
Position
(a position “x” or “y” denotes a coordinate, 
relative to a coordinate axis)

CHAPTER 4:  
Some Definitions and 2-d Kinematics

 
!r = 5 m( )∠57o

 
!r = 3 m( ) î + 4 m( ) ĵ

1.)

(a position vector, often denoted as   , is a vector 
that denotes a point in space relative to some 
defined point, often the origin of a coordinate axis)

x2 = −3 m

y4 = 6 m

 i

 i

y

x

Position Vector
y

x

or (position vectors can be written either in polar 
or unit vector notation)

(note that the SIGN of the position vectors tells 
you which side of the origin the point is on) 

!r = 5 m( ) r̂ + 5 m( ) 1 rad( )( )θ̂
or

 
!r



Example of radial vector (   ):
The earth’s feels an attractive force due 
to the presence of the sun that is along a 
line between the sun and the earth.  A 
radial vector in the negative direction 
does nicely for this.

Example of Radial and Tangential Vectors

insert)
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!ve = ve( ) θ̂( )

!ve = ve( ) θ̂( )!ve = ve( ) θ̂( )

!ve = ve( ) θ̂( )Example of vector in tangential     
direction (   ):

The earth motion in its orbit (assumed 
circular) can be assumed to have the same 
magnitude but an every changing direction.  
It is always moving in the “tangential” 
direction, though, so characterizing it in the 
“theta” direction works well here.

θ̂

r̂



 
!r = !r ∠θ

 
!r = rx î + ry ĵ

2.)

So what’s the deal with that last vector?  To get it, consider the others:  

--In Cartesian coordinates, the unit vector notation of    is: 

Position Vector (con’t)

which sees you taking the x-component of    times its unit vector, etc.  
!r

--In Cartesian coordinates, the polar notation of    is:

where the magnitude and angle of    are uppermost.     
!r

--In Polar-Spherical coordinates, the unit vector notation of    is:

where the radial component is just the magnitude of     and the angular 
component—the  amount you move in the     direction to get to the particle, 
is equal to the magnitude of    times the angular displacement     (in radians). 

 
!r

 
!r = !r r̂ + !r θ( )θ̂

θ
θ̂

 
!r

 
!r

 
!r

 
!r



Velocity (a vector that measures the time-rate-of change-of position, the 
number of m/s, at which an object covers ground)

 
!v = !v"θ = 5 m/s( )"57o    (Cartesian)

 
!v = vx î + vy ĵ = 3 m/s( ) î + 4 m/s( ) ĵ   (Cartesian)

3.)

Note that the SIGN of the velocity vectors tells you the direction in which the 
object is traveling (this is most obvious in one dimension where a                     
velocity is a velocity in the negative x-direction).

y

x

 
!v

Average Velocity (the single velocity at which an object must travel to 
displace a given distance in a given amount of time)

Velocity Vector (with examples):

or

 
!v = −3î m/s

Instantaneous Velocity (an object’s velocity at a particular point in 
time)

!v = vrr̂ + vθθ̂ = 5 m/s( ) r̂ + .995 rad/sec( )θ̂( )    (Polar Spherical)
or



Acceleration (a vector that measures the time-rate-of change-of velocity, the 
number of m/s/s, at which an object covers ground)

 
!a = !a ∠θ = 5 m/s2( )∠57o   (Cartesian)

 
!a = ax î + ay ĵ = 3 m/s2( ) î + 4 m/s2( ) ĵ   (Cartesian)

4.)

Note: the SIGN of the acceleration vectors tells you NOTHING about the speeding 
up or slowing down of an object without your knowing the direction of the velocity 
vector.  Likes signs mean a velocity increase; unlikes mean velocity decrease.

y

x

 
!a

Average Acceleration (the single acceleration at which an object must 
accelerate to change its velocity a given amount in a given amount of time)

Acceleration Vector (with examples):

or

Instantaneous Acceleration (an object’s acceleration at a particular 
point in time)

 

!a = arr̂ + aθθ̂ = −v2

R( ) r̂ + aθθ̂   (for circular motion)
or



Two-dimensional kinematics is classically modeled as a projectile 
problem.  Example:

2-d Kinematics

5.)



Another example:
2-d Kinematics

6.)



2-d Kinematics

7.)

A third example:



2-d Kinematics

8.)

And, lastly, something a little less disturbing . . . (courtesy of Mr. White) 

Notice, she goes the same distance in the x-direction per unit time . . .  Why? 



Let’s say you’ve thrown a ball off a cliff that is 
h meters high.  Ignoring air friction, the ball’s 
velocity in the x-direction is observed to be      (this 
will not change as there are no frictional effects to 
make the change).  The red dashed line in the time 
lapse photo to the right shows the motion.

Some Slightly Exotic Calculus

Insert a.)

vx

y
vxh

x
The relationship between the y-coordinate 
and the x-coordinate just happens to be:

y = h − kx2

where h is the height of the cliff and k is a constant related to gravity.  (In fact, this 
is the equation for a downward pointing parabola.)

In terms of time, the x-coordinate of the body is: x = vxt
where, again,      is the constant velocity of the body in the x-direction.vx



So here’s the question:  With

Insert 
b.)

y
vxh

x

y = h − kx2x = vxt and

what is the ball’s velocity in the y-direction in terms of x?

Knowing that the velocity in the y-direction is the 
time derivative of the y-coordinate function, or 

vy =
dy
dt

the chintzy way to do this would be to substitute the time-related x-coordinate 
function into the x-related y-coordinate function, take the time derivative, then 
substitute x information back into that result. 

That is: If                        and               , then by substitution                            ,  y = h − kx2 x = vxt y = h − k vxt( )2
we can write:  

vy =
dy
dt

=
d h − k vxt( )2( )

dt
            = −kvx

2 2t( ) = −2kvx vxt( )
                                = −2kvxx



insert c)

y
vxh

x

The more elegant way to do this is to utilize what is 
called the chain rule.  It states (loosely) that if you want the 
derivative of a function that you know in terms of another 
function, you can get that result by executing the operation:  

vy =
df y x t( )( )( )

dt
=

df y x( )( )
dx

 
df x t( )( )

dt

(Notice how the “dx’s” might be seen to cancel, if they could, leaving us with  

vy =
dy
dt . . . cool, eh?)

vy =
dy
dt

    =        dy
dx

            dx
dt

    =
d h − kx2( )

dx

⎛

⎝
⎜

⎞

⎠
⎟

d vxt( )
dt

⎛
⎝⎜

⎞
⎠⎟

    = −2kxvx

vy =
dy
dt

= dy
dx

 dx
dt

or just

. . . much more satisfying.  

Executing that operation, 
remembering that,  

y = h − kx2x = vxt and

and we get:  



Consider viewing a cannonball with muzzle velocity of 100 m/s fired from a 
cannon angles at as it leaves a cannon 1.5 meters off the ground on its way 
downrange.

2-d Kinematics

What would the cannonball’s motion look like if you viewed it FROM 
DOWNRANGE, and you had no depth perception?  More to the point:

a.) How fast would it appear to be going as it left the muzzle?  And;

b.) How high would it appear to go?

9.)

30o

θ = 30o

drop = 200 m

vo = 100 m/s



What would the cannonball’s motion look like if you viewed it FROM 
DOWNRANGE and you had no depth perception?  More to the point:

10.)

θ = 30o

drop = 200 m

you viewing 
from downrange

What you’d initially see would be a ball moving straight 
upward (remember, no depth perception) with velocity
equal to the y-component of the muzzle velocity.  

vo = 100 m/s

 i

vy



What would the cannonball’s motion look like if you viewed it FROM 
DOWNRANGE, and you had no depth perception?  More to the point:

a.) How fast would it appear to be going as it left 
the muzzle?  We get (looking at the sketch above);

11.)

θ = 30o

drop = 200 m

you viewing 
from downrange

What you’d initially see would be a ball moving straight
upward (remember, no depth perception) with velocity 
equal to the y-component of the muzzle velocity.  So 
answering:

 i

vy

vy = vo sinθ
    = 100 m/s( )sin 30o

    = 50 m/s

vy = vo sinθ
vo = 100 m/s



12.)

θ = 30o

drop = 200 m

you viewing 
from downrange

. . . AND you’d see the ball rise to the same height a ball moving straight up 
with velocity equal to     would rise.  So to answer:

 i

vy = 50 m/s

 i ytop  where
     vy = 0

b.) How high would it appear to go?

One-dimensional kinematics in the y-direction to the 
rescue!

v2,y( )2
= v1,y( )2

+ 2ay ytop − yo( )
   ⇒    0( ) = 50 m/s( )2 + 2 −9.8 m/s2( ) ytop −1.5( )
                       ⇒    ytop = 129 m

vy

ay = −9.8 m/s2

vy = 50 m/s
vo = 100 m/s



Notice that NONE of what we have done has had 
ANYTHING TO DO with the x-direction . . . we 
haven’t used the acceleration in the x-direction, which 
happens to be zero once the cannonball has left the 
muzzle, and we haven’t used the initial velocity 
component in the x-direction . . . nothing . . . We have 
only used y-axis information.

13.)



Re-consider viewing a cannonball with muzzle velocity of 100 m/s fired 
from a cannon angles at as it leaves a cannon 1.5 meters off the ground on its 
way downrange.

So what would the cannonball’s motion look like if you viewed it FROM 
ABOVE, and you had no depth perception?  More to the point:

a.) How fast would it appear to be going as it left the muzzle? . . . How 
about as it moved along its way?  And:
b.) How far would it travel before touchdown?

14.)

30o

θ = 30o

drop = 200 mvy = vo cosθ

vo = 100 m/s



What would the cannonball’s motion look like if you viewed it FROM ABOVE
and you had no depth perception?  More to the point:

15.)

What you’d initially see would be a ball moving straight along the ground 
(remember, no depth perception) with velocity equal to the x-component of the 
muzzle velocity.  And because the acceleration in the x-direction is ZERO, you 
would observe that velocity to hold until the cannonball terminated its motion by 
hitting the ground.  So answering:

vx = vo cosθ
    = 100 m/s( )cos 30o

    = 86.6 m/s

a.) How fast would it appear to be going as it left the muzzle? . . . How 
about as it moved along its way?  We have:

As viewed from above

 i

vx



Putting everything we know onto the sketch, what kinematic 
relationship can we write for the x-motion?  The only one that makes 
sense is the one that has more than the acceleration term in it, as the 
acceleration in the x-direction is ZERO.  That is:

To get the time of flight, 
consider the y-direction:

b.) How far would it travel before touchdown?

16.)

x2 = x1 + v1,xΔt + 1
2

ax Δt( )2

   ⇒    x2 = v1,xΔt
                = 86.6Δt
   ⇒    x2 = 86.6 m/s( )(13.1 s)
                = 1334 m

vo = 100 m/s

θ = 30o

drop = 200 mvx = 86.6 m/s

vy = 50 m/s
y1=1.5 m

x2 =?, y2 = −200 m

x1=0

ay = −9.8 m/s2

ax = 0

Distance traveled (x-direction):

y2 = y1 + v1,yΔt + 1
2

ay Δt( )2

   ⇒   −200 m( ) = 1.5 m( ) + 50 m/s( )Δt + 1
2

−9.8 m/s2( ) Δt( )2

               ⇒               Δt = 13.1 seconds



The moral of the story: 

Projectile problems, 

and all two-dimensional kinematic problems, 

are really just two, independent, one-dimensional problems 

HAPPENING AT THE SAME TIME.

17.)



Another example: Consider: A particle passes through the origin at t = 0 
with velocity components                        and                   .  The particle accelerated 
in the x-direction at a constant rate of                    .   

18.)

vx = −10 m/s vy = 5 m/s
ax = 3 m/s2

a.) derive an expression for the velocity as a function of time.   

b.) express the velocity (as a function of time) in unit vector notation.   

c.) determine the velocity at t = 5.0 seconds.   

d.) derive an expression for the x and y position as a function of time.   

e.) express the position vector (as a function of time) in u.v.n.   



Another example: Consider: A particle passes through the origin at t = 0 
with velocity components                        and                   .  The particle accelerated 
in the x-direction at a constant rate of                    .   

19.)

vx = −10 m/s vy = 5 m/s
ax = 3 m/s2

a.) derive an expression for the velocity as a function of time.   

b.) express the velocity (as a function of time) in unit vector notation.   

c.) determine the velocity at t = 5.0 seconds.   

vx t( ) = vo,x + axt
       = −10 m/s( ) + 3 m/s2( ) t

Using kinematics, which you can do as the acceleration in both directions is 
CONSTANT:

in the x-direction:

vy t( ) = vo,y + ayt
       = 5 m/s( ) + 0( ) t

in the y-direction:

 
!v = −10 + 3t( ) î + 5 m/s( ) ĵ

 

!v = −10 + 3 5( )( ) î + 5 m/s( ) ĵ
  = 5 m/s( ) î + 5 m/s( ) ĵ



Another example: Consider: A particle passes through the origin at t = 0 
with velocity components                        and                   .  The particle accelerated 
in the x-direction at a constant rate of                    .   

20.)

vx = −10 m/s vy = 5 m/s
ax = 3 m/s2

d.) derive an expression for the x and y position as a function of time.   

e.) express the position vector (as a function of time) in u.v.n.   

x t( ) = xo + vo,xt + 1
2

axt2

       = −10 m/s( ) t + 1
2

3 m/s2( ) t2

       = −10 m/s( ) t + 1.5 m/s2( ) t2

Again, using kinematics:

in the x-direction: in the y-direction:

y t( ) = yo + vo,yt + 1
2

ayt2

       = 5 m/s( ) t

 
!r = −10t +1.5t2( ) î + 5t( ) ĵ



Still another example: Consider: A particle passes through the origin 
at t = 0 with velocity                                             .  The particle’s acceleration is                         

21.)

 
!v = −10 m/s( ) î + 5 m/s( ) ĵ

Surprise!  This is the same problem you just did with the initial parameters 
presented in a unit vector notation instead of a components notation.  I just wanted 
you to see at least two ways you might have information given to you.

!a = 3 m/s2( ) î



Still another, another example: Consider: A particle passes 
through the origin at t = 0 with velocity                                             .  The particle’s 
acceleration is NOT constant but, rather, equal to                           .   

22.)

 
!v = −10 m/s( ) î + 5 m/s( ) ĵ

a.) derive an expression for the velocity as a function of time.   
The acceleration in the y-direction 
is still a constant zero, so the 
velocity in the y-direction will be 
5 m/s throughout time.  In the x-
direction:

ax = 3t4  m/s2( )  . . . as ax  = dvx /dt

   ⇒    dvx

dt
= 3t4

      ⇒    dvx = 3t4dt

          ⇒    dvxvo,x

v t( )
∫ = 3t4 dt

t=0

t

∫
              ⇒    v vo,x

vx t( ) = 3 t5

5
⎛
⎝⎜

⎞
⎠⎟ t=0

t

   ⇒    vx t( )− vo,x = .6t5

      ⇒    vx t( ) = vo,x + .6t5

         ⇒    vx t( ) = −10 + .6t5

 
!a = 3t4  m/s2( ) î



Still another, another example: Consider: A particle passes 
through the origin at t = 0 with velocity                                             .  The particle’s 
acceleration is NOT constant but, rather, equal to                           .   

23.)

 
!v = −10 m/s( ) î + 5 m/s( ) ĵ

 
!a = 3t4  m/s2( ) î

b.) derive an expression for the x and y position as a function of time.   
As before with a constant 
acceleration in the y-direction, the 
y-coordinate will be (5 m/s)t.  In 
the x-direction:

vx = −10 + .6t5  . . . as vx  = dx/dt

   ⇒    dx
dt

= −10 + .6t5

      ⇒    dx = −10 + .6t5( )dt

          ⇒    dx
xo=0

x t( )
∫ = −10 + .6t5( )dt

t=0

t

∫
              ⇒    x xo=0

x t( ) = −10t + .1t6( ) t=0
t

   ⇒    x t( )− 0 = −10t + .1t6

      ⇒    x t( ) = −10t + .1t6

So:

 
!r = −10t + .1t6( ) î + 5t( ) ĵ



1.) There is a gap in the freeway.  Convert the gap’s width to meters.

24.)

Nice Acting, Keanu. . . Speed

2.) How fast is the bus traveling when it hits the gap?  What is its velocity in 
m/s?

3.) Keanu hopes that there is some “incline” that will assist them.  Assume 
that the opposite side of the gap is 1 meter lower than the take-off point.  Also, the 
stunt drivers that launch this bus clearly have the assistance of a “take-off ramp” 
from which the bus launches at an angle.  Assume that the ramp’s angled at      
above the horizontal.  Prove whether or not the bus makes it to the opposite side.  
(Consider the bus as a point mass.) 

3o



25.)



Consider a ball moving with a 
constant velocity magnitude v around a 
circular path.  What kind of acceleration
must be present?

26.)

Center Seeking Acceleration
 
!v2

 
!v1

R

R
θFor the body to execute this motion, 

there must be an acceleration pushing it out 
of straight-line motion.  An acceleration 
that does this is called a centripetal 
acceleration.  The direction of a centripetal 
acceleration is always along the radial-axis 
(i.e., center seeking).

 
!a1

 
!a2

Kindly note: What changes with a centripetal acceleration is not the velocity 
magnitude, it is the velocity direction!



So how can we relate a centripetal 
acceleration to the radius of the arc R and 
magnitude of velocity of motion v?  

27.)

 
!v2

 
!v1
 −
!v1LR

R
θ

Look at how the body’s velocity vector 
changes after the body displaces an angular 
distance of     (that change is shown below 
as a vector subtraction).

θ

Notice that the direction of that velocity change is, more or less, toward the 
center of the arc upon which the body rides.  In fact, as the angle goes to zero, that 
direction would become dead-on center seeking.

 −
!v1 = v

 
!v2 = v

 Δv =
!v2 −
!v1

θ

Notice also that the triangle itself is isosceles.



Now consider the dotted triangle (look 
at sketch). It is also isosceles, and it is 
similar (in a mathematical sense) to the 
velocity triangle (same    ). 

28.)

 
!v2

 
!v1

LR

R
θ

Being similar, we can equate side ratios.

L
R

R
θ

Δv
v

= L
R

But “L” is just the distance traveled in time     , which means               , so we 
can write.

L = vΔt

θ

Δt

Δv
v

= vΔt
R

v
v

 Δv =
!v2 −
!v1

θ



Rearranging and letting time go to 
zero in the limit, we can write:  

29.)

 
!v2

 
!v1

limΔt→0
Δv
Δt

= v
2

R

Except the change of velocity in the limit 
as time goes to zero is the definition of an 
instantaneous acceleration, and because 
we’ve already deduced that this acceleration 
is center seeking in nature, we must be 
looking at a centripetal acceleration.  

In short, any object moving along a curved path will need a component of 
acceleration that is centripetal (center seeking) in nature, and the magnitude of that 
acceleration component will always be related to the radius of the arc and the 
magnitude of the velocity vector by:

acentripetal =
v2

R

ac =
v2

R

ac =
v2

R



30.)



31.)



Example: The woman in the previous video was swinging a 4 kg ball at 
the end of a 1.2 meter long chain at a rate of 5 revolutions in 1.75 seconds (I 
measured it!).  Assuming her arms were .8 meters long, how large a centripetal 
acceleration would she have to exert on the ball to launch it as she did?  In what 
direction did she exert that force.  What happened to the ball when she ceased to 
exert that acceleration in that direction?

32.)

ac =
v2

R

    = 35.9 m/s( )2

2m
    = 644 m/s2

v = 5 rev
1.75 sec

⎛
⎝⎜

⎞
⎠⎟

2πr
rev

⎛
⎝⎜

⎞
⎠⎟

  = 5 rev
1.75 sec

⎛
⎝⎜

⎞
⎠⎟

2π 2 m( )
rev

⎛
⎝⎜

⎞
⎠⎟

  = 35.9 m/s

We need the magnitude of 
the velocity:

So the centripetal 
acceleration will be:

And the direction will be toward the center of the ball’s arc until release, at which 
time the ball will travel tangent to that arc out away from the woman.



Consider the accelerating cart rolling 
over the curved curved path shown.  At 
Point A, the cart is picking up speed due to 
an acceleration that is tangential to the path     
, and it will be changing it’s velocity
direction due to a radial (centripetal) 
acceleration that is oriented toward the 
center of the arc upon which the cart is 
traveling.   Both accelerations are denoted 
in the sketch.

33.)

!anet = ar − r̂( )+ at −θ̂( )

Use a unit vector notation in a polar-spherical coordinate system to denote the 
net acceleration:

 
!ar

 
!at

 
!anet

 
!at

 
!ar

Point A



Another Example: Consider a pendulum bob is 
attached to a string of radius R = .75 m and allowed to 
swing as shown to the right.  At the angle             , the bob is 
found to be moving with velocity magnitude 1.74 m/s.  With 
the only force in the tangential direction being from gravity 
(and equaling           ), determine the net acceleration acting 
and denote it using u.v.n. in terms of polar-spherical 
coordinates. 

34.)

 
!v1

θ

ar = ac

   = v2

R

   = 1.74 m/s( )2

.75 m
   = 4.04 m/s2

gsinθ

θ = 30o

Radially (centripetally):
!g

gsinθ
θ

. . . And why am I not claiming that the 
acceleration in the radial direction is            ?gcosθ (Answer: Because gravity isn’t the only 

force acting radially—you also have 
tension to contend with . . . )



35.)

 
!at

θat = gsinθ
   = 9.8 m/s2( )sin 30o

   = 4.9 m/s2

Tangentially along the arc:

So assuming a counterclockwise rotation is associated with a 
positive tangential direction, the net acceleration is:

!anet = 4.04 m/s2( ) − r̂( )+ 4.9 m/s2( ) −θ̂( )

 
!ar =
!ac

 
!anet

positive
  tangential
    line



36.)

RELATIVE  MOTION  PROBLEMS

BIG NOTE: We are about to look at situations in which there will be two 
frames of reference, one that is fixed and one that is moving with respect to the 
fixed frame.  The explanations and discussions you are about to get into are going 
to be a lot easier to understand if we use a bit of notational trickery.  So although 
you will not run into this often, for the next several pages, I am going to use “u” to 
symbolize velocities that are measured relative to a fixed frame of reference, and 
“v” to symbolize velocities that are measured relative to a moving frame of 
reference.



36.)

RELATIVE  MOTION  PROBLEMS
CONSIDER: a frame of reference that is moving with known velocity          , 
relative to a fixed frame of reference.

uframe

Example: say the fixed frame is this 
page and the moving frame is as shown:

If an object moves relative to the moving frame with known velocity vbody

What is the objects velocity relative to the fixed frame, or         ?

It is the frame velocity plus the object’s velocity relative to the frame.  This can be 
written as:

ubody = uframe + vbody

Where the “u” terms are velocities relative to the fixed frame and the “v” terms are 
velocities relative to the moving frame.  Where it gets tricky is when the frame is, 
itself, attached to a secondary moving object.  To wit:

uframe

vbody

ubody



36.)

Simple Example: You are moving in a car at 60 mph.  Your car is the 
moving frame.  A second car is moving with the same speed right next to you, so 
relative to you, that car isn’t moving.  Concerning that second car, the math says:

You are the moving frame.  You—that 
frame—have velocity, relative to the road 
(the fixed frame) of: vother  car = 0

The other car, relative to you (the moving frame), isn’t moving, so its velocity, 
relative to you, is zero, or:

uother  car =     uframe   +   vother  car

          = 60 mph( )+ 0 mph( )
          = 60 mph( )

So the velocity of the other car, relative to the roadway (the fixed frame), will be:

uframe = 60 mph
(your car)

uframe = 60 mph

vother  car, = 0

Where “u” is relative to the fixed frame (the street . . .) . . . 



A car moves with the same speed, relative to the street (the fixed 
frame), but comes in the opposite direction.  

36.)

A little different look: You are moving in a car at 60 mph.  You are the 
moving frame.

The other car, relative to the road, has velocity -60 mph.  That means
uother  car = −60 mph

   uother  car   =      uframe    + vother  car

−60 mph( ) = 60 mph( )+ vother  car

  ⇒  vother  car = −120 mph( )

That means the other car’s velocity, relative to you (as it passes you), will be:

You are the moving frame.  You—that 
frame—have velocity, relative to the road 
(the fixed frame) of:

(your car)

Where “v” is relative to your car, as the frame . . . 

vother  car = ?

uframe = 60 mph
(your car)

uframe = 60 mph



36.)

RELATIVE  MOTION  PROBLEMS

CONSIDER a stream moving to the right with velocity                        .  Let’s 
say you have a boat that can move in standing water with velocity magnitude 
equal to                    .  How fast will the boat be traveling
relative to the shoreline if the boat
travels downstream?

 
!vs = 1.5 m/s( ) î

vb = 3.0 m/s

This is a relative velocity in the sense 
that it isn’t the boat’s inherent 
velocity, it’s its velocity relative to 
the shoreline, so we will tag it     .  In 
this case, just adding the two 
velocities together yields:

 
!vr

 
!vr =
!vs +
!vb

downstream

 

!vr =
!vs +
!vb

    = 1.5 m/s( ) î+ 3.0 m/s( ) î
     =  4.5 m/s( ) î

 
!vs

 
!vb

which makes sense!



36.)

How does this mesh with what we have already said?

In this case, the shoreline is the 
fixed frame, the stream is the moving 
frame with velocity                            
relative to the fixed frame and the boat 
can move with velocity                       
relative to the fixed shoreline if given 
the chance.  The question is, “What is 
the boat’s velocity in the stream’s 
frame?”  The math suggests:

 
!vs = 1.5 m/s( ) î

vb = 3.0 m/s
 
!vr =
!vs +
!vb

downstream
 
!vs

 
!vb

uboat = uframe (the stream) +    vboat

      =   1.5 m/s( )   + 3.0 m/s( )
      = 4.5 m/s

This is just as we concluded before.

Clearly, the trick is to identify what part is what part in the problem. 



37.)
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What about traveling upstream? 

 
!vs

 
!vb  

!vr =
!vs +
!vb

downstream

 
!vs

 
!vb

 
!vr =
!vb −
!vs

downstream

 

!vr =
!vb −
!vs

    = 3.0 m/s( ) î − 1.5 m/s( ) î
     = 1.5 m/s( ) î

What happens if the boat 
points itself directly ACROSS the 
stream? 

The vectors oppose one another, so 
subtract the two yields:

This is also an add the vectors problem, 
except now the vectors aren’t aligned.  
Laying each vector out ignoring the 
other vectors, then adding yields:

 

!vr =
!vb +
!vs

    = 3.0 m/s( ) ĵ+ 1.5 m/s( ) î

  ⇒   !vr = 3 m/s( )2 + 1.5 m/s( )2( )1
2" tan−1 1.5

3.0( )
             = 3.35 m/s( )"26.6o



38.)

Once again, using the formal math on the two-dimensional problem:

 
!vs

 
!vb  

!vr =
!vs +
!vb

downstream
With the boat ACROSSING the 
stream with a “dead-water-speed” of      

and a boat speed of 

uboat = uframe (the stream) +     vboat

      = 1.5 m/s( ) î    + 3.0 m/s( ) ĵ

 
!vs = 1.5 m/s( ) î

!vb = 3.0 m/s( ) ĵ

which, again, can be manipulated to get the magnitude and angle of the net 
motion of the boat.

The point is, this mathematical formalism gives you a framework from which to 
start these problems so you don’t have to psyche them out intuitively from the 
get-go.  Doing problems like this by the seat of your pants can sometimes be the 
best approach, but when that doesn’t work, it’s nice to have math to fall back on.



39.)

On the next slide, a video shows two airplanes trying to 
land in a crosswind.  

To start with, just focus on the first plane.  Assume it is moving 150 mph
and the crosswind is blowing directly across (i.e., perpendicular to) the 
runway.  Take whatever information you need from the video to determine 
the speed of the crosswind’s velocity.



40.)
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I’m going to approximate the 
first plane’s angle with the runway at             .       
We need a coordinate axis, so I’m going to 
assume we are looking from above, down on the 
runway, which is oriented as shown. 

 
!vp

 
!vw

vw = vp sinθ
    = 150 mph( )sin25o

    = 63.4 mph

plane coming 
this way

θ = 25o actual path of 
the plane

θWe know the planes “no wind” speed is 150 
mph, and we know the plane has to be turned 
into the wind to keep it moving straight down the 
runway.  Drawing the vectors as we know them 
yields the sketch to the right, and from it, the 
relationship between the planes windless velocity 
and the wind’s velocity must be:

vactualplane = vp cosθ
    = 150 mph( )cos25o

    = 136 mph



42.)

Back to the video:
Now, FOR FUN (don’t take a lot of time on this—it’s more 
complicated), consider the second plane.  As shown, it would be 
moving 150 mph but it has run into both a crosswind and a headwind.  
As such, it is seemingly floating as it comes in for its landing moving 
only, maybe, 100 mph along the line of the runway.  With that 
approximation, take whatever additional information is required to 
determine the wind velocity (as a vector), relative to the line of the 
runway, for that situation.  



43.)



44.)

Let’s approximate the second plane’s 
average angle with the runway at             .  Using 
the same set-up as before, our vector assembly 
will oriented as shown to the right, where      is 
the velocity of the plane relative to the runway.  
All the information we know about the situation 
is included in the sketch (I’d prefer to make    
reference line along the runway, but it works 
better on the sketch as shown). 

 
!vp=150

 
!vw

plane coming 
this way

θ = 20o actual path of 
the plane

θ=20o

 
!vr=100

 
!vr

φ

φ 's

We need to do this in components.

This is for fun. Don’t take lots of time on it!



45.)

vp,y =vpcosθ
      =150cos20o

 
!vw

vp cosθ− vw sinφ = vr

  ⇒   = 150 mph( )cos20o − vw sinφ = 100 mph( )
  ⇒    vw sinφ = 41

θ=20o

vr=100

φ

θ=20o

vw,xcosφ

vw,y sinφ

vp,x =vp sinθ
      =150sin20o

Along the “x” direction perpendicular to the 
runway, the vector components have to add to 
zero (the plane isn’t moving perpendicular to the 
runway), so:

vp sinθ− vw cosφ = 0
  ⇒   150 mph( )sin20o = vw cosφ
  ⇒    vw cosφ = 51

Along the “y” (runway) direction, the difference 
between the plane’s “free speed” component and the 
wind speed component will give us the plane’s 
relative speed.  Showing the components on the 
sketch and making down positive, that leaves us with:



46.)

 
!vp=150

 
!vw

plane coming 
this way

actual path of 
the plane

θ=20o

 
!vr=100

φ

Really minor mathematical trick:  The way to solve two 
equations like this 

divide one into the other and notice that sine/cosine is 
equal to tangent, or:

vw sinφ = 41  and   vw cosφ = 51

vw sinφ
vw cosφ

= 41 
51

 

   ⇒    φ = 38.8o

vw sin 38.8o( ) = 41
   ⇒    vw = 65.4 mph

⇒

 vw = 65.4 mph( )!38.8o⇒

Again, lots of minutia here.  This is not bad thinking fodder, but it’s a lot  more 
complicated than an AP question is likely to be!



47.)

Ball in the Cup Lab
Your task is to determine where 
you would have to put a cup so a ball 
rolling off a table would land in the cup.  

vo

h

x

a.) briefly explain how you will determine 
the velocity of the ball as it leaves the ramp.

(Note: Don’t let the ball roll off the tabletop 
as you are trying to determine its constant 
velocity after leaving the incline.  You don’t 
get to see how it will fly before your run!!!)

b.) Draw a sketch of the system.
c.) Derive an expression for cup’s x-
coordinate if it is to land in the cup.  This 
should be in terms of g, h and the velocity 
v of the ball as it leaves the ramp (note 
that the ball leaves in the horizontal).

a.) take the data needed to determine the coordinate, place the cup, then we will 
all make our run at the same time (hee hee).

For homework:

In class:



48.)

Marshmallow Gun Problem
A teacher who likes to 
reward his best students with 
treats has built a marshmallow-
shooting gun that he uses to dole 
out treats.  To make things 
interesting, he has set things up 
so that a hanging student (off a 
wall) begins to free fall when the 
trigger is pulled.  Ignoring 
friction, how should he aim the 
gun? 

 
!vo

Notice that the velocity 
magnitude doesn’t matter.  If its 
fast, the marshmallow gets there 
before the guy falls far.  If it’s
slow, it gets there later and the guy falls farther.  Either way works. 


