
Ch 5 – Newton’s Laws



Aristotle
The Greek philosopher & 
metaphysicist Aristotle (384-322 
B.C.) based his analysis of falling 
bodies on pure logic: “Heavier 
objects fall faster in proportion to 
their weight.” This belief was so 
logical that it persisted for almost 
2000 years.
Aristotle also surmised that 
motion could be described as 
violent (a ball getting kicked, say) 
and natural (the ball rolling to a 
stop). The natural state of of a 
body, of course, is “at rest.”



Galileo
Galileo (1564-1642) rebelled 
against blind acceptance of 
Aristotle’s “logical” thinking, and 
encouraged repeatable 
experiments, earning him the 
“Father of Modern Science” title.

He also demonstrated, with a little logical 
thinking of his own, that Aristotle’s ideas 
regarding “natural states of rest” were 
wrong.



Newton
Newton (1643-1727) continued 
Galileo’s studies of motion. 
Newton wasn’t known for 
publicizing his work, but in 1687, 
he published the Philosophiae 
Naturalis Principia Mathematica, 
which summarized his studies. 
This book was written in Latin, 
the language of scholars, and is 
considered by many to be the 
single greatest scientific book 
ever published.
Among other things, it included 
his analysis of motion, 
summarized in three laws.



Newton’s First Law of Motion
“Every body continues its state of rest or uniform 
speed in a straight line, unless it is compelled to 
change that state by a net force acting on it.”

This tendency to 
maintain one’s state of 
motion (whether 
actually moving or at 
rest) is called 
inertia; for this 
reason, the Newton’s 
First Law of Motion is 
commonly called “The 
Law of Inertia.”



Force
Force = “a push or pull on an 
object”. Doesn’t always cause 
motion, but does cause 
deformation (change in shape).

Forces have a magnitude and a 
direction: they are vector quantities.

One of the most common ways of 
measuring force magnitude is with 
a spring scale.

The units of force are kg•m/s2, 
otherwise known as the 
Newton.



Mass
Mass is one of the single most 
misunderstood concepts in chemistry 
and physics. It is not the same as 
“weight,” although the two 
measurements are related.

Mass is a measure of the amount of 
inertia that a body has—it’s a measure of 
how hard it is to change an object’s 
motion. The more mass you have, the 
more inertia you have, and the more 
inertia you have, the harder it is to get 
you moving (if you’re motionless), or to 
stop your motion (if you’re moving).



Example 1
A spring scale is used to 
measure forces. Can you 
measure mass with a spring 
scale?

Well... sort of. Sometimes. �
�
We can use a spring scale to 
measure the mass of an object on 
earth, because a given mass has a 
given weight on the earth. This 
won’t work if we’re out in space, 
though—earth’s gravity won’t 
pull the object down on the 
spring scale.  Clearly, the “stuff” 
in an object doesn’t just 
disappear when we go into 
space, so an object can still have 
mass, but be weightless. (In 
space, where a spring scale is 
useless, we have other ways of 
measuring an object’s mass.)



Weight
Weight is a measure of how 
strongly earth’s gravity pulls 
on a mass. It is a measure of 
Force, and written as Fg, or 
sometimes as W, and as with 
all forces, its SI units are the 
kg•m/s2 (Newton).

The weight of an object at 
the surface of the earth may 
be calculated as follows:

€ 

Fg = mg  (=W )



Example 2
“I weigh 79.0 kilograms.” Is this an 
acceptable statement? If true, is it 
true out in space as well?

“I weigh 174 pounds.” Is this an 
acceptable statement? Is this true 
out in space as well?�
What’s the relationship between a 
pound and a kilogram?

“I weigh 774 Newtons.” Is this an 
acceptable statement? If true, is it 
true out in space as well? What is 
the relationship between a 
Newton and a kilogram?

No; mass ≠ weight, although 
in common usage, one may 
hear this. Mass is the same 
everywhere.

No; weight = force of 
earth’s gravity, which varies 
with distance from Earth. 
1.00kg at Earth’s surface = 
2.21pounds.

Yes, this is acceptable, but 
weight varies with distance 
from Earth. 1.00 kg = 9.8 N 
(according to Fg=mg).



Second Law of Motion: 
Fnet=ma

Newton’s Second 
Law of Motion 
describes what 
happen if a net 
(resultant) Force is 
applied to a mass.



Example 3
How much force is required to accelerate a 70.0-kg human 
from 0.00 m/s to 3.00 m/s in 5.00 s?

Solution: �
Known: vo=0 m/s, vf=3 m/s, 
t=5 s, m=70.0kg

Unknown: a=?, F=?

Formulae: 

Solution: 

€ 

a =
v f − vi
t

,  F = ma

€ 

a =
3m/s− 0m/s

5s
= 0.600m/s2

F = ma = (70kg)(0.600m/s2) = 42kg•m/s2



Example 4
A force of 30.0 N is applied 
to a student’s head at 90°, 
while a force of 40.0 N is 
applied at 0°. What is the net 
acceleration of the student’s 
10.0kg head?

€ 

F = ?∑
Fx = +40N
Fy = +30N

Fnet
2 = Fx

2 + Fy
2,so Fnet = Fx

2 + Fy
2

Fnet = 402 + 302 = 50N,  θ = tan−1(30 /40) = 36.9°



Force Pairs
Newton’s Third Law of 
Motion describes the 
relationship between the 
forces between two bodies 
that are interacting with 
each other:

“Whenever one object 
exerts a force on a second 
object, the second objects 
exerts a force (equal in 
magnitude, in the opposite 
direction) back on the 
first.”



Force Pairs
Identify two sets of force 
pairs in this diagram.



Is Third Law always true?

Fon ball from bat = -Fon bat from ball

mball • aball = -(mbat • abat)



Free Body Diagram
A free-body diagram identifies 
all of the vector forces 
(magnitude and direction) 
acting on a single object of 
interest, with the intention of 
analyzing what effect those 
forces have on the object. 

What forces are acting on 
the bowling ball sitting on a 
table here?



Solving Problems Using 3 Laws
By judiciously applying our understanding of Newton’s Laws 
(especially the Second Law, Fnet = ma), we can analyze a lot 
of different situations.

In all of these situations, we’ll use the same problem-solving 
procedure:

a.  Identify x- and y-axes on our diagram.

b.  Identify & label forces acting on objects.

c.  Apply Newton’s 2nd Law to x- and y- axes separately.

d.  Resolve x- and y- results into a single vector result.



Example 5
Determine the acceleration 
of this box, resting on a 
frictionless table.

30°

40N

10 kg

€ 

F∑ = ma
Fx∑ = max

(40N)cos30° = (10kg)ax

ax =
(40N)cos30°

10kg
= 3.46m /s2



Example 5b
Determine the force of the 
table pushing up on the box.

30°

40N

10 kg

F∑ =ma

Fy∑ =may
FN +Fy −Fg = 0
FN = −Fy +Fg = −20N + 98N = 78N



Example 6
Find the acceleration of each 
mass, and the tension in each 
cord, for the frictionless 
situation shown here.

60N

10 kg20 kg

€ 

Fx−blue = mblueax−blue∑
Ftension1 = (20kg)ax−blue

€ 

Fx−green = mgreenax−green∑
Ftension2 − Ftension1 = mgreenax−green
60N − Ftension1 = (10kg)ax−green

T1 T2

Using the fact that the ax-blue and ax-green are the same, we can 
substitute and solve to get a and Ftension1.



Example 6 - Shortcut
Substituting and solving for two or more bodies in a problem 
can get tedious. In some cases, consider the following 
shortcut:

1.  Solve for net external force, total mass, and common 
acceleration.

2.  Apply analysis to individual bodies based on individual 
free-body diagram.

60N

10 kg20 kg



Example 7
Find the acceleration of the  
larger mass in this Atwood’s 
machine, and determine the 
tension in the rope attached 
to the masses.

2kg
1kg

Frictionless, massless, pulley

€ 

Fnet = ma
−Fg2 + FT = m2a −Fg1 + FT = −(m1a)
(We've chosen direction of a to be clockwise positive.)
FT = m2a +m2g − > −m1g + (m2a +m2g) = −m1a

a(m1 +m2) = g(m1 −m2)

a =
m1 −m2

m1 +m2

g



Incline Problems
Because the incline “tilts” the 
motion, we usually “tilt” our way 
of looking at the problem. As a 
result of these new axes, we’ll 
need to split Fg up into x and y 
components. The Fgx , which acts 
parallel to the plane, is usually 
called F// . The Fgy , which acts 
perpendicular to the plane, is 
called F  .

x 

y FN  

Fg  

Ffriction  

θ 

How can we calculate the components of Fg ? 
Note that the small angle between Fg and F  is 
θ, due to the mutually perpendicular 
segments.

F I  

F //  

€ 

F// = mgsinθ
Fperp = mgcosθ



Example 8
A skier, beginning from 
rest, descends a 60° 
essentially frictionless 
slope. What is her 
acceleration? What is her 
speed after 6.0 s have 
passed?

Fg=mg 
 

F//= 
mg cos Ø 

Fperp= 
mg sin Ø 

FN 
 

€ 

Fx = max∑
mgsinφ = max
a = gsinφ = (9.8)sin(60) = 8.49m /s2

v f = vi + at = 0 + 8.49(6) = 50.9m /s



Lab
§ Derivation of a as a function of Ø, mcart, and mhanging 

(Ø<<20°)

§ Instructor demonstrates set-up

§ Collect data (what do you need to record?) �
�

§ How will you evaluate results?

Ø, mhanging, mcart, printout of velocity-time graph w/
linear regression 

Compare theoretical a, predicted from derivation, with 
measure a from lab. 



Example 9
At the instant a race began, a 
55-kg sprinter exerted a force 
of 800 N on the starting block 
at a 25° angle with respect to 
the ground. 25°

800N

a.  What was the horizontal 
acceleration of the 
sprinter?

b.  If the force was exerted 
for 0.38 s, with what 
horizontal speed did the 
sprinter leave the 
starting block?

€ 

Fx = max∑
800N cos25 = (55kg)ax
a =13.2m /s2

v f = vi + at

v f = 0 + (13.2m /s2)(0.38) = 5.01m /s



Example 10
A window washer pulls herself 
upward using a bucket-pulley 
apparatus.

a.  How hard must she pull to 
raise herself slowly at constant 
speed? (Total mass of woman 
& bucket = 75 kg.)

b.  If she increases this force by 
10%, what is her acceleration?

€ 

Fx = max∑
−Fg + 2Frope = m(0)

Frope = mg /2 = (75kg)(9.8m /s2) /2 = 368N



Example 11
Three blocks on a frictionless 
horizontal surface are in contact with 
each other as shown. A force F is 
applied to mass m1.

a. Draw a free-body diagram for each 
block.

b. Determine the acceleration of the 
system (in terms of m1, m2, and m3).

c. Determine the net force on each 
block.

d. Determine the contact force that 
each block exerts on its neighbor.

m1 m2 m3



Example 11
a. Draw a free-body diagram for each block.

b. Determine the acceleration of the system (in terms of 
m1, m2, and m3).

c. Determine the net force on each block.

d. Determine the contact force that each block exerts on 
its neighbor.

m1 m2 m3



Friction
Friction = a force that 
opposes the motion of a 
body

There are different types of 
friction, including rolling 
friction, fluid friction (liquid 
or gas), sliding friction.

Sliding Friction
Static Friction

Kinetic Friction



Friction
The magnitude of the force of friction depends on two things:

1.  the nature of the two surfaces in contact with each 
other, as indicated by the “coefficient of friction” µ (the 
Greek letter “mu”)

2.  how hard the two surfaces are being pushed together, 
as indicated by the normal force FN   



Coefficient of Friction
The coefficient of friction µ is a number, experimentally 
determined, that describes how “sticky” two surfaces are 
when placed next to each other: the higher the µ, the more 
sticky the two surfaces are, and thus, the more friction force 
there will be when they try to slide against each other.

Close-up of high µ                  Close-up of low µ



Coefficient of Friction
µ is defined as a ratio between Ffriction and FNormal :

€ 

µ =
Ffriction
FNormal



Example 12
A wooden box rests on a 
wooden table. A cord is 
attached, and pulled with a 
gradually increasing force; 
the box finally begins to 
move when the Force 
applied to the cord is 20 
N. What is the static 
coefficient of friction µs 
between the box and the 
table?

5 kg

Fapplied  = 20N
Fapplied

Ffriction

FN

Fg

€ 

Fy∑ = may
FN − Fg = m(0)
FN = Fg = mg

FN = (5kg)(9.8m /s2) = 49N

€ 

Fx∑ = max
Fapplied + Ffriction = m(0)
Ffriction = −Fapplied = −20N

€ 

µ =
Ff
FN

µ =
20
49

= 0.41



The “Magical” Fstatic
When a force is first 
applied to the box, and it 
isn’t yet moving, the force 
of friction that opposes its 
sliding varies until it 
reaches a maximum value.

5 kg

Fapplied  = 20N



The “Magical” Fstatic



Common Coefficients

Note that µs > µk ; once an object starts sliding, the force 
of friction opposing that motion decreases a little. �
Fine Print: The relationship Ffriction =µ FNormal is not a law—
it’s a relationship that’s approximate, but useful.

Surfaces Coefficient of 
Static 
Friction (µs)

Coefficient of 
Kinetic 
Friction (µk)

Rubber on various surfaces 1 to 4 1
Rubber on dry concrete 1 0.8
Rubber on wet concrete 0.7 0.5
Steel on steel (unlubricated) 0.7 0.6
Wood on wood 0.4 0.2
Ice on ice 0.1 0.03
Human joints 0.01 0.01
Lubricated ball bearings <0.01 <0.01



Example 13



Example 13
Kopish (m = 75.0 kg) is skating on 
ice at 22.4 miles per hour when he 
falls.

a. How fast is he traveling (in m/s) 
when he falls?

b.  If the µk between his body and 
the ice is 0.1, what is the force of 
friction acting on his body as he 
slides across the ice?

c. If he slides 7 meters, how fast is 
he traveling just before he slams 
into the wall of the skating rink?



Example 14
If Biaggi is traveling at 10 m/s 
when he goes down, and 
slides a distance of 10 meters 
on the ground, what is the 
coefficient of friction 
between him and the ground?



Example 14
If Biaggi is traveling at 10 m/s when he goes down, and 
slides a distance of 10 meters on the ground, what is the 
coefficient of friction between him and the ground?

€ 

Fx = max∑
Ffriction = max
µFNormal = max

µ =
max

FNormal

Ffriction 

Fg   

FN    

€ 

Fy = may∑
FNormal − Fg = 0
FNormal = Fg
FN = (m)(9.8)

€ 

vi =10.0m/s
v f = 0
Δx =10m

a =
v f
2 − vi

2

2Δx
a = −5.0m/s2

€ 

µ =
max
FNormal

=
m(5.0m /s2)
m(9.8)

= 0.51



Example 15
A skier, beginning from rest, 
descends a 30° slope where 
the kinetic coefficient of 
friction is 0.10. What is her 
acceleration? What is her 
speed after 6.0 s have 
passed?


