
CHAPTER 6: 
Center Seeking Forces

1.)



When I was a kid, the cool car 
to have, aside from a Corvette, was a 55 
Chevy.  They were light, they were fast, 
they had bench seats, and I couldn’t 
afford one.

So I tried to get

2.)



a 1938 Hearse . . . 

3.)

Didn’t work out, so I ended up with:



‘56 FORD STATION WAGON

4.)

Features:
--312 cu. inch engine with three on the tree;
--room for a mattress in the back (I slept in it more than once at the beach);
--bench seats without seat belts (dangerous, very dangerous);

Why are we talking about all of this?
--BENCH SEATS were required for the MOB maneuver . . . 



The MOB Maneuver
The Problem:  

You are on a second date. 

You kind of like your date.

Your date kind of likes you.

You don’t want to seem overly aggressive.

Your date doesn’t want to seem too easy.

So there your date sits, way over there, next to the passenger-side door.

You’d like your date sitting next to you.

Enter the MOB maneuver.

5.)



force-free path

(the MOB maneuver)

you your date

6.)

You approach an intersection moving at a constant speed . . . 

As you begin your turn

she follows a force-free path

until voila

and there you have it



acentripetal  = v2

R

To make the move, a center seeking (centripetal) acceleration is required:

7.)



Which means a center seeking (centripetal) FORCE is required.

“center-seeking” forces

8.)



The force must 
ALWAYS be 
toward the 
center of the 
arc being 
subscribed, so 
one could 
execute an 
INADVERTENT 
REVERSE M.O.B. 
MANEUVER if 
one wasn’t 
careful . . . 

9.)



Ack!  Don’t want to 
punish you enough to 

die in the process

Me hurtling across the seat 
to grab her before she flew 
out of the door

LACY PARK

me Irritated 
girlfriend

10.)

Virginia Ave.



1.) From DRIVER’S PERSPECTIVE: the date 
seems to be accelerating toward him/her/they.

Additional side note: (an idea you 
should understand but the math of which 
you won’t be tested on):

apparent force

2.) As far as driver is concerned, the only way date can 
be accelerating toward him/her/they is if there is a 
force on the date.  That is, from the driver’s 
perspective, date does NOT appear to be force free.

3.) So where does the force come from?  

4.) NOWHERE!  
5.) The only reason date appears to be accelerating 
is because driver is looking at things from driver’s 
own frame of reference, which happens to be an 
ACCELERATED FRAME OF REFERENCE!!!

6.) Nevertheless, driver may still want to attempt to 
use N.S.L. to predict date’s motion (i.e., “When is 
date going to arrive at my side, etc.?”) 11.)



apparent force

7.) To do this, he has to assume that a fictitious force
acts on her.  

8.) With a magnitude of             , this fictitious force 
is called a CENTRIFUGAL FORCE!

9.) In short, a CENTRIFUGAL FORCE does not 
exist.  It is a mathematical contrivance designed to 
allow you to use NSL-type analysis in situations in 
which the observation frame is non-inertial . . . which 
is to say ACCELERATED . . . along a curved path.

10.) There are other kinds of fictitious forces, the 
coriolis force being one of the most quoted, but they 
all do the same thing.  They all allow the user access 
to Newton’s Second Law when a system is being 
analyzed from the perspective of a non-inertial 
frames of reference.

Fcentrifugal = mv
2

R

mv
2

R

mv
2

R

mv
2

R

12.)



In the previous chapter, we found that 
when an object follows a curved path, it must 
experience an acceleration that is center seeking 
(i.e., centripetal), and that the magnitude of that 
acceleration was derived as

13.)

Center Seeking Accelerations
 
!v2

 
!v1

R

R
θ

 
!a1

 
!a2

acentripetal =
v2

R
Centripetal acceleration is produced by 
centripetal force, so is centripetal force NEW kind 
of force?

NO! God didn’t say,  “There are gravitational forces, tension forces, 

normal forces, friction forces and, oh, yeah, centripetal forces . . . “  The word 
CENTRIPETAL is a blurb.  It identifies one or more of the four standard 
forces (or their components) in a system that happens to be doing a very 
specific thing—pushing a body out of straight-line motion.  That’s all!



Gravity from the earth acting on the moon as the moon orbits the earth.

14.)

Forces Acting Centripetally

Tension acting on a hammer as a hammer-thrower winds up for a heave.

Normal (or component of normal) acting on a car rounding a 
banked curve on a freeway.

Friction acting on a car rounding a corner on a flat road.  

When any naturally occurring force in a system, or component of a naturally 
occurring force in a system, or combination of forces and/or components of 
naturally occurring forces in a system, push a body out of straight line motion, 
THEY ARE ACTING CENTRIPETALLY.  So-called centripetal forces are not 
new forces.  They are old forces doing a new thing.  Examples:

Old forces doing a new thing.  



Consider a 1000 kg car traveling over 
the crest of a rolling hill of radius 50 meters 
moving with a constant speed of 60 km/hr.  

15.)

a.) What is the net centripetal force acting on the 
car at the top of the hill?

b.) Draw a f.b.d. on the car at the top.

c.) How large a normal force will the road provide to the car in this situation?

d.) What is the maximum velocity the car could pass over the top of the hill 
without without lifting off?

vcar



Note that questions like this are designed to be tricky.  They are asking for a 
force, so you are thinking about forces, but all you have to do is figure out ma
and you have the net force via N.S.L.  Also, notice you have to do a little bit of 
converting.  Don’t be surprised if you are asked to do this.  It’s standard fare.  
(And for future reference, v turned out to be 16.67 m/s)

16.)

a.) What is the net centripetal force acting on the 
car at the top of the hill?

Fcent = mac

     = m v2

R
⎛
⎝⎜

⎞
⎠⎟

     = 1000 kg( )
60 km/hr( ) 1000 m

1 km
⎛
⎝⎜

⎞
⎠⎟

1 hr
3600 sec

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

50 m
     = 5558 newtons

Consider a 1000 kg car traveling over 
the crest of a rolling hill of radius 50 meters 
moving with a constant speed of 60 km/hr.  



HUGE OBSERVATION:  Notice there is no      shown on the f.b.d.  That’s because there is 
NO SUCH THING as a centripetal force proper.  The forces that are acting centripetally in this 
case are the combination of normal and gravity!!! 17.)

b.) Draw a f.b.d. on the car at the top.

N

mg

FengineFfriction

There are a bunch of questions to be answered when 
doing a f.b.d. on a centripetal force problem, not the 
least of which is what perspective you are going to 
take and what forces you will include.  That is: 

a.) Rolling friction along the line of motion will be countered by the force 
provided to the wheels by the car’s engine.  Because the velocity is constant, 
these will add to zero and don’t have to be included (though I did).

b.) You need a perspective that will allow you to see all relevant forces.  In 
most vehicle-related centripetal force problems, looking at the vehicle front-
on is the way to go, though in this case it is from the side.  With that:

Fc



18.)

c.) How large a normal force will the road provide to 
the car in this situation?

By the numbers:

Step 0: Lordy, lordy, “I couldn’t possibly figure this out.”

Step 1: Pick one body in the system and draw a f.b.d. for it (blurbing well!).

f.b.d. on car from side
   (without friction or 
     engine force)

N

mg

This is a N.S.L. problem:



Step 2: Identify the line of the body’s acceleration 
and put a coordinate axis along that line. 

19.)

N

c

x

mg

In this case, the center of the arc when the 
car is at the top of the hill is toward the bottom 
of the page, so we will put one axis along that 
line.

You HAVE to identify the CENTER OF THE 
ARC upon which the body is traveling.  Once 
determined, put an axis FROM THE BODY 
through that center—that’s the center seeking 
direction.  If you mess this up, NOTHING YOU 
WILL DO FROM THERE ON WILL BE 
RIGHT!!!!!!!!!

This is really important in centripetal force 
problems.  How do you do this?



20.)

N

c

x

mg

Step 3: If there are any off-axis forces, break them 
into components along your two coordinate axes.  

Step 4:  Sum the forces running along one of the 
axes and put that sum equal to the body’s mass “m” 
times its acceleration (centripetal) along that line 
(include blurbs—remember, v = 16.67 m/s).  

Fx :∑
     N − mg = −mac

     N −      m              g       = −      m            v2

R
⎛
⎝⎜

⎞
⎠⎟

     N − 1000 kg( ) 9.8 m/s2( ) = − 1000 kg( ) 16.67 m/s( )2

50 m( )
               ⇒    N = 4242 newtons

Huge observation: Because the centripetal acceleration is toward the center of the arc upon 
which the body rides, and because the center of the arc in this case is toward the bottom of the 
page in the negative direction, as defined by our coordinate axis, we NEED to make the 
acceleration negative in the N.S.L. equation.  Minutia, but mess it up and you are screwed!

 
!ac

(There aren’t any.)



21.)

N

c

x

mg

FC :∑
       N − mg = −m v2

R
⎛
⎝⎜

⎞
⎠⎟

  ⇒   v = gR( )1
2

            = 9.8 m/s2( ) 50 m( )⎡⎣ ⎤⎦
1

2  
            = 22.14 m/s

d.) What is the maximum velocity the car could pass 
over the top of the hill without without lifting off?

Another bit of trickiness raises its head 
here.  What happens to the normal force if the 
car just skims through the top of the arc?  It 
goes to zero.  So you would do this problem
exactly as you did it in the previous section, except at the end you would let N 
go to zero and you’d solve for v.  That is: 

0

Observation: Notice how important it is to get that negative sign in front of the acceleration 
term?  If it wasn’t there, you’d be trying to take the square root of a negative number, which 
is never a good thing.

 
!ac



22.)

From above, the car takes the curve 
as shown below.  If it is 1000 kg, the curve 
is 50 meter radius and the car is moving at 
a rate of 14 m/s:  

a.) Where is the centripetal force in this 
problem coming from?  

b.) How much centripetal force is being 
provided in this scenario?  

c.) Draw a f.b.d. for the forces acting on the car as it appears on 
the sketch?  Include coordinate axes.  

d.) Assuming the coefficient of static friction is .4, derive an 
expression for the maximum velocity the car can take the 
curve.  

v

R

Looking down on 
track and car



31.)

Consider a Formula 1 race car taking a turn.



24.)

From above, the car takes the curve 
as shown below.  If it is 1000 kg, the curve 
is 50 meter radius and the car is moving at 
a rate of 14 m/s as shown:  

a.) Where is the centripetal force in this 
problem coming from?  

Static friction between the pavement and 
the road . . . and we need to talk some 
about this!

v

R



Looking down through a car, what  
happens when you crank the wheel to make a 
hard right turn?

25.)

Friction and Wheels
v



A turning car wheel does to a street what a turning skier does to snow . . . 

1.)



v

27.)

In other words, the tires apply a 
static frictional force to the road outward 
(this is like the skis pushing outward on the 
snow, spraying it outward on unsuspecting 
shooshers)



v

fstatic
fstatic

28.)

In other words, the tires apply a 
static frictional force to the road outward 
(this is like the skis pushing outward on the 
snow, spraying it outward on unsuspecting 
revelers) as the road pushes INWARD on 
the tires.

The direction of the force on the tires 
by the road is perpendicular to the tires (as 
shown).



If the angle     is big (i.e., with the 
wheels turned a lot), the radius of the 
arc is small and the static frictional 
force has two components:

vfstatic

fstatic cosθ
θ

θ

fstatic sinθ

θ

29.)

Examining the 
forces in the 
exaggerated 
presentation on one tire:

--one component is along the line-of-motion.  
It tends to slow the motion of the car.
--one component is perpendicular to the line-
of-motion.  It pushes the car out of straight-
line motion.



v

fstatic

fstatic cosθ ≈ fstatic

θθfstatic sinθ ≈ 0

30.)

If the angle     is small (i.e., with the 
wheels turned just a bit), the radius 
of the arc is huge and the static 
frictional force is almost entirely
directed in the center seeking 
(centripetal) direction. 

θ

In that case, we assume that ALL of the 
static frictional force is centripetal.  

That is the standard assumption made in 
these problems.



31.)

From above, the car takes the curve 
as shown below. If it is 1000 kg, the curve 
is 50 meter radius and the car is moving at 
a rate of 14 m/s:  

b.) How much centripetal force is being provided in this scenario?  

a.) Where is the centripetal force in this 
problem coming from?  

Friction between the pavement and the road . . 
. And we need to talk some about this!

As before, this is just “ma!”

Fcent = m v2

R
⎛
⎝⎜

⎞
⎠⎟

     = 1000 kg( ) 14 m/s( )2

50 m
     = 3920 newtons

v

R



32.)

c.) Draw a f.b.d. for the forces acting on 
the car as it appears on the sketch?  
Include coordinate axes.  

Remembering the type of friction involved and
it’s assumed direction in problems like this;
Remembering that we view the body from the 
front of the car in doing f.d.b.s for problems 
like this;

And realizing that the force of rolling friction retarding the motion, along 
with the small component of static friction fighting the forward motion, 
is exactly countered by the force of the engine urging the car forward, so 
the net force along the line of motion is ZERO . . . hence no need to 
include any of those forces . . . we have:

v

R

eyeballed
from here

N

c

y

mg
fs



33.)

How did you find the center seeking (centripetal) direction?

You identified the position of the center of the arc upon which the body 
was moving, then you ran an axis from the body THROUGH THAT POINT.  
THAT IS HOW YOU DETERMINE THE CENTER SEEKING 
DIRECTION!!!



34.)

d.) Assuming the coefficient of static friction is .42, derive an expression for the 
maximum velocity the car can take the curve.  

N

c

y

mg
fs = µsN

m = 100 kg, R = 50 m, vmax = ?

If we are talking MAXIMUM velocity, we are talking MAXIMUM STATIC 
FRICTION, which means we can use                . fs = µsN

f.b.d. Fy :∑
       N − mg = may

    ⇒   N = mg

Fc :∑
       µsN = mac

  ⇒   µs mg( ) = m v2

R
⎛
⎝⎜

⎞
⎠⎟

         ⇒   v = µsRg( )1
2

                    = .42( ) 50 m( ) 9.8 m/s2( )⎡⎣ ⎤⎦
1

2  
                    = 14.35 m/s

0



35.)

Now for the fun! Consider a 1000 kg 
car moving through a curve of 50 meter that is 
BANKED at an angle             .  What is the 
maximum velocity the car can have and not 
lose it if the curve is frictionless.

v

R

Looking down on 
track and car

θ = 30o

θ = 30o

As viewed from head-on 
coming around the curve

f.b.d.

N

mg

c

y WHAT’S THE 
CENTRIPETAL 
DIRECTION?



36.)

v

R

Looking down on 
track and car

θ = 30o

As viewed from head-on 
coming around the curve

f.b.d.

θNcosθ

mg

c

y

N

Nsinθ

Fy :∑
     N cosθ− mg = −may

     ⇒    N = mg
cosθ

0

Fc :∑
     Nsinθ = mac

     ⇒    mg
cosθ

⎛
⎝⎜

⎞
⎠⎟ sinθ = m v2

R
            ⇒   v = Rg tanθ( )1

2



Note that you’ll be summing forces in the 
horizontal, as that’s the center-seeking direction. 37.)

Now for more fun! Same problem, almost: Consider a 
1000 kg car moving through a curve of 50 meter that is 
BANKED at an angle   .  What is the maximum velocity the car 
can have and not lose it if the curve is FRICTIONAL.

v

R

Looking down on 
track and car

θ

θ

large angle—slow car wants 
to break loose DOWN incline

You actually don’t have enough information 
to do this.  The trickiness is with the direction 
of the static frictional force.  Consider:

--if the car is moving slowly and the incline angle 
is relatively large, the car will want to break loose 
DOWN the incline and static friction will have to 
be TOWARD THE TOP to keep it in place. 

θ
Ncosθ

mg

c

y

N

Nsinθ

θ

µsN( )cosθ
µsN( )sinθ

fs = µsN( )



38.)

v

R

Looking down on 
track and car

θ
large angle—slow car wants 
to break loose DOWN incline

--but if the car is moving fast and the incline 
angle is relatively small, the car will want to 
break loose UP the incline and static friction will 
have to be TOWARD THE BOTTOM to keep it 
in place. 

θ
Ncosθ

mg

c

y

N

Nsinθ

θ

µsN( )cosθ
µsN( )sinθ

fs = µsN( )

And again, you’ll be summing forces in the horizontal as that’s 
the center-seeking direction. 



39.)

Mini-lab: An airplane circles with some 
unknown velocity v (see demo at front of room).  
Derive an expression for v, then check to see if that 
value matches up with the actual velocity of the 
plane.  Determine also the motion’s period T. 

θ
m v

L

eyeballed
from hereFrom what perspective will you view the system?

Hint for f.b.d.: Think of viewing the system as 
though the body was at an extreme—that is, 
with the velocity coming straight at you and the 
mass and string in the plane of the page.)

Look at it from head-on.

θ

L

body coming 
straight out at youT

mg

f.b.d. (looking at the body from head-on)



40.)

So how will you orient your axes?

Breaking off-axis forces into components:

θ

L

body coming 
straight out at you

T

mg

c

y

T

mg

c

y

θ Tsinθ

Tcosθ

etc.



Vertical Circles
Objects traveling in vertical circles are treated exactly the 
same as objects traveling in horizontal circles: the sum of the 
centripetal forces adds up to allow the object to accelerate 
centripetally, and thus, travel in a circle. (∑Fc=mac)



42.)

Consider a ball attached to a string of 
length L moving along a vertical path.

v2

vtop

Draw a f.b.d. for the forces acting on 
the ball at the top. v4

vbottom

A

C

B

mgT

Draw a f.b.d. for the forces acting on 
the ball at the bottom.

mg

T
Draw a f.b.d. for the forces acting on  
the ball at Point B.

mg

T

L

m



b.) From scratch, 
derive an expression, 
then determine the 
tension at the top?

43.)

Assume the ball’s mass is m = 1.8 kg 
and the rope’s length is L = 1.2 meters. If 
the velocity at the top of the arc is 5.0 m/s:

vtop

mgT

a.) What is the net centripetal force 
required for the ball to execute the motion?

L

m

This is just “ma.”
Fcent = m v2

R
⎛
⎝⎜

⎞
⎠⎟

     = 1.8 kg( ) 5 m/s( )2

1.2 m
     = 37.5 newtons

f.b.d. at top

Fc :∑
     − T− mg = −mac

     ⇒      T = −mg + m
vtop

2

R

                   = − 1.8 kg( ) 9.8 m/s2( ) + 1.8 kg( ) 5.0 m/s( )2

1.2 m( )
                   = 19.86 newtons



44.)

vtop

mgT

c.) What is the the minimum speed the ball 
could pass through the top without falling 
out of the arc (in fact, it would fall out 
before reaching the top)?  Do from scratch. L

m

Fc :∑
     − T− mg = −mac

   ⇒     mg = m
vtop

2

R
   ⇒     v = Rg( )1

2 = 1.2 m( ) 9.8 m/s2( )⎡⎣ ⎤⎦
1

2

                   = 3.43 m/s

general 
f.b.d. for 
top

Once you’ve done a general f.b.d., the 
key is to notice that if the ball is to 
just barely skim through the top of the 
arc, the tension must go to zero (it will 
not be needed as gravity will do 
everything that is required to 
centripetally accelerate the ball).  With 
that in mind:

0



45.)

d.) At the bottom of the arc, the ball was 
observed to be moving 8.49 m/s. What 
would the tension be there (from scratch)?

L
mFc :∑

     T− mg = mac

   ⇒     T = +mg + m v2

R

                   = 1.8 kg( ) 9.8 m/s2( ) + 1.8 kg( ) 8.49 m/s( )2

1.2 m( )
                   = 126 newtons

f.b.d. at 
bottom

mg

T

vbottom



46.)

Consider a 100 kg rollercoaster car 
traveling inverted through the top of a 
vertically oriented circular loop of radius 
20 meters.  

a.) At what speed should the car 
travel through the top of the loop if 
the track is not to supply any force on 
the car?

mg

f.b.d
. 

Fc :∑
     − mg = −mac

     ⇒      mg = m
vtop

2

R
     ⇒       v = Rg( )1

2

                   = 20 m( ) 9.8 m/s2( )⎡⎣ ⎤⎦
1

2

                   = 14 m/s

c

mg



47.)

b.) Describe the force supplied by the 
track if the car travels 5 m/s faster 
than the free fall speed calculated in 
Part a.

mg

f.b.d
. 

Fc :∑
     − N − mg = −mac

     ⇒    N = −mg + m
vtop

2

R

     ⇒       = − 100 kg( ) 9.8 m/s2( ) + 100 kg( ) 19 m/s( )2

20 m( )
                  = 825 newtons

c

mg

N

The track will have to provide a 
normal force to appropriately push 
the car out of its straight line 
motion.  Soooo . . . 

N



48.)

c.) Describe the force supplied by the 
track if the car travels 5 m/s slower
than the free fall speed calculated in 
Part a.

mg

f.b.d
. 

Fc :∑
     N − mg = −mac

     ⇒    N = mg − m
vtop

2

R

     ⇒       = 100 kg( ) 9.8 m/s2( )− 100 kg( ) 9 m/s( )2

20 m( )
                  = 575 newtons

c

mg

N

The track will again have to 
provide a normal force in the 
centripetal direction, this time to 
keep the car from falling.  Soooo . . . 

N



49.)

Consider a mass m attached to a string of 
length L that is suspended from the ceiling.  At 
some point, it makes an angle with the 
vertical moving upward with velocity    .  

What’s tricky is the axes . . . 

f.b.d. 
T

c

y

mg

string

L

m
v1

θ

Non-uniform Circular Motion:

a.) Derive an expression for the tension 
in the string.

θ
v1



50.)

f.b.d. 
T

c

y

mg

θL

m
v1

Breaking forces into components:

θ
mgcosθ

mgsinθ

Fc :∑
     T− mgcosθ = mac

     ⇒    T = mgcosθ+ m v1
2

L

b.) Derive an expression for the magnitude of the translational acceleration of the 
mass.

Fy :∑
     − mgsinθ = −may

     ⇒    a = gsinθ

string



51.)

f.b.d. 
T

c

y

mg

θL

m
v1

c.) Write out the net force using a unit vector notation.

θ
mgcosθ

mgsinθ

d.) Write out the acceleration of the mass at the point of interest using a unit vector 
notation.

string



For fun, derive the velocity a rider of mass m 
would need to just barely stick to the wall if the 
ride’s radius was R and the coefficient of static 
friction between the rider and wall was     .

52.)

A classic carnival ride consists of a huge, rotating 
cylinder in which people stand with their back against 
the wall.  As the cylinder rotates faster and faster, friction
between the people and the wall “stick” the riders to the 
wall, and at some point the floor drops out leaving the 
riders suspended, whirling round and round.  

Carnival Ride:

µs

floor removed

rotate around
this axis

fs = µsN

mg

N

Fy :∑
          µsN − mg = may

                ⇒    N =
mg
µs

Fc :∑
          N = mac

            ⇒    mg
µs

⎛
⎝⎜

⎞
⎠⎟
= m v2

R
⎛
⎝⎜

⎞
⎠⎟

                 ⇒    v = Rg
µs

⎛
⎝⎜

⎞
⎠⎟

1/2

y

c

0

f.b.d.



If the velocity is increased some, the same outcome may 
well occur (see Figure 2).  At some point, though, the 
maximum static friction will EQUAL “mg” (see Figure 3), and 
now friction will hold the individual in place.

But what happens if the velocity continues to rise?  Then 
the maximum static friction force possible continues to 
increase, but the amount of static friction required to keep the 
individual in place will still only be “mg.”  In other words, the 
force you will be looking for won’t be that MAXIMUM 
POSSIBLE static frictional force for that speed, it will be a 
lesser static frictional force (see last graph).

I’m talking about this is because you will occasionally run 
into situations in which static friction is involved, but the 
amount of static friction required to make the system work will 
NOT be             . Example:  What is the static frictional force 
required to keep the block from moving on the incline to the 
right?  It isn’t the MAXIMUM possible static frictional force.  
It is a lesser amount!  Just sayin . . .   

53.)

A subtlety: Think about what is actually happening.  The cylinder begins to rotate.  
At some velocity “v” there will be a normal force      providing the centripetal force 
required to make the rider execute the expected rotational motion.  The maximum static 
frictional force provided by the wall at that point will be                    which is LESS 
THAN “mg” (see Figure 1).  In this case, friction won’t be able to hold and the person 
will slip.

fs = µsN

mg

N

y

c

fs = µsN

mg

low v
mg

higher v

mg

still higher v mg

still higher v

Static force
needed to stick

Fig 1

Fig 2

Fig 3

Fig 4



A second, funner scenario (just made that word 
up), has all of the above features along with the 
added twist of the ride angling upward out of the 
horizontal (see sketch).  For the rider-position shown, 
determine the minimum velocity the rider would have 
to have to keep from falling out of the ride.

54.)

floor removed

rotate around
this axis

θ

mg

fs = µsN

N

y

c mgcosθ

mgsinθ

Fy :∑
          µsN − mgcosθ = may

                ⇒    N =
mgcosθ

µs

Fc.s. :∑
          N + mgsinθ = mac.s.

            ⇒    mgcosθ
µs

⎛
⎝⎜

⎞
⎠⎟
+ mgsinθ = m v2

R
⎛
⎝⎜

⎞
⎠⎟

            ⇒            v= Rgcosθ
µs

⎛
⎝⎜

⎞
⎠⎟
+ Rgsinθ

⎛

⎝⎜
⎞

⎠⎟

1/2

f.b.d.



A Second Problem Based in Friction:

55.)

A block of mass m on a table 
moving with initial velocity      is 
jammed up against a frictional, 
circular wall (coefficient of 
kinetic friction     ) of radius R.  
The tabletop upon which it 
moves is frictionless.  Derive an 
expression for the mass’s velocity 
as a function of time.   

frictional
wall

R

"m" coming out at you

vo

µk

frictionless 
floor

R

vo

horizontal cylinder on 
tabletop as viewed 
FROM ABOVE

viewed FROM SIDE

The first task is to identify 
the forces, and identify the 
perspective for the f.b.d.

A bit of nastiness, compliments of the AP folks.



56.)

Gravity and the floor’s normal are useless
as the floor isn’t frictional, so we need a 
perspective that shows the wall’s normal and 
friction.  That view COMES FROM ABOVE.  
From our “above view,” then:

mg
vo

FROM ABOVE

as viewed
from here

Nw

Nf

fk

3-d f.b.d. 

fk = µkNw

Nw

v



57.)

Notice that we have a radial force 
vector (that would be the normal) and what 
is going to be a force in the tangential 
direction (that would be friction).  We can 
write the net force, in other words, as:

vo

FROM ABOVE

as viewed
from here

f.b.d. fk = µkNw

Nw

We are going to see what Newton’s Second Law will do for us in the case 
of each of those components.

->



58.)

In the direction, the body is slowing down.  This 
tells us that the acceleration is opposite the direction of 
the velocity (taken as the positive direction) AND is of 
the form dv/dt.  With that information, we can write 
N.S.L. as:

vo
as viewed
from here

In any case, if we knew the wall’s normal, we could 
proceed . . . but we do, as the wall is providing a 
centripetal force in the system.  As such, we can write:

θ̂

Fθ :∑
     −µkNw = maθ

               = m dv
dt

⎛
⎝⎜

⎞
⎠⎟

Fr :∑
     Nw = mar

          = m v2

R
⎛
⎝⎜

⎞
⎠⎟

Note the trickiness.  
The force is opposite the 
direction of “v,” so it’s in 
the negative direction,
whereas we’ve left the negative sign embedded in 
the “dv/dt” term.  Why?  Because when you do 
derivations with differentials, you need to be as 
general in your presentation as possible.



59.)

Putting together:

We can write:
−µkNw = m dv

dt
⎛
⎝⎜

⎞
⎠⎟ Nw = m v2

R
⎛
⎝⎜

⎞
⎠⎟

and

   ⇒        v t( ) = 1
µk

R
⎛
⎝⎜

⎞
⎠⎟ t + 1

vo

⎛
⎝⎜

⎞
⎠⎟

  ⇒        v t( ) = 1
voµk

voR
⎛
⎝⎜

⎞
⎠⎟

t + R
voR

⎛
⎝⎜

⎞
⎠⎟

  ⇒        v t( ) = voR
voµkt + R

−µkNw = m dv
dt

⎛
⎝⎜

⎞
⎠⎟

   ⇒   −µk m v2

R
⎛
⎝⎜

⎞
⎠⎟
= m dv

dt
⎛
⎝⎜

⎞
⎠⎟

   ⇒    − µk

R
⎛
⎝⎜

⎞
⎠⎟ dt = dv

v2
⎛
⎝⎜

⎞
⎠⎟

   ⇒    − µk

R
⎛
⎝⎜

⎞
⎠⎟ dt

t=0

t

∫ = v−2 dv
vo

v t( )
∫

   ⇒    − µk

R
⎛
⎝⎜

⎞
⎠⎟ t t=0

t = −v−1
vo

v t( )

   ⇒    − µk

R
⎛
⎝⎜

⎞
⎠⎟ t = − 1

v t( )
⎛
⎝⎜

⎞
⎠⎟
− − 1

vo

⎛
⎝⎜

⎞
⎠⎟

  rearranging and flipping:

putting v’s on same 
side of equal sign:



60.)

And some helpful hints concerning math manipulation:
Let’s say you find yourself with a definite integral that looks something like:

− kdt
t=0

t

∫ = dv
v−A( )v=0

v

∫ where both “k” and “A” are positive 
constant.

But if “A” is known to 
be larger than “v” at all 
points in time, we can write:

ln v−A
−A

⎡

⎣
⎢

⎤

⎦
⎥ = ln

A− v( )
A( )

⎡

⎣
⎢

⎤

⎦
⎥

The solution is:

And using the 
exponential trick, we 
end up with: e−kt = e

ln A−v
A

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

      = A− v
A

So
−kt = ln A− v( )

A
⎛
⎝⎜

⎞
⎠⎟

     ⇒      −kt( )− −kt( ) = ln v− A − ln v− A

               ⇒     − kt = ln v− A
−A

⎡

⎣
⎢

⎤

⎦
⎥

v=v v=0t=t t=0

as "ln A− lnB"= ln A
B

⎛
⎝⎜

⎞
⎠⎟

−kt t=0
t = ln v−A 0

v


