Ch 7 - Energy \& Work

Work

Work is a quantity that is useful in describing how objects interact with other objects.
"Work done by an agent exerting a constant force on an object is the product of the component of the

$$
W=\overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{x}}
$$

$W=F x \cos \theta$
$W=F x$ force in the direction of displacement, and the magnitude of the displacement of the object."

Example I

A $100-\mathrm{N}$ horizontal force is used to drag a 20 kg box $2.0-\mathrm{m}$ across a frictionless table. How much Work is done on the box...

a) By the horizontal Force?
$W=F x \cos \theta$
$W=(100)(2.0) \cos \left(0^{\circ}\right)=200 N \cdot m$
$W=200$ Joules
b) By the table?

$$
\begin{aligned}
& W=F_{\text {Normal }} x \cos \theta \\
& W=(200 N)(2.0 m) \cos \left(90^{\circ}\right)=0 J
\end{aligned}
$$

c) By gravity?
$W=F_{\text {gravity }} x \cos \theta$
$W=(200 N)(2.0 m) \cos \left(-90^{\circ}\right)=0 J$

Example 2

The same $100-\mathrm{N}$ horizontal force is used to drag a 20 kg box $2.0-\mathrm{m}$ across a rough surface at constant velocity.

How much Work is done by Friction?

$$
\begin{aligned}
& W=F x \cos \theta \\
& W=(100 N)(2.0 m) \cos \left(180^{\circ}\right) \\
& W=-200 J
\end{aligned}
$$

Example 3

A $100-\mathrm{N}$ is applied at 60° above the horizontal, and used to drag the $20-\mathrm{kg}$ box $2.0-\mathrm{m}$ across a frictionless surface.

How much Work is done by the applied Force?

$$
\begin{aligned}
W & =F x \cos \theta \\
W & =(100 N)(2.0 \mathrm{~m}) \cos 60^{\circ} \\
W & =100 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
W & =F_{x} x \\
W & =\left(100 N \cos 60^{\circ}\right)(2.0 m) \\
W & =100 J
\end{aligned}
$$

Example 4

A $100-\mathrm{N}$ is applied at 60° above the horizontal, and used to drag the $20-\mathrm{kg}$ box $2.0-\mathrm{m}$ across a rough surface ($\mu=0.15$).

How much Work is done

 by Friction?$$
\begin{aligned}
& W=F_{\text {friction }} x \cos \theta \\
& F_{\text {friction }}=\mu F_{\text {Normal }} \\
& \quad \sum F_{y}=m a_{y}=0 \\
& \quad F_{\text {Normal }}+F_{\text {applied }-y}-F_{g}=0 \\
& \quad F_{\text {Normal }}=m g-F_{\text {applied }} \sin 60 \\
& \quad F_{\text {Normal }}=109 N \\
& F_{\text {friction }}=(0.15)(109 N)=16 N \\
& W=(16 N)(2 m) \cos 180=-32 \mathrm{~J}
\end{aligned}
$$

More Examples

I. I lift a $8-\mathrm{kg}$ bowling ball up 50 cm into the air at constant velocity-how much Work did I do?
2. How much Work did Earth's gravity do in the preceding problem?
3. How much Work do I do lowering an $8-\mathrm{kg}$ bowling ball 50 cm down?
4. How much Work do I do holding an
 8 -kg bowling ball motionless in the air?
5. How much Work do I do carrying an $8-\mathrm{kg}$ bowling ball sideways 50 cm at constant velocity?

Dot products

$$
W=\overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{x}}
$$

If F, x, and θ are known, $\mathrm{W}=\mathrm{Fx} \cos \theta$.
The dot product is especially easy to calculate in these cases:

- Parallel: $\mathrm{Fx} \cos (0)=\mathrm{Fx}$, and $\mathrm{Fx}(\cos (180)=-\mathrm{Fx}$
- Perpendicular: Fx $\cos (90)=0$

If F and x have been given to you in \mathbf{i}, \mathbf{j} notation, use the dot-product to find W.

Example 5

$\mathbf{A}=\mathbf{3 i}+5 \mathbf{j}$, and
$B=-\mathbf{i}+2 \mathbf{j}$.

a) What is $\mathbf{A} \cdot \mathbf{B}$?
$\mathbf{A} \cdot \mathbf{B}=$?
$\mathbf{A} \cdot \mathbf{B}=(3 \mathbf{i}+5 \mathbf{j}) \cdot(-1 \mathbf{i}+2 \mathbf{j})$

$$
\mathbf{A} \cdot \mathbf{B}=-3+10=7
$$

b) What is the angle between \mathbf{A} and \mathbf{B} ?
$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta$
$\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{A B}\right)$
$A=\sqrt{3^{2}+5^{2}}=5.83$
$B=\sqrt{-1^{2}+2^{2}}=1.73$
$\theta=\cos ^{-1}\left(\frac{7}{5.83 \cdot 1.73}\right)=46^{\circ}$

Example 6

A force of $4 \mathbf{i}+-3 \mathbf{j}$
Newtons acts on object, and displaces it $10 \mathbf{i}+3 \mathbf{j}$ meters.

How much Work was done on the object by the force?

$$
\begin{aligned}
& W=\mathbf{F} \cdot \mathbf{x} \\
& W=(4 \mathbf{i}-3 \mathbf{j}) \cdot(10 \mathbf{i}+3 \mathbf{j}) \\
& W=(40-9)=31 J
\end{aligned}
$$

Work done by varying Force

$$
W=\int_{x_{i}}^{x_{f}} F_{x} \cdot d x
$$

Example 7

How much Work is done by the Force indicated in the graph here?

Hooke's Law-Springs

$$
F_{\text {spring }}=-k x
$$

Example 8

A mass is suspended from a spring and

$$
F_{\text {spring }}=-k x
$$

$\begin{aligned} & \text { allowed to come to rest. } \\ & \text { Calculate the spring }\end{aligned} \quad \frac{F_{\text {spring }}}{x}=\frac{F_{\text {gravity }}}{x} \frac{m g}{0.50 \mathrm{~m}}$ $\begin{aligned} & \text { constant of the spring } \\ & \text { shown here. }\end{aligned} \quad k=\frac{(0.100 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.50 \mathrm{~m}}=2.0 \mathrm{~N} / \mathrm{m}$

An Oscillating Spring

Work w/ Varying Force

Example 9

How much Work is done by the spring to return the block to its equilibrium position?

$$
\begin{aligned}
& W_{\text {spring }}=\int_{x_{i}}^{x_{f}} F_{\text {spring }} \cdot d x \\
& W_{\text {spring }}=\int_{-x}^{x_{o}}(-k x) \cdot d x \\
& W_{\text {spring }}=\frac{1}{2} k x^{2}
\end{aligned}
$$

$$
x_{\text {min }}
$$

$$
x_{o}
$$

$$
x_{\max }
$$

Example 9a

If the mass is displaced twice

$$
\begin{aligned}
& W_{\text {spring }}=\frac{1}{2} k x^{2} \\
& W_{\text {spring }}=\frac{1}{2} k(2 x)^{2} \\
& W_{\text {spring }}^{\prime}=4\left(\frac{1}{2} k x^{2}\right)
\end{aligned}
$$ the distance x before being released, how much more Work will the spring do on the mass?

Extra Credit

			ASSignment	due	SCORE	possible
10/16/16	10/17/16	10/18/16	Test-Chapter 2	Sep 03	76	100
	CLASS: 7.5 Kinetic Energy and the Work-Kinetic Energy Theorem; 7.6: Potential Energy of a System. Extra Credit available.		TEST-Ch 3, 4	Sep 20	82	100
			LAB: 97.5\%			
			ASSIGNMENT	DUE	SCORE	POSSIBLE
			LAB-Kinematics	Sep 15	19	20
			Lab-Catch the Ball	Oct 06	20	20
			OTHER: 101.9\%			
	$\begin{aligned} & \text { HW: 7.31, 7.32, 7.33, 7.35, } \\ & 7.42 \end{aligned}$		Assignment	DUE	SCORE	Possible
			Activity-Velocity of Car	Sep 02	5	5
			Homework-Ch 2	Sep 02	11	10
10/23/16	10/24/16	10/25/16	HW: 3:1	Sep 03	2	2
	CLASS: Lab-Conservation of Energy: Pendulum	CLASS: 8.1-8.2: Analysis Models for non-Isolated and Isolated Systems; 8.3: Situations Involving Kinetic Friction	HW: 3: 3, 9, 17	Sep 07	2	2
			HW: 3: $21,33,40$	Sep 08	2	2
			HW: 4: 1, 2, 5, 7	Sep 10	2	2
			HW-4: 12, 17, 19, 21, 23	Sep 13	2	2
			Activity-Bus Jump Scene from S	Sep 14	5	5
			HW-4: 27, 30	Sep 14	2	2
	HW: Complete writeup if not finished in class	HW: 8.2, 8.3, 8.5, 8.7, 8.12, 8.14, 8.16	HW-4: 33, 36, 41, 42, 45	Sep 15	2	2
			HW-Ch 5: 3, 7, 8, 11	Sep 21	2	2
			HW-Ch5: 17, 18, 19	Sep 22	2	2
10/30/16	10/31/16	11/01/16	HW-Ch5: 22, 23, 31, 33	Sep 24	2	2
	CLASS: 9.1: Linear Momentum; 9.2: Analysis Model: Isolated System; 9.3 Analysis Model: Non-isolated System	CLASS: Review for Test.	HW-Ch 5: 41, 36, 44	Oct 05	2	2
			Pop Quiz-Dragging a Student	Oct 07	5	5
			HW-Ch 5: 45, 58, 65	Oct 07	2	2
			HW-Ch 6: 1, 7, 6	Oct 10	2	2
			HW-Ch 6: 17, 13, 15	Oct 13	2	2
			EXTRA CREDIT: 100\%			
	HW: 9.1, 9.4, 9.5, 9.6, 9.11, 9.15; Download Practice Test	HW: Study for test	ASSIGNMENT	due	SCORE	Possible
			Student Info Form	Sep 01	5	Extra Credit

Work-Kinetic Energy
 Theorem

If \mathbf{F} varies in a problem, we can't use our constant-a kinematics to analyze the motion...
... but we can use Work.

How is Work related to the acceleration of an object that has a Force being applied to it?

Derivation

$$
\begin{aligned}
& W_{e x t}=\int_{x_{i}}^{x_{f}} F_{x} d x \\
& W_{e x t}=\int_{x_{i}}^{x_{f}} m a_{x} d x \\
& W_{e x t}=m \int_{x_{i}}^{x_{f}} a_{x} d x \\
& W_{e x t}=m \int_{x_{i}}^{x_{f}} \frac{d v}{d t} d x
\end{aligned}
$$

Kinetic energy

$$
W_{e x t}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

$$
K \equiv \frac{1}{2} m v^{2}
$$

Work done on an object causes its K to increase.

Negative work done on an object causes its K to decrease.
$\sum W_{e x t}=K_{f}-K_{i}=\Delta K$

Example 10

A $6.0-\mathrm{kg}$ mass is pulled with a constant horizontal Force of 12.0N for a distance of $3.0-\mathrm{m}$ on a frictionless surface.
a) Find the final speed of the block using kinematics.
$F_{n e t}=m a ; a=\frac{F_{n e t}}{m}=\frac{12 \mathrm{~N}}{6}=2 \mathrm{~m} / \mathrm{s}^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x ; v_{f}=\sqrt{2 \cdot 2 \cdot 3}=3.46 \mathrm{~m} / \mathrm{s}$
b) Find the final speed of the block using workenergy.

$$
\begin{aligned}
& W=F x=(12 \mathrm{~N})(3 \mathrm{~m})=36 \mathrm{~J} \\
& W=K_{f}-K_{i}=\frac{1}{2} m v_{f}{ }^{2}-0 \\
& v_{f}=\sqrt{\frac{2 \cdot W}{m}}=\sqrt{\frac{2 \cdot 36}{6}}=3.46 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example II

A dart is loaded into a spring-driven Nerf gun by pushing the spring in for a distance d. For the next loading, the spring is compressed a distance 2d.

How much faster does the second dart leave the gun, compared to the first?
$W=\Delta K$
$\frac{1}{2} k x^{2}=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{i}{ }^{2}$
$v_{f}=\sqrt{\frac{k x^{2}}{m}}=\sqrt{\frac{k}{m}} x$
Compressing the spring twice the distance produces a dart with twice the velocity.

Potential Energy

= "stored" energy, later converted to other forms.

Gravitational Potential Energy $\left(U_{g}\right)=$ energy stored in a gravity field

Elastic Potential
 Energy $\left(U_{s}\right)=$ energy

stored in a spring system

Rethink

With this new idea of "stored" potential energy, we need to adjust how we think about problems that involve energy.

What happens when you lift a

 box?
Old Analysis

You do positive work on the box, and gravity does negative work.

The box in the air has $W_{\text {net }}=0$.

Nothing will happen to box until we let it go. Then, we'll look at additional Work gravity does on box to pull it down.

$$
W_{g r a v i t y}=\overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{x}}=m g h
$$

New Analysis

You do work on the box and move it through a gravity field, which is considered part of the system. The Work done on the box "gives it" a gravitational potential energy U, based on its position in the field.

$$
U_{g} \equiv m g h
$$

If you drop the box, where does its K come from?

Old Analysis

Work done by gravity

$$
\begin{aligned}
& W_{\text {gravity }}=K_{f}-K_{i} \\
& F_{g} x=\frac{1}{2} m v_{f}^{2}-0 \\
& m g h=\frac{1}{2} m v_{f}^{2}
\end{aligned}
$$

New Analysis

U_{g} from when it was in the air.

$$
\begin{aligned}
& U_{g}=K \\
& m g h=\frac{1}{2} m v^{2}
\end{aligned}
$$

Calculating U

For a spring:

$$
\begin{aligned}
& \begin{array}{l}
\text { ng: } \\
W_{\text {spring }}
\end{array}=\int_{x_{i}}^{x_{f}} F \bullet d x \\
& W_{\text {spring }}=\int_{x_{i}}^{x_{f}}-k x \bullet d x \\
& W_{\text {spring }}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} \\
& W_{\text {spring }}=U_{i}-U_{f} \text { where } U_{s} \equiv \frac{1}{2} k x^{2}
\end{aligned}
$$

Calculating U

For gravity:

$$
\begin{aligned}
& W_{g}=\int_{x_{i}}^{x_{f}} F_{g} \bullet d x \\
& W_{g}=\int_{y_{i}}^{y_{f}}-m g \bullet d y\left(\text { where } y_{i}>y_{f}\right) \\
& W_{g}=m g y_{i}-m g y_{f} \\
& U_{g} \equiv m g h
\end{aligned}
$$

3 Notes re: U

- Where does $h=0$?
- "The potential energy of the ball" \rightarrow ".. the ball in the field".
- In the new analysis, "Work done by gravity" $\rightarrow-\Delta \mathrm{U}_{\text {gravity }}$ "Work done by a spring" $\rightarrow-\Delta \mathrm{U}_{\text {spring }}$

Example I7

A hiker carries a 15.0 kg backpack up a 20 m long slope, inclined at 30° above the horizontal.

a) How much Work was done on the backpack by the hiker?
b) How much Work was done on the backpack by gravity?
c) What was the net Work done on the backpack?

PhET demo

Simulations of the relationship between potential energy U and kinetic energy K.

- Energy Skate Park
- Masses \& Spring

Conservative Forces

A force is conservative if work it does on a particle moving between any 2 points is independent of the path taken by the particle. Also, work done by a conservative force exerted on a particle moving through
 any closed path is 0 .

Nonconservative Forces

 change in mechanical energy, ie. you have to do net work on an object to return it to its same location and state of motion.
Potential Energy functions can only be defined for Conservative Forces

Conservative Forces

So how do we define Potential Energy for conservative forces?

$$
\begin{array}{r}
W_{\text {conservative force(int) }}=\int_{x_{i}}^{x_{f}} F_{x} d x=-\Delta U=U_{i}-U_{f} \\
\Delta U=U_{f}-U_{i}=-W_{c}=-\int_{x_{i}}^{x_{f}} F_{x} d x
\end{array}
$$

Mechanical Energy

You will occasionally be asked to consider the "mechanical energy" of a system.

$$
E_{\text {mechanical }}=K+U
$$

In some systems, the total mechanical energy will remain constant, as long as energy is not "lost" (converted) via non-conservative forces.

Conservative Forces \& U

$$
\begin{aligned}
& F_{x} \bullet d x=-d U \\
& F_{x}=\frac{-d U}{d x}
\end{aligned}
$$

Example 6

Show that $F_{x}=\frac{-d U}{d x}$
using elastic and gravitational potential energy expressions.

$$
F_{x}=\frac{-d U}{d x}=\frac{-d\left(\frac{1}{2} k x^{2}\right)}{d x}=-k x
$$

$$
F_{y}=\frac{-d U}{d y}=\frac{-d(m g y)}{d y}=-m g
$$

Energy Diagrams

Potential Energy Curve

a)What does the slope of this curve represent?
A conservative Force
b) What's happening at the bottom of the curve?
A point of "stable equilibrium"

c) What happens if the mass is given an initial displacement x ?

A displacement in the positive x direction results in a conservative "restoring force" in the $-x$ direction. If the mass is released, it will oscillate back and forth, with U+K = k. Visualize this oscillating system as a "marble in a bowl."

Energy Diagrams

Potential Energy Curve
How is this diagram different?

A point of "unstable equilibrium"

AP Problem

1995 M2. A particle of mass m moves in a conservative force field described by the potential energy function $U(r)=a(r / b+b / r)$, where a and b are positive constants and r is the distance from the origin. The graph of $U(r)$ has the following shape.
a. In terms of the constants a and b, determine the following.
i. The position r_{o} at which the potential energy is a minimum
ii. The minimum potential energy $U_{\text {o }}$

i. $r_{0}=b$
ii. $U_{0}=2 a$

AP Problem

b. Sketch the net force on the particle as a function of r on the graph below, considering a force directed away from the origin to be positive, and a force directed toward the origin to be negative.

AP Problem

The particle is released from rest at $r=r_{o} / 2$.
c. In terms of U_{o} and m, determine the speed of the particle when it is at $r=r_{o}$. d. Write the equation or equations that could be used to determine where, if ever, the particle will again come to rest. It is not necessary to solve for this position.

e. Briefly and qualitatively describe the motion of the particle over a long period of time.
c. $v=\sqrt{ }\left(\mathrm{U}_{0} / 2 \mathrm{~m}\right)$
d. $U\left(r_{1}\right)=U\left(r_{0} / 2\right)$
e. Particle will oscillate, energy is not lost

