
CHAPTER  8:
Conservation of Energy

1.)



We started by noticing that a force component acted along the line of a body’s 
motion will affect the magnitude of the body’s velocity.  We multiplied the force 
component and displacement to generate the scalar quantity called work.  

How We Got Here!

2.)

Using Newton’s Second, we derived a relationship between the net work
done on a body and the change of the body’s kinetic energy.  This was called the 
work/energy theorem.

We then noticed that there are forces whose work done does not depend upon 
the path taken as a body travels between two points—whose work is end-point 
independent (friction was clearly not one of these forces).  In such cases, we 
developed the idea of a function that, when evaluated at the endpoints, would 
allow us to determine how much work the field did as a body moved between the 
points . . . which is to say, we developed the idea of potential energy functions.

So now it’s time to take the last step, starting with the work/energy theorem.



Consider a body moving through a group of force fields on its way from Point 1 
to Point 2.  What does the work/energy theorem tell us about the body’s motion?

3.)

The net work done will equal the sum of all the bits of work done by the 
various pieces of force acting on the system.  Denoting each force with a letter, 
this can be written as:

                 Wnet                   =     ΔKE
WA + WB + WC + WD + WE = KE2 − KE1

Assume:
--the forces that produce work A and work B are conservative with KNOWN 
potential energy functions.
--the force that produces work C is conservative but with an UNKNOWN 
potential energy function.

--the forces that produce work D and work E are non-conservative, don�t 
HAVE potential energy functions and need to be determined using either        
or            .
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For work A and work B, we have potential energy functions.  So . . . 

4.)

WA = −ΔUA

      = − U2,A − U1,A( )
WB = −ΔUB

      = − U2,B − U1,B( )
and

For work C, D and E, we can’t use potential energy functions, either because 
we don’t know them or because they are non-conservative forces and don’t have 
them.  

With this, the work/energy theorem becomes:

 

          WA           +            WB           +   WC  +   WD  +   WE       = KE2 − KE1

− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ +
!
FC •
!
d +
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FD •
!
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!
FE • d!r∫ = KE2 − KE1

− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ +              Wextraneous∑        = KE2 − KE1



Rewriting this so the signs are easy to see, we get . . . 

5.)

− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ + Wextraneous∑ = KE2 − KE1

  − UA,2 + UA,1           − UB,2 + UB,1  + Wextraneous∑ = KE2 − KE1

KE1 + U1,A + U1,B  + Wextraneous∑ = KE2 + U2,A + U2,B

What we are left with are a bunch of potential energy terms (U terms) 
and at least one kinetic energy term evaluated at time    , and a similar group of 
terms evaluated at time    .  If we put all of the terms associated with the state of 
the system at the beginning of the time interval, at point in time 1, on the left side 
of the equal sign, and put all of the terms associated with the state of the system at 
the end of the time interval, at point in time 2, on the right side of the equal sign 
(leaving the extraneous work terms alone), we get:

t1
t2



Rewriting this in it’s most succinct form, allowing for the possibility 
that you could have more than one object with kinetic energy in a system at a 
given instant (think Atwood Machine), we get:

If we call the sum of all the kinetic energies and all of the potential energies 
at a point in time the mechanical energy E at that time, we can make this 
relationship even more abbreviated as: 

KE1∑ + U1∑  + Wextraneous∑ = KE2∑ + U2∑

E1 + Wextraneous∑ = E2

This is the absolute simplest form of this relationship.

6.)



   E1 + Wextraneous∑ =            E2

KE1∑ + U1∑( )  = KE2∑ + U2∑( )

In summary, this relationship states that if there is no work being done by 
extraneous forces in a system (remember, a force that does extraneous work is one 
whose work calculation can’t be done using a potential energy function), then the 
total mechanical energy at time 1 will equal the total mechanical energy at time 2.  
In other words, the total mechanical energy does not change, is conserved and 

Note 1: At time 1, the distribution of potential and kinetic energies may be 
different than at time 2.  The claim is that the SUM of those two types of energy 
will always be equal.

Note 2:  How to conceptually understand this? If there is extraneous work being 
done, that will simply increase or decrease the initial mechanical energy in the 
system giving us the final mechanical energy in the system.

7.)

0



Several gentle starter Problems #1 (you will look 
back at these with fondness): A ball of mass m is thrown 
from a height h with an initial velocity upward of     .  If 
it loses 10 joules of energy to friction on the way, how 
fast is it moving when it reaches the ground?  What is 
its velocity at an arbitrary height y if it has lost 6 joules 
of energy to friction by that point? 

Using Conservation of Energy

8.)

Because there is no preferred F = 0 point for gravity near the 
surface of the earth, hence no preferred U = 0 point, it is 
always your choice as to where you will place the zero 
potential energy level when doing problems like this.  In the 
case of the ball, the most reasonable choice is to take the 
ground as the y = 0 level.

vo

y = 0

y = h

vo



With all that in mind, this is a typical conservation of energy problem.  Starting 
with the standard form, we can simply filling in the bailiwicks . . . 

9.)

y = 0

y = h

vo

--at the beginning of the interval, is there any potential 
energy in the system?  If so, write          or                 or                               

or whatever the function is, evaluated 
where the body is at the beginning of the interval.  If 
not, write 0.  There is gravity close to the earth’s 
surface, so we write:

--at the beginning of the interval, is anything moving? If 
so, write                  for it.  If not, write 0.  There is
movement in this case, so we write:

1
2m v1( )2

mgy1 1
2k x1( )2

−G m1( ) m2( )
r

 KE1∑   + U1∑ + Wext∑ =   KE2∑  + U2∑

 KE1∑   + U1∑ + Wext∑ =   KE2∑  + U2∑
1
2

m vo( )2 +  mgh

1
2
m vo( )2

 KE1∑   + U1∑ + Wext∑ =   KE2∑  + U2∑



10.)

y = 0

y = h

vo

--if there is any work being done during the interval 
by forces not being taken care of by potential energy 
functions, write out those extraneous work quantities 
using         or            or, if an amount is given, that 
amount.  If not, write 0.  In this case, you know you 
lose 10 joules, so we write:
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--at the end of the interval, is anything moving? If so, 
write                  for it.  If not, write 0 . . . etc., then solve.1

2m v2( )2

 KE1∑   + U1∑ + Wext∑ =   KE2∑  + U2∑
1
2

m vo( )2 +  mgh + −10 J( )

 KE1∑   + U1∑ + Wext∑ =   KE2∑   + U2∑
1
2

m vo( )2 +  mgh + −10( )  = 1
2

m vbot( )2 +    0

   ⇒    vbot = vo( )2 + 2gh − 2 10
m( )⎡

⎣
⎤
⎦

1
2



11.)

y = 0

y = h

vo

--How about the velocity at arbitrary position y, 
assuming 6 joules of energy was lost in the motion:

 KE1∑   + U1∑ + Wext∑ =   KE2∑   + U2∑
1
2

m vo( )2 +  mgh + −6 J( )  = 1
2

m vy( )2
+  mgy

   ⇒   vy = vo( )2 + 2g h − y( )− 2 6
m( )⎡

⎣
⎤
⎦

1
2



Gentle starter #2: A spring gun with barrel length d = .20 
meters (a Butline Special) and unknown spring constant k
compresses its spring the full .2 meters when “cocked.”  When fired, 
the 35 grams projectile will travel h=10.0 meters above the barrel’s 
end.  

12.)

a.) Neglecting friction, determine the spring constant.

y = 0

y = h + d
The only thing that is tricky about this problem is deciding where you 
want to place the y = 0 level for gravitational potential energy (you need a 
coordinate axis for “mgy” to make any sense.  I’m going to place it where 
the projectile resides when the gun is cocked.  With that, conservation of 
energy becomes:

KE1∑ +  U1∑ + Wext∑ = KE2∑ +   U2∑
    0     +  1

2
kd2 +     0     =     0    + mg h + d( )

        ⇒   k = 2mg
d2 h + d( ) = 2 .035 kg( ) 9.8 m/s2( )

.2( )2 10 + .2( )
                       ⇒   k = 175 N/m

y = d



13.)

b.) What is the equilibrium position of the spring when the projectile rests on it?
At equilibrium, the spring force will exactly counteract gravity, so:

KE1∑ +    U1∑  + Wext∑ = KE2∑ +                 U2∑
    0     +  1

2
k d( )2 +     0    =  1

2
mv2 + mg yequil( ) + 1

2
k Δy( )2⎡

⎣⎢
⎤
⎦⎥

        ⇒   v = k
m

d( )2 − k
m

Δy( )2 − 2g yequil( )⎛
⎝⎜

⎞
⎠⎟

1
2

                  =
175 N/m( )
.035 kg( ) .22 − .00196( )2⎡⎣ ⎤⎦ − 2 9.8 m/s2( ) .198( )⎛

⎝⎜
⎞
⎠⎟

1
2

                              ⇒           v = 14 m/s

kΔy = mg

 ⇒   Δy = mg
k

=
.035 kg( ) 9.8 m/s2( )

175 N/m( )
                 ⇒   Δy = .00196 m
                 ⇒   yequil = d − Δy = .20 − .00196 m
                                                = .198 m

c.) Determine the projectile velocity as it moves through the 
equilibrium position. Back to conservation of energy:

y = 0

y = d
yequil

Δy



14.)

d.) Add-on #1: How, generally, would Question a change if there had been friction?

There just would have been a “work extraneous” term in the conservation of energy 
expression.

e.) Add-on #2: How would the c.of e. expression in Question a change if you 
wanted to know the projectile’s velocity 5 meters above the barrel’s end?

At the end of the time interval, the “h” term in “mgh” would be 5 instead of 10, and 
there would be a kinetic energy term at the end of the time interval.



A little less gentle starter #3: 
Consider the block/pulley/spring set-up 
shown with the spring initially 
uncompressed and the surface frictional 
with coefficients of frictions     and     .  
When the system is released, the hanging 
mass slowly descends a distance h before 
coming to rest.

15.)

a.) Once the hanging mass comes to rest, what forces act to keep the system in 
equilibrium?

The spring is certainly acting, but there is also a static frictional force acting.  If 
there was no friction in the system, the spring would allow the mass to drop even 
farther down than h.  The static frictional force is not be the maximum static 
frictional force.  It will, instead, numerically equal the kinetic frictional force.  
That was the force that was acting as the body was moving, and as the body came 
to rest. 

µk µs

m1

m2

k

µk ,µs

h



16.)

m1

m2

k

µk ,µs

h

 

KE1∑ + U1∑    +     Wext∑         = KE2∑ + U2∑
    0     +  m2gh  +      

!
fk i
!
d( )         =     0     + 1

2
kh2

    0     +  m2gh  + µkNdcos180o( ) =     0     + 1
2

kh2

     ⇒        2m2gh + 2 − µkm1g( )h( ) = kh2

            ⇒        µk =
−kh + 2m2g

2m1g

a.) Determine the coefficient of kinetic friction.

Using conservation of energy:

−1



For a little more sophistication Problem #4 
: A pendulum of length L = .7 meters has a mass m = .2 kg at 
its end.  It is observed to have a velocity                     when at              
with the vertical.  What is the tension in the line when it passes 
through the bottom of the arc?

17.)

On the surface, this looks like a centripetal force 
problem.  When at the bottom, N.S.L. yields:

c

θ = 30o

m
vo

L
θ

vo = .3 m/s

 Fc :∑   
           T− mg = mac

                      = m
vbot( )2

L

   ⇒    T = mg + m
vbot( )2

L
mg

T

x

vb

f.b.d. at bottom:



18.)

We need an expression for the velocity at the 
bottom of the arc.  Enter the conservation of 
energy.  Taking the bottom of the arc to be the zero 
potential energy for gravity, noticing that the bob is 
initially                  units above the zero level (how 
so?—see sketch), and we can write:   

1
2

m vo( )2 + mg L − L cosθ( ) +     0     = 1
2

m vbot( )2 +    0

       ⇒      vbot = vo( )2 + 2g L − L cosθ( )⎡
⎣

⎤
⎦

1
2

 ⇒   vbot = .3 m/s( )2 + 2 9.8 m/s2( ) .7 m( )− .7 m( )cos 30o( )⎡⎣ ⎤⎦
1

2

                =1.39 m/s

m
vo

L
θ

Lcosθ
L

L − Lcosθ

L − Lcosθ

T = mg +m
vbot( )2
L

which means:

= .2 kg( ) 9.8 m/s2( ) + .2 kg( ) 1.39 m/s( )2

.7 m( )
= 2.51 N

 KE1∑            + U1∑        + Wext∑ =   KE2∑    + U2∑



19.)

Loop-the-loop trike:



More fun—Problem #5: A friction-
less ramp terminates in a loop of radius R.  A 
block of mass m is released from rest and 
allowed to slide down the ramp and into the 
loop.  How high up from the ground must the 
block be placed if it is to just barely make it 
through the top of the loop and out again?  

20.)

There are two points of interest here, the 
start point defined by h and the top of the 
arc where the velocity is just big enough to 
allow the block to skim through and out 
again. The motion at the top is clearly 
centripetal, so let’s start there.  In general:

c

h

 Fc :∑   
        − N − mg = −mac

                        = −m
vtop( )2

RmgN

x

R

f.b.d.

vtop

m



  ⇒      mg = m
vtop( )2

R

21.)

The trickiness here is in noting that at if the block 
is to just barely skim through the top, the normal 
force will go to zero, so that:

h
R

 Fc :∑   
        − N − mg = −mac

                        = −m
vtop( )2

R

0

⇒    vtop( )2
= gR

What does energy have to say about the situation?

KE1∑ + U1∑ + Wext∑ =   KE2∑   +   U2∑
    0     +  mgh +     0     = 1

2
m vtop( )2

+ mg 2R( )
        ⇒   mgh = 1

2
m gR( ) + mg 2R( )

                       ⇒   h = 5
2

R

vtop

m



That would 
affect the extraneous work part of the equation yielding: 

No big deal.  All that would 
have changed would have been the           term
yielding: 

--we could have put a spring at the top (spring 
constant k) and pushed the block x units into it 
before release.  

22.)

So how might we have made this problem more 
exciting?  Well . . . 

KE1∑ +        U1∑           + Wext∑ =   KE2∑   +   U2∑
    0     +  mgh + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟  +     0     = 1

2
m vtop( )2

+ mg 2R( )

U1∑

KE1∑ +        U1∑           + Wext∑ =   KE2∑   +   U2∑
    0     +  mgh + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟  + −13 J( ) = 1

2
m vtop( )2

+ mg 2R( )

--we could have additionally said the block lost 13 joules of energy as it passed 
through a layer of jello at the bottom of the ramp before moving on.  

jello

m

h
R

vtop

k



Still more fun with Problem #6: 
A small mass m sits stationary atop a 
frictionless ice dome of radius R.  A tiny, tiny, 
tiny gust of wind just slightly nudges the mass 
off-center, and it begins to slide down the 
dome.  At what angle will it leave the dome?

23.)

c

m

θ

 Fc :∑   
           N − mgcosθ = −mac

                               = −m
v( )2

R

mg

N

x

R

v2

Rcosθ

There are, as usual, two points of interest
here.  WHENEVER YOU RUN into a problem like this where it isn’t at all 
obvious how to proceed, just start writing down relationships you know are true.  
In this case, the two that should jump out at you are energy and the fact that the 
body is moving centripetally at the lift-off point.  Utilizing the latter first:

f.b.d. at in general:

mgsinθ

mgcosθ



24.)

m

θ

 Fc :∑   
           N − mgcosθ = −mac

                               = −m
v2( )2

R

R

v2

Rcosθ

At lift-off, the normal force goes to zero, 
which means:

⇒   mgcosθ = m
v2( )2

R
   ⇒   v2( )2 = gR cosθ

0

What about energy?

⇒   mgR = 1
2

m Rgcosθ( ) + mg R cosθ( )
   ⇒   1= 1

2
cosθ+ cosθ = 3

2
cosθ

   ⇒   θ = cos−1 2
3

⎛
⎝⎜

⎞
⎠⎟ = 48.19o

KE1∑ +   U1∑ + Wext∑ =   KE2∑   +   U2∑
    0     +  mgR( ) +     0    = 1

2
m v2( )2 + mg R cosθ( )



That would change the initial 
gravitational potential energy to mg(2R) 
yielding: 

We could extend the ramp upward as 
shown.

25.)

And how might we make this more exciting?
m

θ

R

v2

Rcosθ

R

R

KE1∑ +    U1∑  + Wext∑ =   KE2∑   +   U2∑
    0     +  mg 2R( ) +     0    = 1

2
m v2( )2 + mg R cosθ( )

We could additionally add a spring at the 
top (not shown), which would also change 
the initial potential energy yielding

KE1∑ +             U1∑           + Wext∑ =   KE2∑   +   U2∑
    0     +  mg 2R( ) + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ +     0    = 1

2
m v2( )2 + mg R cosθ( )



m

θ

R

v2

Rcosθ

26.)

R

R

And, of course, we could add to all of that 
jello that would take out, say 300 joules 
of energy

KE1∑ +             U1∑           +   Wext∑ =   KE2∑   +   U2∑
    0     +  mg 2R( ) + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ + −300 J( ) = 1

2
m v2( )2 + mg R cosθ( )

None of these changes would alter the centripetal force part of the problem, but 
they would alter the energy part.  The energy APPROACH wouldn’t change, 
though.  Look to see what’s happening at the beginning of the interval.  Look to 
see what’s happening at the end.  Look to see what happened during the 
interval.  It’s simple!

jello

yielding: 



Finally, the problem from hell #1: A mass m = 2 kg with a jet pack 
on its back slides down a                   radius curved incline, through a frictional pit 
of length L = 2 m with             , up, over, through and out a loop-the-loop of radius                   
, through a jello pit that takes 80 joules out of the system whereupon the jetpack 
fires and produces            newtons of force over a x = .5 meter distance before 
colliding with a spring whose spring constant is k = 120 N/m.  If 110 joules of 
energy are lost due to that collision, by how much does the spring compress during 
the collision?   

27.)

m = 2kg

500x2

L = 2 m

µk = .3 jello

x = .5 m

 jetpack
   burn
F = 500x2

k = 120 N/m

µk = .3

loses 80J loses 110J

frictional surface

Rc = 12 m
Rh = 1.2 m

Rc = 12 m

Rh = 1.2 m



Note: There is one saving grace to this problem.  In the normal approach to 
energy considerations, all you do is write down the energy content of the system at 
the beginning of the interval (KE plus U), write down the energy content at the end
of the interval, then look and write down any work done between the beginning and 
end that hasn’t been taken into account with a potential energy function.  

If it hadn’t been stated otherwise (which it was), this problem could have been 
different in that one possible answer to “how much is the spring compressed” could 
have been ZERO.  Huh?  If the body didn’t have enough energy to get passed the 
loop, it never would have gotten to the spring. You don’t have to worry here as you 
were told it got thru, but if you hadn’t been you’d have to check to see if it made it. 

m = 2kg

L = 2 m

µk = .3 jello

x = .5 m

 jetpack
   burn
F = 500x2

k = 120 N/m

loses 80J loses 110J

frictional surface

R = 12 m

So let’s look at energy:

Rh = 1.2 m



29.)

m = 2kg

L = 2 m

µk = .3 jello

x = .5 m

 jetpack
   burn
F = 500x2

k = 120 N/m

loses 80J loses 110J

frictional surface

Rc = 12 m

KE1∑ + U1∑ +                                                 Wext∑                                          = KE2∑ + U2∑
0     

                     mgRc −µk mg( )L − 80J( ) + 500 x3

3 x=0
x=.5⎛

⎝⎜
⎞
⎠⎟
− 110J)( ) = 1

2
120 N/m( )x2

2 kg( ) 9.8 m/s2( ) 12 m( )− .3( ) 2 kg( ) 9.8 m/s2( ) 2 m( )− 80J( ) + 20.8J( )− 110J)( ) = 1
2

120 N/m( )x2

                                         ⇒                x = .96 m

+mg Rc( ) + 0     +
1
2
kx2           Wfriction        +    Wjello  +              Wjetpack        +  Wcollision⎡⎣ ⎤⎦ =

0    + mg Rc( )
 
+ µkN( )L cos180o + −80J( )  + 500x2 î( )

x=0

x=.5

∫ i dxî( ) + (−110J)⎡
⎣⎢

⎤
⎦⎥
= 0    + 1

2
kx2

Rh = 1.2 m

−1

What’s the first thing you will write?



Minor Point: Because the gravitational 
potential energy function near the surface of the earth 
is a function of a coordinate axis OF YOUR 
CHOOSING, it is perfectly permissible to give each 
body in a system its own axis.  A good example of 
this is the Atwood Machine:

30.)

m1

m2

An Atwood Machine consists of two 
masses attached to a string that is hung over a 
pulley.  How does energy lay out as the masses 
move a distance h, assuming they start from rest.

If the left one drops, the right one rises.  Assigning each zero-potential-energy-
level (i.e., “y = 0”) for each mass at its lowest point in its motion, we have: 

ym2 = 0
ym1 = 0

KE1∑ +  U1∑ + Wext∑ =          KE2∑           + U2∑
     0    +  m1gh +       0     = 1

2
m1v

2 + 1
2

m2v
2⎡

⎣⎢
⎤
⎦⎥
+ m2gh



Using energy consideration to problem-solve is essentially a book keeping 
technique.  You focus on the BEGINNING of an interval, looking to see (and 
writing down) how much mechanical energy (KE + U) there is at that point in 
time.  You focus on the END of the interval, looking to see (and writing down) 
how much mechanical energy there is that point in time.  You examine what has 
happened over the course of the interval, looking to see if there has been any work
done on the system that has not been taken into account with potential energy 
functions.  

. . . And when you are done, you have a relationship that has kept track of energy 
movement within the system in terms of parameters you might be interested in. 

Summary

31.)



Although it’s useful to know how much work a force field will do on an 
object traveling through it, it is often considerably more useful to know how much 
work per unit time the field is capable of doing (or actually does).  Called power, 
this rate at which work is done per unit time is mathematically defined as:

Power

32.)

Pavg ≡
ΔW
Δt

The units of power in the MKS system are joules per second, or the watt.

or if you are talking incremental changes at an instant,              . Pinst ≡
dW
dt

For a moving body with constant velocity v, the instantaneous power provided by 
a force on the body over a displacement    will be:             

 
Pinst ≡

d
!
F i
!s( )

dt
=
!
F i
d!s
dt

=
!
F i
!v

 
!s



Example: An elevator with mass 1000 kg carries a load of 800 kg.  A 
frictional force of 4000 N retards the elevator’s upward motion 

33.)

a.) Determine the minimum power required to lift the elevator at 3.0 m/s.

The motor has to provide force to overcome the weight of the elevator and 
occupants (1800 kg times 9.8) plus overcoming the 4000 N of friction.  That is:

F = 1800 kg( ) 9.8 m/s2( ) + 4000N
  = 21640N
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          = 21640 N( ) 3 m/s( )
          = 6.49x104  watts

b.) If the motor needs a 3:1 safety factor, what should the horsepower factor be 
on the motor (746 watt/HP)?

3P = 3 6.49x104  watts( ) HP/746watt( )
    = 261 HP



An elevator with mass 1000 kg carries a load of 800 kg.  A frictional force of 
4000 N retards the elevator’s upward motion. 

34.)

c.) If the motor is designed to accelerate the elevator at a rate of 1 m/s/s, what 
power (as a function of v) must the motor deliver to the system?

Now, along with the force required to overcome the weight of the elevator and 
occupants (1800 kg times 9.8) plus overcoming the 4000 N of friction, the force 
must also provide acceleration (ma).  That is:

F = 1800 kg( ) 9.8 m/s2( ) + 4000N + ma
  = 21640 N( ) + 1800 kg( ) 1 m/s2( )
  = 23440 N
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          = 2.34x104  N( )v


