Lab: Newton's 2nd Law of Motion--Friction

AP Physics

Background

The ratio between the Force of friction $\mathbf{F}_{\text{trateen}}$ and the normal Force $\mathbf{F}_{\text{Normal}}$ acting between two parallel surfaces sliding against each other is called the *coefficient of friction* μ :

$$\mu = \frac{F_{friction}}{F_{Normal}}$$

The value μ is determined experimentally.

Objectives

To experimentally determine the static and kinetic coefficient of friction between two solid materials: brick on wood, textbook on floor, etc.

Equipment

(To be determined, and carefully described, by you.)

Procedure

(To be determined, and carefully described, by you in your lab notebook.)

Questions

Lab: Newton's 2nd Law of Motion--Friction

Additional Notes

- This lab is an open-ended lab.
- Two techniques immediately present themselves (although students may need some hints, depending on where they are in the development of this topic):
 - Inclined plane approach:
 - Static coefficient of friction: lift the inclined plane until the stationary objects breaks loose and slides down the plane. Record this theta valule, and analyze using a free-body diagram to find that $\mu = \tan \theta$.
 - Kinetic coefficient of friction: left the inclined plane slowly, while gently tapping the surface to try to get the object moving. Once it's moving at a constant velocity, record this theta value, and analyze using a free-body diagram.
 - Logger Pro approach:
 - Attach a force sensor via a string to a object (a book, say), and slowly apply force to attempt to drag the book across the surface. Once the book breaks free of the surface, a maximum force of Friction should be evident in the Force-time graph. Use this maximum Force as the force of friction.
 - With the force sensor still attached to the book, drag the book across the book at a constant velocity. The Force time graph should indicate a more-or-less constant Force. Use a best-fit line to determine this force applied, which is equal to the force of kinetic friction.