
BELL’S SPACE-SHIP PARADOX
NOTE:  The information in this PowerPoint was gleaned from a paper written by 
Francisco J Flores of the Department of Philosophy at Cal Poly State University, San Luis 
Obispo, in 2005.  The paper was titled: “Bell’s Spaceships: A Useful Relativistic Paradox.”  
A copy of the article can be found on the Web at:

1.)

http://www.google.com/search?client=safari&rls=en&q=Francisco+J+Flores,+h
ow+to+teach+special+relativity&ie=UTF-8&oe=UTF-8

The set-up:  Three space ships in flat space and initially 
at rest with respect to each other are arranged as 
shown to the right.  Specifically, ships B and C, which are 
assumed to be identical, are each the same distance 
from A.  At some instant, both B and C receive a light
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signal whereupon they gently begin to accelerate.  Their acceleration process is
identical.  A string just long enough to reach between ships B and C is tied to the 
ships.  The paradox: as they begin to accelerate, will the string break?



2.)

From ship A’s frame of reference, which we will refer to as the unprimed frame of 
reference, draw the world lines for ships B and C.  Denote when the light leaves 
ship A as event a, and denote when the light arrives at ships B and C as event b
and event c.
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BELL’S SPACE-SHIP PARADOX
This problem is technically a General Relativity problem as it has acceleration in it, 
but it can be analyzed from a Special Relativity perspective because the 
acceleration is “gentle.”  The set-up is as follows:

3.)

Event a denotes the light signal being 
sent by ship A.  

Event b and Event c denote the signal 
arrivals at ships B and C respectively.  

As acceleration changes velocity, each 
ship’s world line begins in the vertical 
along the time axis (zero velocity) and 
moves slowly toward the photon “light-
line” at forty-five degrees. b c
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Ship B moves along its world line.  At event m (see sketch) it’s unprimed velocity 
vector is tangent to its world line and is denoted as       .   

5.)

If we place a primed axis at event m, note that 
the vector        will be along the time (ct’) axis 
at x’=0 (the ship never moves from it’s initial 
coordinate in its own coordinate system).  
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Remembering that lines of simultaneity in 
the accelerated frame are parallel to the x’ 
axis, we can follow the line of simultaneity 
from event m to C’s world line whereupon 
we find event n (again, look at sketch).

Looking at a tangent to C’s world line at 
event n (this is also the direction of       ), we 
find that its slope is different from      .  In 
other words, at that point in time, FROM 
SHIP B’S FRAME OF REFERENCE, the two 
ships are moving at different velocities . . . 
hence the string will break.  
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FROM SHIP A’s FRAME OF REFERENCE?   

7.)

An unprimed axis is added to our space-time 
diagram.
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A line of simultaneity is drawn between 
event q and event r (see sketch).

The ship velocities are the same at that 
point in time, which suggests that the rope 
will not break, but that’s not the case.  
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event q and event r (see sketch).
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point in time, which suggests that the rope 
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What needs to be noticed is that as the 
world line changes, the relativistic factor, 
which governs the length of the string, get
bigger and bigger as the acceleration takes the ships to higher and higher 
velocities.  That means, as bizarre as this is going to sound, that for the string to 
keep from breaking, the ships world lines would have to be getting closer and 
closer to one another.  As that is not happening, the string will break.



That last argument was a bit of a hand-waving gem.  A little more 
mathematically satisfying approach follows:

We know that relativity requires Minkowskian geometry, and we know that in 
that geometry the length s of the string must satisfy the interval expression:

8.)

Δx2 − Δct( )2 = Δs2

This curve is a hyperbola and graphs as H shown below (the graph is called a 
calibration curve).
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If we want the string to remain fixed in length, the interval along a line of 
simultaneity between event 1 and ship C’s position must conform to the 
constraints placed on it by our calibration curve H.  



9.)
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To see this, pick a point and call it 
event 1.  Draw its velocity vector 
tangent to the world line at that 
event.  This will define the ct’ axis.

event 1

Draw in the world line for a photon.  

The ct’ axis will be symmetric 
with the x’ axis about that 
light-line, so once done, draw 
in the x’ axis.  (Note that this 
defines a line of simultaneity.)

Once you have the primed 
axis, overlay the calibration 
curve so that its origin is at 
event 1 and the x = 0 
coordinate of H is on ship C’s 
world line.

x

ct

g1

H

line of simultaneity



Doing this process over and over again, we 
get the world-line (in red) that ship C would 
have to take for the string to keep from 
snapping.  As that ship doesn’t take that path, 
we have to deduce that the string will snap!
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H intersects the line of simultaneity from 
event 1 where ship C would have to be if the 
interval s was to be constant.


