Island Problem

2.)

The mass of each body (the bigger the mass, the larger the force required to 
stop the body in a given amount of time); and

The body’s velocity (the faster the body is moving, the greater the force 
required to bring the body to a stop in a given amount of time);



CHAPTER  9:
Momentum

3.)

When physicists run into a qualitative question like the one posed in the 
Island Series question, they will often take the parameters that are key to 
understanding the solution to the problem and multiply them together to get an 
overall governing relationship (that is, after all, where the idea of work came from).  
The idea is that if that quantity is large, the phenomenon being examined will be 
pronounced, and if small, not so much.

In this case, the product of the mass and velocity produces a vector 

 
!p = m!v

called MOMENTUM. 

Kindly notice that this relationship is really three equations in one— it denotes 
momentum in the x-direction, in the y-direction and in the z-direction.



Interestingly, Newton didn’t originally write his second law as                , 
he wrote it as:
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Taking that derivative yields:

 
!
Fnet = m

!a

 

!
Fnet =

d!p
dt

 

!
Fnet =

d m!v( )
dt

     = m d!v
dt

+ !v dm
dt

The first part relates force to the acceleration of the object.  It just equals       . The
second part is related to how force is required to deal with situations in which the 
mass of a moving object changes.  An example of such situations might be a rocket 
whose mass is changing as it burns fuel upon lift-off, or possibly a dump truck that 
is being loaded with gravel as it moves.  As problems like that are not generally 
addressed in classes like this, we end up with Newton’s Second Law looking like:

 m
!a

 

!
Fnet = m

d!v
dt

= m!a



--The                 quantity is called the impulse relationship.

What is useful is that if we focus on just one direction, say, the x-direction, we 
can use the idea of momentum in conjunction with Newton’s Second Law to write a 
relationship that links force and changing momentum to a single body’s motion.  
That is:
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Over a differentially small time interval dt:

Fx =
dpx

dt
   ⇒    Fxdt = dpx

Over a macroscopically large time interval     :Δt

Fx =
Δpx

Δt
   ⇒    FxΔt = Δpx

--The         quantity is called the IMPULSE on the body.FxΔt

FxΔt = Δpx



Consider: A puck moving over a frictionless 
floor is viewed from above.  It hits a wall and 
bounces off, as shown below.  What is the 
puck’s change of momentum?
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!v = 3 m/s

 
!v = 3 m/s

before

after



Consider: You are looking down on a 2 kg 
puck sliding over a frictionless surface moving 
at 3 m/s as shown.  It bounces off a wall as 
shown.  What is the net impulse on the puck?
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!v = 3 m/s

 
!v = 3 m/s

θin = 30
o

θout = 30
o

 

FxΔt = Δpx

       = px.2 − px,1

       = −m !v cosθout( )− m !v cosθin( )
       = −2m !v cosθout

       = −2 2 kg( ) 3 m/s( )cos 30o( )
       = −10.4 kg i m/s

The key is to realize that you have to treat the 
momentum change as a vector (look at the 
momentum in the y-direction—it isn’t changing, so 
you’d better not end up with math that suggests that 
it should . . . )

 m
!v cosθ

 m
!v

 m
!v

 m
!v cosθ

 m
!v sinθ

 m
!v sinθ

In the x-direction:



8.)

 
!v = 3 m/s

 
!v = 3 m/s

θin = 30
o

θout = 30
o

 

FyΔt = Δpy

       = py.2 − py,1

       = m !v sinθout( )− m !v sinθin( )
       = 0

 m
!v cosθ

 m
!v

 m
!v

 m
!v cosθ

 m
!v sinθ

 m
!v sinθ

In the y-direction:

So the net impulse (which is normally 
characterized as a J, though the book uses I for 
reasons that are unclear):

 

!
J = FxΔt( ) î + FyΔt( ) ĵ

 = −10.4 î + 0 ĵ ( )kg i m/s    

This makes perfect sense as you would expect the impulse that would 
change the puck’s motion to be away from the wall in the minus x-direction. 
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This also tells you something about our world:

Want to keep a driver safe during a car crash, pad the dashboard or, better 
yet, put air bags into the car.  Why?  Because when the driver goes from 60 
miles per hour to zero miles per hour due to a crash, the impulse (the change of 
momentum) will be what it will be, but the time of impact can be controlled 
(you want it to be as long as possible so the FORCE of impact is as small as 
possible.  That is:

Δpof driver( )Δtof crash( )Fon driver( ) =
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Consider two masses moving in opposite directions that collide as shown 
below.  If one mass has a jet pack on its back that provides a constant force F 
(again, as shown), what do the impulse equations suggest for both masses?

pA,1
pB,1Fjet

pA,2

pB,2
Fjet

before collision

after collision:

The Modified Conservation of 
Momentum Theory



pA,1
pB,1FjetΔt

pA,2

pB,2
FjetΔt

During the collision, the green fellow will 
feel an impulse to the right due to the jet and 
an impulse to the left due to the collision.  
Assuming the time of collision is     , the 
impulse relationship for the green mass 
through the collision becomes:

The blue fellow will NOT feel an impulse due to a jet as there is no jet attached to 
it, but it will feel an impulse to the right due to the collision.  It will be equal in 
magnitude and opposite in direction to the impulse the green fellow felt due to the 
collision.  The blue block’s impulse relationship through the collision will be:

11.)

FjetΔt − FcollisionΔt = pA,2 − pA,1

FcollisionΔt = pB,2 − pB,1
Adding the two relationships, the collision impulses (whose forces are N.T.L. 
action/action pairs referred to as internal forces) will add to zero, so:

FjetΔt = pA,2 + pB,2( )− pA,1 + pB,1( )

Δt

before collision

after collision



Rearranging the terms so that the “before”
terms are on the left side of the equation and 
the “after” terms on the right, we end up with

12.)

pA,1 + pB,1( ) + FjetΔt = pA,2 + pB,2( )
If we include the fact that all of this is happening 
in the x-direction, this can be re-written as:

This is called the modified conservation of momentum relationship.  It essentially 
maintains that in a particular direction, if all of the forces acting on a system over a 
time interval are internal to the system (i.e., Newton’s Third Law action/action 
pairs) with no impulses being generated by external forces (i.e., non-action/action 
pairs, like the jet pack), then the sum of the momenta (signs included) at the 
beginning of the interval will equal the sum of the momenta at the end of the 
interval.  That is, the individual momenta can change, but the sum must remain the 
same . . . unless there are external forces producing external impulses present to 
change the momentum content of the system.  

px,before∑ + Fexternal,xΔt∑ = px,after∑

pA,1
pB,1FjetΔt

pA,2

pB,2
FjetΔt

before collision

after collision



Momentum Musings

13.)

Is it possible to have no momentum but some KE in a system?  Explain.

Is it possible to have momentum conserved but some KE in a system?  Explain.

Is it possible to have momentum in one direction but none in another?  Explain.

What changes momentum in a particular direction?  Explain.

What changes mechanical energy in a particular direction?  Explain.

You are standing stationary in a rowboat that sits stationary next to a dock.  You 
attempt to step out of the boat onto the dock.  What does the boat do?  Why?

As a football player, would you prefer to be hit by a 100 kg lineman (220 lbs) 
moving at 5 m/s or a 50 kg back (110 lbs) moving at 10 m/s?  Explain?

Is it possible to have mechanical energy conserved but momentum not?  Explain.



14.)

As a point of semantics: An isolated system is a system in which there 
are no external forces (hence no external impulses) acting.  With the modified 
conservation of momentum equation including the possibility of external impulses 
(or not), making the distinction between isolated and non-isolated systems is not so 
important, but you may run into the language so you need to know about it.  

Technically, collision always produce deformation and sound and heat, so 
energy is never really conserved through a collision.  There are close calls, though.  
When this happens, because potential energy changes are almost non-existent thru 
collisions, what is “conserved” is kinetic energy. 

An inelastic collision is defined as a “normal” collision—momentum 
conserved thru the collision unless there is an especially large external impulse 
present—with energy NOT conserved.

A perfectly inelastic collision is defined as an inelastic collision in which the 
bodies stick together after the collision (i.e., final velocities are the same).  

To delineate types of collision, three kinds are given special names:  
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An elastic collision is defined as a collision in which both momentum and 
mechanical energy are assumed to be conserved.

Easy example: two electrons veering from one another due to electrical repulsion 
as they pass one another.  This interaction, this “collision,” is to a very good 
approximation conservative in energy.

Not so obvious examples: ideal, massless springs:
x

x = 0   (at equilibrium)

k

v
Example 1: A block jammed against an ideal 
spring is struck by another block moving in with 
velocity v.  Energy is NOT conserved in the 
collision due to deformation between the blocks.

Example 2: A block collides with an ideal, 
massless spring, pushing it in to the left.  Energy 
IS conserved in this case.  Why?  Because due to

k

v

the masslessness of the spring, no deformation of material occurs so no energy 
is lost.  (This is not terribly appealing because it ignores energy loss to sound 
and heat, but that’s the assumption made.)



16.)

Example 1: Consider a 75-kg kid sitting 
on a stationary, 5.0-kg cart with frictionless 
wheels.  He catches a 7.0-kg bowling ball 
moving in the horizontal at 5.0 m/s.

Just as in conservation of energy problems, start out with the generic 
conservation of momentum expression and filling in the bailiwicks appropri-
ately, noting that the kid and cart start out at rest, the velocities are all the 
same after the collision and all the forces acting in the system are internal 
(i.e., action/action N.T.L. pairs).  With no external impulses, we can write:  

                   px,before∑                        + Fexternal,xΔt∑  =             px,after∑
 mcartvcart + mkidvkid,1 + mball     vball,1   ( )+         0( )       = mcart + mkid + mball( )v
                                  7 kg( ) 5.0 m/s( )+          0         = 5 kg + 75 kg + 7 kg( )v
                                                 ⇒        v = .40 m/s

vball,1 = 5m/s

What kind of collision is this? (perfectly inelastic)

How fast does the kid move after the collision?

00

0
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Continuing: A 75-kg kid sitting on a station-
ary 5.0-kg cart with frictionless wheels.  He tries 
to catch a 7.0-kg bowling ball moving in the 
horizontal at 5.0 m/s but fumbles it.  It bounces off 
him leaving in the x-direction with velocity 2 m/s.

In that case, what will the kid’s velocity be after the collision?

                     px,before∑                + Fexternal,xΔt∑   =                 px,after∑
        mkid/cartvkid,1 + mballvball,1( )     +         0( )        = mkid/cartvkid,2 +     mballvball,2( )
80 kg( ) 0 m/s( ) + 7 kg( ) 5.0 m/s( ) +           0        = 80 kg( )v+ 7 kg( ) −2.0 m/s( )

                                        ⇒        v = .61 m/s

Always be aware of signs when dealing with momenta.  Momentum 
is a VECTOR.  With that in mind, we can write:

vball,1 = 5m/s



Noting that the total impulse J on a body will be the sum of all the differential 
impulses Fdt acting on the body over a time interval dt, it’s kind of obvious that 
the area under the force versus x-time graph yields the impulse on the body 
over the time interval.

Force vs Time Graphs

18.)

As a small aside, how are force versus time graphs related to impulse 
quantities?  

So how much impulse 
does the force graphed 
to the right do as the 
body moves from t = 1 
second to t = 6 seconds? 

Solution: the area under 
the graph above the axis 
is positive and below is
negative, so the solution is 22 newton-seconds.

1 2 3 4 5 6 7 8

−4

0

4

Fx N( )

t sec( )
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Why is the mass of a rifle always more than the mass of the bullet it fires?

From Pirates of the Caribbean . . . 



20.)

Example 2: Consider shooting a 4.25-
kg gun with an 80 cm long barrel that fires a 
50-gram bullet with velocity 400 m/s.  

What is the magnitude of the gun’s recoil velocity?

What is the impulse on the bullet? 

    px,before∑ + Fexternal,xΔt∑  =          px,after∑
          0( )    +         0( )        =    mgun   −vgun( )  +  mbullet      vbullet

            0     +          0         = − 4.25 kg( )vgun  + .05 kg( ) 400 m/s( )
                             ⇒        vgun = 4.7 m/s       

You can get this either by calculating         or      .  We’ll use      .         FΔt Δp Δp

 

J = mv2 − mv
  = .05 kg( ) 400 m/s( )− .05 kg( ) 0 m/s( )
  = 20 kg i m / s

So formally, as a vector, this would be:
 

!
J = 20 kg i m/s( ) î( )

before

after

vgun vbullet
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Con’t: Consider shooting a 4.25-kg gun
with an 80 cm long barrel that fires a 50-
gram bullet with velocity 400 m/s.  

What is the bullet’s time of flight?

What is the bullet’s acceleration? 

vavg =
d
t

   ⇒    t = d
vavg

   ⇒    t = .8 m
200 m/s

             = 4x10−3s       

Again, kinematics.         

before

after

vgun vbullet

This is a kinematics problem—irritating, but 
something you need to not forget how to do . . . 

a = v2 − v1

t
  = 400 m/s− 0

4x10−3s
  = 105 m/s2        



22.)

Con’t: Consider shooting a 4.25-kg gun
with an 80 cm long barrel that fires a 50-
gram bullet with velocity 400 m/s.  

Determine the force on the bullet two different 
ways.

F = ma
  = .05 kg( ) 105  m/s2( )
  = 5x103N       

before

after

vgun vbullet

Using Newton’s Second Law:

Using the Impulse relationship:

FΔt = Δp

   ⇒    F = Δp
Δt

              =
.05 kg( ) 400 m/s( )− 0

4x10−3  s
              = 5x103N       



23..)
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Example 3: An ideal spring (spring 
constant k) is attached to a mass M.  The mass 
is initially sitting at equilibrium.  A bullet of 
mass m moving with velocity v buries itself 
into the block. 

During this happening:

x

x = 0   (at equilibrium)

k

When was energy conserved? 
Energy was conserved after the collision.  That is, once the energy loss due to the 
embedding of the bullet was done, energy was conserved.

When was momentum conserved? 
As all the forces in the x-direction are internal thru the collision, momentum is conserved 
thru the collision.  As soon as the spring, which produces an external force, begins to exert 
its influence, then momentum begins to change (the system begins to slow) and momentum 
is no longer conserved.

v



25.)

Con’t: An ideal spring (spring constant k) is 
attached to a mass M.  The mass is initially
sitting at equilibrium.  A bullet of mass m
moving with velocity v buries itself into the 
block.  

Derive an expression for the spring’s maximum depression.

x

x = 0   (at equilibrium)

k v

From conservation of momentum through the collision (i.e., from just before 
the bullet hit the block to just after—notice the spring will not have compressed 
hardly at all during this interval, so no external impulse there . . . also, assuming 
the “just after embedding” velocity is “V”):

px,before∑  + Fexternal,xΔt∑  =          px,after∑
mbullet −v( ) +       0( )         = mbullet + mblock( ) −V( )         

Note: From a momentum through the collision perspective, would it have 
mattered if the surface had been frictional?

Answer: Nope!  The time interval of collision would be so small that the 
frictional impulse        would be negligible and ignorable.fΔt 



26.)

x

x = 0   (at equilibrium)

k v
For conservation of mechanical energy
AFTER the collision (that is, using a time 
interval that does not include any before 
collision parameters like “v”), noting that 
the “final” velocity of the system will be 
zero (everything will have come to rest with 
the maximum deformation of the spring), 
we can write:

            KE1∑          + U1∑ + Wext∑ = KE2∑ + U2∑
1
2

mbullet + mblock( )V2 +    0    +     0    =      0     + 1
2

kx2
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Using these two equations to solve the problem, 
we can write: x

x = 0   (at equilibrium)

k v

1
2

mbullet + mblock( )V2 = 1
2

kx2

   ⇒    1
2

mbullet + mblock( ) mbulletv
mbullet + mblock( )

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1
2

kx2

   ⇒    x =
mbulletv( )2

k mbullet + mblock( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

mbullet −v( ) = mbullet + mblock( ) −V( )  

   ⇒ V = mbulletv
mbullet + mblock( )       

substituting V into the energy relationship:

from the momentum relationship:



That wasn’t the case, though, so you had to split the problem up into two intervals 
with energy governing one and momentum linking the two.

28.)

Note: There is often a temptation for 
students to use conservation of energy from the 
before collision time until the maximum 
deflection time.  That would look like:

x

x = 0   (at equilibrium)

k v

 KE1∑    + U1∑ + Wext∑ = KE2∑ + U2∑
1
2

mbulletv
2 +    0    +     0     =      0    +  1

2
kx2

The monumental problem with this is energy is lost (probably a LOT of energy 
lost) during the collision, so the kinetic energy before the collision isn’t going to 
equal the spring potential energy at full depression. If you had been told there was, 
say, 1200 joules of energy lost to heat and deformation and sound during the 
collision, then you could ignore momentum considerations completely and simply 
written:

 KE1∑    + U1∑ +   Wext∑   = KE2∑ + U2∑
1
2

mbulletv
2 +    0    + −1200 J( ) =      0    +  1

2
kx2
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Interesting twist:  Consider now a 
bullet that strikes a block against a spring, but 
the bullet comes in at an angle.

Where, if anywhere, is momentum conserved in 
this happening, and where is it NOT?  Justify!

After the collision, there is no extraneous work being 
done as the spring is ideal, so energy is conserved 
after the embedding.  Energy is not conserved through 
the collision as energy is required for the bullet to 
burrow into the wood, which means there is an energy 
loss during the impact.

v1

mbullet k
vo

mblock

mblock  at rest

just after embedding, masses moving but
spring still essentially not compressed

bullet moving at angle but block at rest

d

masses come to rest after depressing spring 
maximum distance “d”

x

x

Where, if anywhere, is energy conserved in this 
happening, and where is it NOT?  Justify!

There is momentum in the y-direction before the 
impact, but none after, so momentum is not be 
conserved in that direction through the collision.  And 
after the collision, the spring applies an external force and impulse in 
the x-direction, so no momentum conserved then.  The only forces 
acting in the x-direction through the collision are internal, so 
momentum will be conserved in the x-direction through the collision.  



Example 4: A player needs to sink the 
eight-ball into the corner pocket on a pool 
table.  The cue ball approaches at 1.00 m/s:

Glancing Collisions

30.)

When a billiard ball strikes a second, stationary billiard ball, and the 
collision is assumed to be elastic, the two balls will leave each other at .  
Although this rather bizarre observation is being made without proof (a problem 
follows that shows it works), it is something the AP folks have utilized on AP 
questions in the past. 

90o

a.) If the 8-ball leaves at       , at what 
angle does the striking ball leave?

35o

35°

55o

v1

vo
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35°
b.) What are the final velocities of each 
ball, assuming the masses are the same and 
the collision is elastic?

φ = 55o

In the y-direction:

In the x-direction (with                  ): 

px,before∑ + Fext,xΔt∑ =             px,after∑
    mvo     +      0( )     = mv1 cos 35o + mv2 cos55o

⇒   1= .82v1 + .57v2     ⇒   v1 = 1.22 − .7v2

py,before∑ + Fext,yΔt∑ =             py,after∑
      0       +      0( )     = mv1 sin 35o − mv3 sin55o

 ⇒   v1 sin 35o = v3 sin55o  ⇒   v1 = .995v3

Combining the two        :

v1 = 1.22 − .7v2 = .995v2

               ⇒ v2 = .72 m/s  ⇒  v1 = .73 m/s

vo = 1 m/s

v1 's

v1

v2

vo



Example 4: This is an old lab problem.  You know the incoming velocities 
and angles of two billiard balls that collide elastically.  You know the outgoing 
angle and velocity (denoted as “u” to differentiate from the incoming velocities) of 
one of the balls.  Derive an expression and determine the outgoing velocity and 
angle for the other ball.  In the sketch, vectors in black are known.

32.)

mv1

θ1

θ2

m1

m2

mv2

mu1

mu2

φ2
φ1

mv2 cosθ2

mv2 sinθ2

mv1 cosθ1

mu2 cosθ2

mu1 cosφ1

mv1 sinθ1

mu2 sinθ2

We first thing we need 
to do is break the 
momentum vectors into 
their component parts.  
Doing so yields:

mu1 sinφ1



33.)

mu1 sinφ1
θ1

θ2
mv2 cosθ2

m1

mv2 sinθ2

m2

mv2

mu1

mu2

φ2
φ1

mv1 cosθ1

mu2 cosθ2

mu1 cosφ1

mv1 sinθ1

mu2 sinθ2

mu1

In the y-direction:

In the x-direction:
               px,before∑           + Fext,xΔt∑  =             px,after∑
m1v1 cosθ1 + m2v2 cosθ2 +         0( )    = m1u1 cosφ1 + m2u2 cosφ2

               py,before∑           + Fext,yΔt∑  =             py,after∑
m1v1 sinθ1 − m2v2 sinθ2 +         0( )    = −m1u1 sinφ1 + m2u2 sinφ2



34.)

and

This simplifies to:

N1 = N2u1 cosφ1

N3 = N4u1 sinφ1

Dividing the one into the other yields:

N3

N1

= N4u1 sinφ1

N2u1 cosφ1

  ⇒   φ1 = tan−1 N3N2

N1N4

⎛
⎝⎜

⎞
⎠⎟

Knowing the angle, you can go back and determine the unknown velocity.



35.)

One of the biggest challenges students face is deciding when conservation 
of momentum is applicable in a problem, and in many cases more critically, when
conservation of energy is applicable.  If you make assumptions that are not true on 
that count, everything you do from there on will be wrong.  To that end, consider:
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Is it possible to have a situation in which 
momentum is conserved and energy is technically 
not . . . but we let it slide.  If so, give an example, 
formally justifying each conservation assertion.

Consider two blocks moving in opposite directions over a frictionless surface with an ideal 
spring in the system.  When there is collision and bounce back in opposite directions:  

v1v2

Momentum is conserved THROUGH THE COLLISION as the spring, whether ideal 
or not, provides only an internal force and, hence, no external impulse during the 
collision.  Even if friction had been involved, the time of collision over the interval 
would have been so small that friction’s impulse would hardly changed the momentum 
content of the system over the interval, and could have been approximated as zero 
conserving momentum through the interval (i.e., through the collision).

There is a tiny bit of work through the collision that isn’t being taken care of by a 
potential energy function (in the energy section, we call work like this extraneous 
work), because there is sound and a tiny bit of heating and, in all probability, a tiny bit 
of molecular deformation as the spring gets smooshed, but this is SO SMALL that for 
all intents and purposes is it ignored.  So in cases like this, mechanical energy is 
assumed to be conserved.  

Bottom line: If it’s just a spring that being collided with, energy is assumed to be conserved.



37.)

Consider a two-blocks with spring running into a third block moving over a frictionless 
surface, as shown.  When collision and bounce back in opposite directions happens:  

v1v2

Momentum is conserved THROUGH THE COLLISION as the collision forces are all 
internal force and, hence, no external impulse exists in the x-direction during the 
collision.  Again, even if friction had been involved, the time of collision over the 
interval would have been so small that friction’s impulse would hardly changed the 
momentum content of the system over the interval, and could have been approximated 
as zero conserving momentum through the interval (i.e., through the collision).

But now you have serious energy loss through the collision as the blocks collide 
(probably due to big-time molecular deformation, sound, heat, etc.).  As this loss isn’t
taken into account by potential energy functions (in the energy section, we would call 
work like this extraneous work), the mechanical energy is NOT conserved through the 
collision (though it may be conserved subsequently after the collision happens).  The 
trickiness here is that people are sometimes thrown by the fact that the spring is ideal. 

But is it possible to have a situation in 
which momentum is conserved but energy is not, 
and we don’t let it slide.  If so, give an example, 
formally justifying each conservation assertion.



38.)

Is it possible to have a situation in which mechanical energy is 
conserved but momentum is not?  If so, give an example and justifying.

Ignoring air friction, consider throwing a ball straight up into the air.
Momentum is not conserved as gravity produces an external impulse 
that changes the momentum content of the system in the y-direction as 
time proceeds.
Mechanical energy IS conserved as kinetic energy is turned into gravitational potential 
energy but there are no extraneous bits of work being done by forces like friction. 

Is it possible to have a situation in which 
momentum is conserved in one direction but not in 
another?  If so, give an example and justifying.

Ignoring air friction, consider throwing a ball in two dimensions.
Momentum is not conserved in the y-direction as gravity produces an external 
impulse that changes the momentum content of the system in the y-direction.

Momentum is conserved in the x-direction as there are no external forces, hence 
impulse, in that direction to change the body’s x-momentum.
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Example 5: A bit of mathematical nastiness: 
Consider two blocks with spring attached and known 
incoming velocities.  They collide and bounce.  
Derive an expression for the recoil velocities.

v1 v2

1
2
m1 v1( )2 + 1

2
m2 v2( )2 = 1

2
m1 v3( )2 + 1

2
m2 v4( )2

m1v1 − m2v2 = −m1v3 + m2v4     

We’ve already said that situations like this are elastic (mechanical energy 
conserved).  Noting that the spring only redirects motion (at the beginning 
and end of the interval, it is not engaged), the energy relationship reads:

from the momentum relationship (highlighting 
the unknowns in red and unembedding - signs):

v4v3

before

after

m1 m2

So far, so good. 
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which means    1
2

m1 v1( )2 + 1
2

m2 v2( )2 = 1
2

m1 v3( )2 + 1
2

m2 v4( )2

     becomes  1
2

m1 v1( )2 + 1
2

m2 v2( )2 = 1
2

m 1
−m1v1 + m2v2 + m2v4

m1

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

m2 v4( )2

And here we find the nastiness. Standard techniques to solve this would solve for 
one velocity in the momentum equation and substitute it into the energy equation 
yielding:

m1v1 − m2v2 = −m1v3 + m2v4     

   ⇒   v3 =
−m1v1 + m2v2 + m2v4

m1

YIKES!!!
Now solve for     . v4

A new technique: Group your masses; factor your energy quadratics; divide the 
momentum equation into the energy equation and cancel out one factor; get new 
relationship between variables and plug that back into original momentum 
expression.
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1
2

m1 v1( )2 + 1
2

m2 v2( )2 = 1
2

m1 v3( )2 + 1
2

m2 v4( )2

   ⇒   m1 v1( )2 − v3( )2⎡
⎣

⎤
⎦ = m2 v4( )2 − v2( )2⎡

⎣
⎤
⎦     

There is a clever, simpler way, though.  

m1v1 − m2v2 = −m1v3 + m2v4     
   ⇒   m1 v1 + v3( ) = m2 v2 + v4( )    equation A

Start by gathering all the terms associated with the mass      and all the terms 
associated with the mass       and put them into two piles.  

m1
m2

and

Factoring the energy relationship yields:

m1 v1( )2 − v3( )2⎡
⎣

⎤
⎦ = m2 v4( )2 − v2( )2⎡

⎣
⎤
⎦

   ⇒   m1 v1( )− v3( )⎡⎣ ⎤⎦ v1( ) + v3( )⎡⎣ ⎤⎦ = m2 v4( )− v2( )⎡⎣ ⎤⎦ v4( ) + v2( )⎡⎣ ⎤⎦     equation B
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Take equation A and divide it into equation B (left side to left side, right side to 
right side) yields a simplified, new relationship.    

m1v1 − m2v2 = −m1v3 + m2v4     
   ⇒   m1v1 − m2v2 = −m1 −v4 + v2 + v1( ) + m2v4

   ⇒   m1v1 − m2v2 + m1v2 + m1v1 = m1 + m2( )v4

   ⇒   v4 =
2m1v1 + m1 − m2( )v2

m1 + m2( )

With that, we can go back to the original momentum relationship, substitute in for 
the velocity      , and solve:

m1 v1( )− v3( )⎡⎣ ⎤⎦ v1( ) + v3( )⎡⎣ ⎤⎦ = m2 v4( )− v2( )⎡⎣ ⎤⎦ v4( ) + v2( )⎡⎣ ⎤⎦
m1 v1 + v3( ) = m2 v2 + v4( )     equation B

equation A

v3

And knowing     , you can go back and determine     .v3 v4

⇒    v1 − v3 = v4 − v2

                 ⇒    v3 = −v4 + v2 + v1

Note that in its most general 
form, with signs embedded, this 
relationship becomes: v1 + v3 = v4 + v2



Example 6: A 1500 kg car moving eastward with 
velocity 12 m/s experiences a perfectly inelastic 
collision with a 1000 kg car moving 10 m/s north-
ward.  What is the final velocity of the 2500 kg car?

With all the forces internal in the x-direction, 
conservation of momentum in the x-direction yields:

θv1=12 m/s

v2 = 10 m/s

vcol

m1 = 1500 kg
m2 = 1000 kg

m1 +m2

px,before∑ + Fext,xΔt∑ =          px,after∑
    m1v1    +        0      = m1+m2( )vcol cosθ

   ⇒    vcol cosθ = m1v1

m1+m2

     Equ. A

In the y-direction:

py,before∑ + Fext,yΔt∑ =          py,after∑
    m2v2    +        0      = m1+m2( )vcol sinθ

   ⇒    vcol sinθ = m2v3

m1+m2

    Equ. B
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The trick to solving is to divide the one equation 
into the other and canceling stuff, so:

θv1=12 m/s

v2 = 10 m/s

vcol

m1 = 1500 kg
m2 = 1000 kg

m1 +m2

Equ. A
Equ. B

= vcol sinθ
vcol cosθ

   =    

m2v2

m1+m2( )
m1v1

m1+m2( )
⇒    tanθ = m2v2

m1v1

      ⇒    θ = tan−1 1000 kg( ) 10 m/s( )
1500 kg( ) 12 m/s( )

⎡

⎣
⎢

⎤

⎦
⎥

                 = 29o

px,before∑ + Fext,xΔt∑ =          px,after∑
    m1v1    +        0      = m1+m2( )vcol cosθ

   ⇒    vcol cosθ = m1v1

m1+m2 44.)
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Although this may or may not be important in an AP sense, in a PHYSICS 
sense it is important to understand that almost every problem you did in the energy 
section can be made into a momentum problem by simply including a collision.  

For instance: 

For My People



Jill starts 
here 

against 
spring

θ

R

v2

Rcosθ

46.)

Take the extended ice dome problem
and make it into a Jack and Jill event 
with Jill shoved up against a spring 
(not shown) to start with and Jill 
crashing into Jack at the crest of the 
hill.  Now you need to work in 
sections, keeping in mind where 
energy and where momentum are 
conserved (and where they aren’t!). 

R

R

The next page animates this segregating:

Jill and 
Jack collide two leave 



θ

R

v3

Rcosθ

47.)

RR

before collision, 
energy conserved

y = 0

mg 2R( ) + 1
2
kx2⎛

⎝⎜
⎞
⎠⎟ =

1
2
m v1( )2 +mg R( )

v1

Jill and Jack’s velocity 
just after collision
v2

Jill’s velocity      just 
before collision

after collision energy conserved

1
2
mjill+m jack( ) v2( )2 + mjill+m jack( )g R( ) = 1

2
mjill+m jack( ) v3( )2 + mjill+m jack( )g Rcosθ( )

during collision, 
momentum conserved

mjillv1 = mjill +mjack( )v2

still need Newton’s Second 
and centripetal acceleration

v2v1

mgcosθ

N
N − mgcosθ

   = −m v3
2

R
⎛
⎝⎜

⎞
⎠⎟

mg
θ

0



There is the problem from hell with the first mass running into a 
second mass in a perfectly inelastic collision.  

48.)

m1 = 2kg

L = 2 m

µk = .3 jello

x = .5 m

 jetpack
   burn
F = 500x2

k = 120 N/m

loses 80J loses 110J

frictional surface

Rc = 12 m
Rh = 1.2 m

m2 = 5kg

In that case, you’d have to use energy up until the collision, then momentum to 
connect the before collision and after collision velocities, then go from there 
with energy considerations.
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θ = 55o

mgun = 4800 kg

mshell = 200 kg vshell = 125 m/s

k = 2x104N/m

There is the cannon problem in 
which you want to determine how much the 
spring expands after the cannon is fired.  

Here, momentum in the y-direction is 
NOT conserved during the firing 
(nothing moving in the y-direction to 
start with, then the shell is moving with 
velocity component in the y-direction).

There are no external forces (hence impulses) in the x-direction during firing, 
so momentum of the gun/shell system is conserved in the x-direction (it is 
assumed that the spring does not compress much during the firing, so it does 
not provide an external impulse in the x-direction during firing).

After firing, the recoil velocity V provides KE to the cannon which turns into 
spring potential energy as energy associated with cannon (EXCLUDING the 
cannon ball) is conserved after the firing.

0 = −mgunV+mshell vshell cosθ( )

1
2
mgunV

2 = 1
2
kx2
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And there is the block on block 
with spring problem on 
frictionless surface in which you 
want to determine the maximum 
compression of the spring, assuming you 
know all the parameters listed on the sketch.  

m1

m2

v1
k

Want to see the solution to this little gem.  I did a video on it.  You can find it at:

https://youtu.be/_vffPexYS4I  

. . . though I may have maintained that energy wasn’t conserved through the 
collision, which we are now assuming is the case . . . 
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The center of mass of a system of masses (or a single mass) is located at 
the weighted average position of the system’s mass.  

Center of Mass

Example: a basketball: Example: a horse shoe: Example: multiple masses:

There have been some very clever uses this concept have been put to . . . 
Enter the Fosbury flop:

https://www.youtube.com/watch?v=RaGUW1d0w8g

https://www.youtube.com/watch?v=RaGUW1d0w8g
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A center of mass coordinate must be relative to a coordinate axis.  In 
the x-direction, the numerical value, being a weighted coordinate, is defined such 
that:

mtotalxcm = m1x1 + m2x2 + m3x3 + . . .

x1 x2 x3

m1 m2 m3

x

xcm =
mixi

i=1

n

∑
M

Being careful to take signs into 
consideration and defining the total mass 
of the system as M, the center of mass 
coordinate becomes:



Example 7: Consider two masses “m” and “3m” located a distance 1.0 meters 
apart.  Relative to the coordinate axes used:

xcm =
mixi

i=1

n

∑
M

     = m1x1 + m2x2

m1 + m2

     =
3m( ) −.5( ) + m( ) .5( )

3m + m
     = −.25 meters

3 m m

x1 = −.5 x1 = .5

a.) What is the x-coordinate of the system’s 
center of mass? y

x

xcm = −.25

53.)



Cont’d: Consider two masses “m” and “3m” located a distance 1.0 meters apart.  
Relative to the coordinate axes used:

xcm =
mixi

i=1

n

∑
M

     = m1x1 + m2x2

m1 + m2

     =
3m( ) .5( ) + m( ) 1.5( )

3m + m
     = .75 meters

3 m m

x1 = .5 x1 = 1.5

b.) What is the x-coordinate of the system’s 
center of mass?

y

x

xcm = .75

Bottom line: A system’s center of mass is identified as a coordinate relative to 
a coordinate system.
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Center of mass in three dimensional situations:

⇒   xcm =
mixi

i=1

n

∑
MMxcm = m1x1 + m2x2 + m3x3 + . . .

Mycm = m1y1 + m2y2 + m3y3 + . . .

Mzcm = m1z1 + m2z2 + m3z3 + . . .

⇒   ycm =
miyi

i=1

n

∑
M

⇒   zcm =
mizi

i=1

n

∑
M

 

!rcm = xcm î + ycm ĵ+ zcmk̂

    =
mixi∑( ) î + miyi∑( ) ĵ+ mixi∑( ) k̂

M

    =
mi
!ri∑

M

55.)



Example 8: Determine 
the coordinate of the center of 
mass for the system shown.

xcm =
2m( ) d( ) + 5m( ) d + b( )

2m + m + 4m

     =
7 d( ) + 5( ) b( )

7
     = d + 5

7
b

2m  

4m  

m  

h 

b  d  

ycm =
2m( ) 0( ) + m( ) 0( ) + 4m( ) h( )

2m + m + 4m
     = 4

7
h

 
⇒    !rcm = d + 5

7
b⎛

⎝⎜
⎞
⎠⎟ î + 4

7
h⎛

⎝⎜
⎞
⎠⎟ ĵ

 
!rcm
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So before we get into the hard stuff, let’s review what we are really being 
asked to do with center of mass calculations.  

To determine a center of mass coordinate along a particular axis:

--Move from the origin outward along the axis until you find some mass.
--Multiply the mass by its coordinate.
--Continue doing this, adding the products as you go.  
--Once you’ve covered all the mass in the system, normalize the sum by dividing 
by the total mass.  

That will give you the center of mass coordinate along that axis.

57.)



As long as an object’s center of mass is located over a point of support, it will
be stable.

58.)



And again:

59.)



Example 9: With the guidelines for 
doing these kinds of problems in mind, 
determine the coordinate of the center of 
mass of a homogeneous rod of length L, 
assuming the origin is at the rod’s end.

x

y

60.)



Example 9: With the guidelines for 
doing these kinds of problems in mind, 
determine the coordinate of the center of 
mass of a homogeneous rod of length L, 
assuming the origin is at the rod’s end.

x

y

Although this is a continuous mass, the principle is the same.  Move out along 
the x-axis until you find some mass, multiply by the mass’s coordinate, then 
sum that quantity for all the masses found before dividing by the total mass. 

The problem?  The system is not made up of discrete pieces of mass.  That 
means that after moving an arbitrary distance “x” units down the axis, you need 
to create a differentially thin section of the rod of width “dx” to defines a 
differentially small piece of mass “dm,” do the required multiplication, then 
sum all such pieces using integration.  Doing this yields:

x

y

x dx

dm
xcm =

xdm∫
M
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This is where it gets exciting. To do this integral, we need to relate the position x
of the bit of mass to the amount of mass dm that is there.  To do that, we invoke a 
very clever mathematical contrivance called a density function.

Although there are three types of mass density functions, we will start with the 
simplest (we’ll talk about the other two shortly).  Called a linear density 
function, it’s units are mass/unit length and its a symbol is     .  What it 
essentially says is:

If you have a massive, extended object that has obvious one-dimensional 
variability (like a rod), give me a length of the rod and I can multiply that 
length by     and tell you the amount of mass that was associated with that 
length.  (Just think about the units—(mass/length)(length) = mass).

λ

λ

In some instances you may be given the density function (eg.            ), but in 
most AP problems it is assumed to be associated with a homogeneous 
structure.  In other words, it is equal to the total mass divided by the total 
length, or:

λ = kx

λ = M
L

61.)



The linear density function can also 
be written in differential terms.  That 
is, as the ratio of the differential mass 
per differential length.  It is from this 
that our dm substitution can be 
generated.  That is:

With this, we can write:

xcm =
xdm∫
M

      =
x λdx( )

x=0

L

∫
M

      =
λ xdx

x=0

L

∫
M

      =

M
L

⎛
⎝⎜

⎞
⎠⎟

x2

2
⎛
⎝⎜

⎞
⎠⎟ x=0

L

M
      = 1

2
L

λ = dm
dx

  ⇒   dm = λdx
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As added non-AP fun, how would 
this differ if the rod was weighted 
funny, like            ?

No problem: The only thing that’s 
tricky is that now you have to do an 
integral to determine the total mass 
of the rod . . . 

xcm =
xdm∫
dm∫

      =
x λdx( )

x=0

L

∫
λdx( )

x=0

L

∫

      =
x kxdx( )

x=0

L

∫
kxdx( )

x=0

L

∫

      =
k x3

3
⎛
⎝⎜

⎞
⎠⎟ x=0

L

k x2

2
⎛
⎝⎜

⎞
⎠⎟ x=0

L

      = 2
3

L

λ = kx x

y
λ = kx
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Example 10: Now determine the y-
coordinate of the center of mass of a homo-
geneous half-circle plate about its central axis.

σ = dm
dA

  ⇒   dm = σdA

x

y

Half of this problem is easy.  By 
inspection, we can see that the x-
coordinate of the center of mass is zero.  
The y-coordinate, not so obvious.  
It is time to now consider the other two types of density function:

The area mass density function is a bit of an oddball.  It essentially says, 
“Give me an area on the face of an extended object, and I’ll multiply that 
area by the area density function to tell you how much mass is behind that 
area.”  Its symbol is a sigma     and its units are mass/unit area.  For a 
homogeneous structure, it can also be defined two ways:

σ

σ = M
A

  and

64.)



x

y

The other way to go is with a volume 
mass density function, .  It essentially 
says, “Give me a volume in an 
extended object and I’ll multiply that 
volume by the volume density function 
to tell you how much mass is within 
that volume.” Its symbol is a rho    
and its units are mass/unit volume.  For a homogeneous structure, it can be 
defined two ways:

ρ

ρ = M
V

  ρ = dm
dV

  ⇒   dm = ρdVand

The strategy to find the y-coordinate of the hemisphere’s center of mass is 
simple.  Move up the y-axis some arbitrary distant y, determine how much mass 
is at that coordinate (it will be in a differentially thin strip of height dy), do our 
multiplication and integrate.  

65.)



x

y

Executing that and using an area 
density function, we start:

dydm

yR

x = R2 − y2( )12

We know that the area mass density 
function is such that:

So we need to determine the differential area of a swath whose width is 2x (look 
at the sketch) and whose height dy.  That is:

σ = dm
dA

  ⇒   dm = σdA

σ = M
πR2

2( ) =
2M
πR2   

and

dA = 2x( )y

    = 2 R2 − y2( )1
2⎛

⎝
⎞
⎠ y

66.)



x

y

With all that, we can write:

dydm

yR

x = R2 − y2( )12

ycm =
ydm∫
M

      =
y σdA( )

x=0

L

∫
M

=
y σ 2x( )dy( )

x=0

L

∫
M

      =
σ y 2 R2 − y2( )1

2⎛
⎝

⎞
⎠ dy

x=0

L

∫
M

      =
2 2M

πR2
⎛
⎝⎜

⎞
⎠⎟ y R2 − y2( )1

2 dy
x=0

L

∫
M

      = 4
πR2 − 1

3
R2 − y2( )3

2
y=0
R⎛

⎝⎜
⎞
⎠⎟

      = 4
3πR2 − R2 − y2( )3

2
y=0
R⎛

⎝
⎞
⎠ =

4
3πR2 − R2 − R2( )3

2⎛
⎝

⎞
⎠ − − R2 − 02( )3

2⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

     = 4
3πR2 R3 = 4

3π
R   (this is a little below halfway up the axis)
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Example 11: To see a problem using 
volume mass density function, consider 
determine the x-coordinate of the center of 
mass of the triangle whose length is a and 
whose height is b.

x

y

As we are working with the x-
coordinate, we move down the x-axis 
an arbitrary distance x, determine 
how much mass is within the volume 
comprising a differentially thin slice of thickness dx, then integrate. 

If the thickness of the triangle is t and total area A, the volume density function 
can be written as:

ρ = dm
dV

  ⇒   dm = ρdV = ρ dA( ) t
                                       = ρ ydx( ) t

ρ = M
At

= M
1
2

ab⎛
⎝⎜

⎞
⎠⎟ t

= 2M
abt

  

Also,

dm

x dx

y

dA = ydx

a

b

68.)



x

y

All we need to proceed is a relationship 
between x and y, which we have as the 
line defining the y-coordinate is a straight 
line.  That is, using:

we get:

y = mx + y intercept( )
a

b

y = b
a

x  ⇒   dm = ρ ydx( ) t

                       = ρ b
a

xdx⎛
⎝⎜

⎞
⎠⎟ t

With that:

69.)



x

y

a

b

xcm =
xdm∫
M

      =
x ρdV( )

x=0

L

∫
M

      =
x ρ b

a
xdx⎛

⎝⎜
⎞
⎠⎟ t⎛

⎝⎜
⎞
⎠⎟x=0

L

∫
M

      =
ρ b

a
⎛
⎝⎜

⎞
⎠⎟ t x2 dx

x=0

a

∫
M

      =

2M
abt

⎛
⎝⎜

⎞
⎠⎟

b
a

⎛
⎝⎜

⎞
⎠⎟ t x3

3 x=0
a⎛

⎝⎜
⎞
⎠⎟

M

      = 2
a2

⎛
⎝⎜

⎞
⎠⎟

a3

3
⎛
⎝⎜

⎞
⎠⎟
= 2

3
a  (about where you'd expect)

xcm
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TRICKINESS
YOU HAVE SEEN the approach for deriving center-of-mass 
quantities for both discrete masses and for more complex situations, and that is 
all information you need, but there may come a time (like, say, on an AP test) 
when you are asked to simply determine (not derive) the center of mass 
coordinates for some oddball mass configuration, and when that happens, a bit of 
trickery might do you well.  Specifically: 

71.)

Consider the geometry 
shown to the right.

 −1  2  4  6

 0

 2

 
y
 (meters)

x (meters)
 −2

What is the y-coordinate of 
this object’s center-of-mass?



The trick is to particulate the mass into bite-sized pieces, identify geometries 
whose center of mass is easy to eyeball, then assume all the mass in each of these 
regions is centered at their particular center of mass.

72.)

The geometry has 22 
squares in its mass, so each 
square is worth (1/22)m. 
Also, there are 2 rectangular 
geometries easily identified.

For this case (and looking 
just at the y-components):

The left rectangle’s y-center 
of mass is at .5 meters, and 
the right geometry’s 
coordinate is +1.

 −1  2  4  6

 0

 2

 
y
 (meters)

x (meters)
 −2

•
•

Assuming all the mass is at 
their center of mass, we can 
write:

ycm = m1y1 + m2y2

m1 + m2

     =
6

22( )m( ) .5( ) + 16
22( )m( ) 1( )

m
     = .8636 meters



Unpacking our definition of center of mass reveals something interesting.  

Theoretical Nitty Gritty for a 
System In Motion

73.)

Observation 1:  The sum of the weighted positions of all of the masses in a 
system yields a vector that is equivalent to congealing all of the masses at the 
center of mass and weighting that position. 

 

!rcm =
mi
!ri∑

M
  ⇒   

 

M!rcm = mi
!ri∑

        = m1
!r1 + m2

!r2 + m3
!r3 + ...



We can see how this weighted center of mass vector acts over time by taking 
its time derivative.  Doing so yields:  

74.)

Observation 2:  If all the mass M in the system was coagulated at the system’s 
center of mass and made to move at the center of mass’s velocity , its 
momentum would equal the sum of the momenta of all of the individual 
masses in a system as they actually exist.

 

M d!rcm

dt
= mi

d!ri
dt∑

M d!rcm

dt
= m1

d!r1
dt

+ m2
d!r2
dt

+ m3
d!r3
dt

+ ...

  ⇒   M!vcm = m1
!v1 + m2

!v2 + m3
!v3 + ...

( ⇒   Mvcm,x = m1v1,x + m2v2,x + m3v3,x + ...
               and  Mvcm,y = m1v1,y + m2v2,y + m3v3,y + ...
               and  Mvcm,z = m1v1,z + m2v2,z + m3v3,z + ...  )

 
!vcm



Taking still one more derivative yields:  

75.)

Observation 3:  Sum up all of the forces on all of the masses in the system in a 
particular direction, and the center of mass will act as though all of the mass in 
the system was coagulated at the c. of m. with that force applied to it.  That is, 
the c. of m. will accelerate as though it had all of the mass at it with that force 
acting upon it. 

 

M d!vcm

dt
= mi

d!vi

dt∑

M d!vcm

dt
= m1

d!v1

dt
+ m2

d!v2

dt
+ m3

d!v3

dt
+ ...

  ⇒   M!acm = m1
!a1 + m2

!a2 + m3
!a3 + ...

  ⇒   
!
Fnet,cm =

!
Fnet,1 +

!
Fnet,2 +

!
Fnet,3 + . . .

               ⇒   Fnet,cm,x = Fnet,1,x + Fnet,2,x + Fnet,3,x + ...
                and  Fnet,cm,y = Fnet,1,y + Fnet,2,y + Fnet,3,y + ...
                etc,



Bottom line (though not something you will be able to use on the AP test):

76.)

There are two ways to analyze system of particles problems.  
1.) You can track the individual particles, which is what we have been 

doing to date (think about the two-car collision problem—we tracked what 
each car’s momentum was throughout the collision), or;

2.) You can transform into the center of mass frame of reference (one in 
which you are traveling along with the center of mass), do the problem in that 
frame, then transform back into the lab frame.  This is not something the AP 
folks will ask you to do, but it is a common approach in physics (that is, 
transforming into a frame of reference in which the problem can be done 
easily, then transforming back).  

This second approach is most elegantly observed in the two-dimensional, 
collision-lab problem presented earlier.



Extra non-AP problem, for your amusement: Reconsider the 
old lab problem we did earlier.  What does the system look like from the lab versus
center of mass frame?

75.)

mv1

θ1

θ2

m1

m2 mv2

mu1

mu2

φ2
φ1

Mvcm

lab frame

vcm = 0

v1,rel

v2,rel

c. of m. frame

Two masses approach 
obliquely, collide and 
rebound obliquely.

Two masses approach 
on-line, collide and 
rebound on-line.



78.)

mv1

θ1

θ2

m1

m2 mv2

mu1

mu2

φ2
φ1

Mvcm

lab frame

vcm = 0

v1,rel

v2,rel

c. of m. frame

Approaching this conventionally, you’d have to write out the momentum
relationship in the x-direction, the y-direction, and possibly the energy relationship 
should the collision be elastic.  Then you’d have to solve the mess of equations 
simultaneously. 

Looking at things from the center of mass frame, not only does the problem 
become one-dimensional, the total momentum is ZERO. This is a wildly easier 
problem to solve . . . and once you’ve done so in this frame, you can transform 
back into the lab frame and you are done.  



A ball moving at 5 m/s strikes a surface and bounces back at 4.9 m/s in the opposite 
direction, all in 0.1 seconds.  What is the ball’s acceleration?

This is supposed to be FUN.
Don’t take notes,

but do listen and think!

Let’s say the ball’s mass is 5 grams.  What was the average force required to effect 
that acceleration?

What we’ve just done is to examine a situation by looking at the forces 
acting on a system.  In other words, we’ve utilized the Newton’s Second Law 
approach to come to conclusions about our ball.  (Note that a half newton is about a 
tenth of a pound.)

It is possible to look at situations from OTHER perspectives using OTHER 
approaches.

79.)

a = v2 − v1

Δt
=

−4.9 m/s( )− 5 m/s( )
.1 sec

= 99 m/s2

F = ma = .005 kg( ) 99 m/s2( ) = .495 nts



Option 1: Determine the impulse in the ball. Justify your results.

What does the impulse tell you about the motion? 

Option 2:  Determine the net work done in changing the motion of the ball.  

Is the net work done in changing the ball’s kinetic energy large or small?  

80.)

A ball moving at 5 m/s strikes a surface and bounces back at 4.9 m/s in the opposite 
direction, all in 0.1 seconds.  What is the ball’s acceleration?

 FΔt = Δp = .005 kg( ) −4.9 m/s( )− .005 kg( ) 5.0 m/s( ) = 4.95x10−2  kg i m/s

A relative measure of what it takes to stop the body in the given amount of time.

Wnet = ΔKE = 1
2

.005 kg( ) −4.9 m/s( )2 − 1
2

.005 kg( ) 5.0 m/s( )2 = 2.475x10−3  joules

Really small.



From the perspective of impulse, energy and ball acceleration, it 
appears that it doesn’t take a lot to make our ball change course. 

In other words, the ball can’t 
hurt us much.

So let’s play FACE 
BALL!!!!!

81.)



A really massive wall sits stationary in the lab.  A ball 
is observed to hit the wall square-on with velocity     , 
and bouncing back with that same velocity    , (i.e., 
energy is conserved).

And completely off the wall . . .

How could this be?

82.)

vo
vo

vo
incoming

vo
outcoming

The situation changes.  Now the wall is moving toward the 
incoming ball with velocity     .  The ball comes in as before, 
but because the wall is so massive the wall just keeps going 
with velocity     after the collision.  The ball hits the wall and 
rebounds.  How fast is the ball moving after the collision?

vo

vo

vo

before collision

v = ?

after collisionvo vo

The temptation is think that the wall will give the ball an extra        worth of 
velocity boost, and that the answer is       .  In fact, that isn’t what happens.  The 
answer is actually       (this question used to be given to Caltech frosh when they 
were being sorted into Recitation Sections for the Physics 1 class).  

vo's
2vo

3vo



wall sitting still

before collision after collision
In wall’s frame,

The trickiness resides in the fact that you only know 
what the ball will do if you examine the system from 
the wall’s perspective (i.e., from a frame of reference 
stationary, relative to the wall).  Only in the wall’s 
frame is mechanical energy conserved and velocity-in
equals velocity-out.

83.)

But relative to the lab frame, which is the frame we 
are really interested in, the wall itself is moving with 
velocity     .  So the net velocity of the ball, relative to 
the lab frame, should be:  

vo

2vo + vo = 3vo

So in the second scenario, what does the ball’s 
motion appear to be from the wall’s perspective?

That means, according to our velocity-in equals 
velocity-out assumption, that relative to the wall, it will 
leave with velocity       .  2vo

vo

before collision

v = ?

after collision
vo vo

2vo 2vo

wall’s velocity 
relative to lab

vo
2vo

after collision

in wall’s frame,

The ball appears to be closing on the wall with velocity       .2vo



This all sounds fine and good in a fantasy land sort of way, but does it hold to real 
life?  A little experiment suggests it will.  

84.)

Take two balls, one fairly massive (a golf ball) and one fairly massless (a ping-pong 
ball).  Place the ping-pong ball on top of the golf ball and drop from an arbitrary 
height h.  Notice what happens.  

The following should happen: The two should 
fall, picking up kinetic energy in the process.  
The math to figure out their “final” velocity is:  

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
0 + mt + mp( )gh + 0 = 1

2
mt + mp( ) v1( )2 + 0

   ⇒    v1 = 2gh( )2   and   h =
v1( )2

2g

h

before drop

h

v1

v1

after collision

So let’s assume that when the golf ball hits the ground, it generates a rebound velocity 
of     (i.e., no energy loss), and let’s assume that that there has been a bit of separation 
between the two during the fall, so with the golf ball now moving upward with 
rebound velocity     , the ping pong ball is still moving downward with velocity    .  

v1

v1v1



In other words, we now have the wall and ball situation (sort of).  A massive golf ball 
is moving in one direction (upward) and a smaller ping pong ball is moving in the 
other direction (downward) with the same velocity (yes, it’s not a direct parallel as the 
golf ball isn’t super massive and energy is never conserved in collisions like this, but 
work with me here).

85.)

This means, according to our previous analysis, that the ping pong ball 
should bounce off the golf ball with THREE TIMES its incoming velocity.

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
1
2

mr 3v1( )2 + 0 + 0 = 0 + mrghnew

   ⇒    hnew = 9
v1( )2

2g

⎛

⎝
⎜

⎞

⎠
⎟ = 9h

h

v1

v1

just before 
collision

What’s more, with three times the velocity, the ping 
pong ball now has NINE TIMES the kinetic energy 
that it had to start with, and should therefore fly nine 
times higher after its rebound.  

This we will try in class.

hnew

v1

after collision

3v1

Justification:


