
Ice Dome With Collision 

θ

Jack with mass of “2m” sits atop 
a curved, frictionless incline of 
radius R which itself terminates 
on an ice dome of radius R (see 
sketch).  He begins to slide 
down the incline, crashing into 
Jill whose mass is “m” and who 
happens to be sitting on top of 
the ice dome.  After the perfectly 
inelastic collision, the two move 
down the ice dome until they 
leave the dome. Determine the 
angle     at which they leave. θ
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RRemembering that Jack’s mass is “2m” (and 
putting the y = 0 level at the ground), we can 
determine Jack’s velocity JUST BEFORE HE 
HITS THE JILL by using conservation of energy 
evaluated between his start point and JUST 
BEFORE HE HITS JILL.  That is: 

KE1∑ +      U1   +∑ Wextraneous∑ =     KE2∑     +    U2∑       

     0     + 2m( )g 2R( ) +        0        = 1
2

2m( ) v1( )2 + 2m( )g R( )

                                ⇒   v1 = 2gR( )1/2

Because energy is lost in the collision between 
Jack and Jill, we have to do this problems in little 
pieces using conservation of energy and 
momentum where they are applicable.  With that in 
mind, we will start at Jack’s start point. 
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Knowing the velocity after the collision, we can use conservation of 
energy to determine the velocity just as the two leave the dome.  With the 
mass of the two-body system now “3m,” and noting that the distance 
above the ground at that second point is             we can write: 

Momentum is conserved through the collision, so 
we can write: 

 p1,x∑  + Fext,xΔt∑ =     p2,x∑
2m( )v1 +         0     = 2m + m( )v2

          ⇒     v2 =
2
3

v1

          ⇒     v2 =
2
3

2gR( )1
2

   KE1∑      +    U1  +∑ Wextraneous∑ =     KE2∑     +        U2∑       
1
2

3m( ) v2( )2 + 3m( )g R( ) +        0        = 1
2

3m( ) v1( )2 + 3m( )g R cosθ( )

Rcosθ,

v2
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All we need now is a final expression for the 
velocity of the two just as they lift off.  To get that, 
we need to use Newton’s Second Law.  Doing so 
yields: 

 Fc :∑  

            N − 3m( )gcosθ = − 3m( ) v3
2

R
⎛
⎝⎜

⎞
⎠⎟

            ⇒  3m( )gcosθ = 3m( ) v3
2

R
⎛
⎝⎜

⎞
⎠⎟

                   ⇒     v3 = gR cosθ( )1
2

v3

0

N

3m( )g
3m( )gcosθ

centripetal
  direction
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Putting 
v3 = gRcosθ( )12 and v2 =

2
3
2gR( )12

into 
   KE1∑      +    U1  +∑ Wext∑ =     KE2∑     +        U2∑       
1
2

3m( ) v2( )2 + 3m( )g R( ) +    0     = 1
2

3m( ) v1( )2 + 3m( )g R cosθ( )

yields: 

1
2

3m( ) 2
3

2gR[ ]1
2⎛

⎝⎜
⎞
⎠⎟

2

+ 3m( )g R( )= 1
2

3m( ) gR cosθ[ ]1
2( )2

+ 3m( )g R cosθ( )

                   ⇒        1
2

8
9

gR⎛
⎝⎜

⎞
⎠⎟ +g R( )= 1

2
gR cosθ( ) + g R cosθ( )

                   ⇒        4
9

⎛
⎝⎜

⎞
⎠⎟ +1= 1

2
cosθ( ) + cosθ( )

                   ⇒        13
9

= 3
2

cosθ

                   ⇒        θ = cos−1 26
27

⎛
⎝⎜

⎞
⎠⎟ = 15.6o  
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So where was energy conserved? R 

R 

Where was momentum conserved? 

What else did I need to solve the problem? 

Could I have added a spring? 

Could I have added warm jello? 
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And the fun never stops . . .  


