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Chapter 22

RELATIVITY
(FOR THE HUMOR OF IT!)

A.)  The Michelson-Morley Experiment:

1.)  Difficulty #1--Newtonian physics and inertial frames of reference:

a.)  An inertial frame of reference is an unaccelerated (i.e.,
constant velocity) frame of reference.

b.)  Newtonian physics is predicated on the assumption that fixed
(inertial) frames exist.  N.S.L. expressly states: "In an inertial frame
of reference, objects in motion tend to stay in motion, objects at rest
tend to stay at rest . . . etc."

c.)  Fixed frames of reference are not easy to find.  The Sun will not
do--it's moving through space.  The surface of the earth will not do--it
is both rotating about its own axis and orbiting the sun.

i.)  If you will remember, using N.S.L. on long-range projectile
problems (i.e., projectile motion covering several miles) does not
yield the correct touch-down position unless a fictitious force (the
coriolis force) is included in the analysis.  Why?  Because the earth
is not an inertial frame of reference--the earth is spinning.

d.)  As Newtonian physics is based on the existence of inertial
frames, early theoretical physicists spent a considerable amount of
time mulling over where at least one such frame might be found.

2.)  Difficulty #2--Light (a wave) moving through the vacuum of space:

a.)  Young's experiment in 1801 established to the satisfaction of all
that light is a wave.

b.)  A wave is a disturbance that moves through a medium.

c.)  Light travels 93,000,000 miles from the sun to the earth through
a vacuum.
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d.)  The problem: If light is a wave disturbance, and a wave distur-
bance needs a medium to move through, what is the medium light
uses as it passes through the nothingness of space?

3.)  Scientists of the 1880's had an ingenious solution for both problems.
They assumed that there exists an underlying stuff, a kind of fixed under
structure, upon which space is built.  This under structure was called ether
after a similar idea from ancient Greece.

a.)  The supposed existence of ether satisfied the inertial frame
problem; the ether was assumed fixed;

b.)  Ether also explained the wave through a vacuum problem;
ether was the medium.

c.)  In short, everybody and his or her mother believed that the
ether existed . . . it had to for physics to work!

4.)  The infamous Michelson-Morley experiment was designed to prove
what was believed to be the obvious in the 1880's: that ether exists.  The exper-
iment was based on the following reasoning:

a.)  Light travels at a fixed velocity relative to the ether (3x108 me-
ters/second, or 186,000 miles/second).

b.)  As the earth is moving through space, hence is moving relative
to the fixed ether, the earth must be experiencing a kind of ether wind
blowing against it.

i.)  Explanatory example:  Assume you are driving 35 mph in a
car on a windless day.  You put your hand out the car's window
and feel wind against it.  The appearance of wind is the conse-
quence of your motion relative to the still air outside the car.

An ether wind against the moving earth is a similar situation.

c.)  Light traveling in the direction of the earth's motion should
appear to have slowed yielding a measured speed (relative to the earth)
that is less than 3x108 m/s.

i.)  Explanatory example:  You are driving your car at 35 mph
in a wind that is blowing 30 mph in the same direction you are
traveling.  When you put your hand out the window, you will feel a
breeze, but it won't be a 35 mph breeze; it will be a 5 mph breeze.
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d.)  Likewise, light
traveling in the direction
opposite the earth's
motion should appear to
have sped up yielding a
measured speed (relative
to the earth) that is more
than 3x108 m/s.

e.)  Bottom line:  If
ether exists, the speed of
light (relative to the earth)
will vary depending upon
the direction of the light
beam.  Michelson and
Morley's experiment was
designed to show this
variability.

5.)  The experiment did
not actually measure the speed
of light for various beam orien-
tations.  Instead, it used an in-
terferometer mounted on a flat,
horizontal table to observe inter-
ference fringes produced by two
superimposing light beams.  As
seen from above, the device is shown in Figure 22.1.  An explanation of the
device and experiment is given below.

a.)  A light source shines a ray of light on a half-silvered mirror.
The mirror splits the ray.  Half the light follows Path #1 while the
other half follows Path #2 (see sketch).  Path #1 and Path #2 are the
same total length.

b.)  Assuming the earth's motion is as pictured in Figure 22.1a, the
light traveling along Path #1 will be affected by the ether wind more
than will the light traveling along Path #2.  As such, the time required
for each ray to reach the viewing scope will differ.

Note 1:  This time difference will exist only if the ether exists.

Note 2:  A superficial look may lead you to conclude that the transit
times for paths A and B should be the same.  This is not the case.  To see this,
consider the following example:  A boat capable of traveling 10 m/s on cur-
rentless water makes a round-trip that takes it 100 meters upstream, then
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back to its starting point (see Figure
22.2a).  Will it take the same amount of
time for the boat to make the trip if
there is a 6 m/s current on the river
(see Figure 22.2b)?

The temptation is to notice that
the boat will move more slowly when
going against the current but will go
faster when going with the current,
concluding that the speed difference
will average out and the elapsed
round-trip time will be the same for
both scenarios.

In fact, that is not the case as
the period of travel for each path is not
the same.  To see this, consider the
following numerical example:
In currentless water, the elapsed time
for each leg is 10 seconds (t = d/v yields
100 meters divided by 10 m/s, or 10 sec-
onds per leg).  The total time for the
trip is 20 seconds.  In water moving at
6 m/s, the boats effective speed moving upstream is 4 m/s.  It takes (100 m)/(4
m/s) = 25 seconds to make the first leg of that trip.  Without even taking the
second leg into account, the times are obviously not the same.

c.)
Because one
ray will take
more time to
reach the
scope than the
other, there
will be a phase
shift between
the two rays.
When they re-
combine, this
will produce
interference

fringes like the ones shown in Figure 22.3a.

d.)  The Michelson-Morley experiment
hypothesized that if the interferometer was
rotated to the position shown in Figure
22.3b, the time variations between paths #1
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and #2 would change, changing the phase shift between the rays.
That, in turn, would make the interference fringes shift relative to
their initial positions.

In other words, if the interference fringes were observed to move as
the interferometer was rotated, it would imply that the speed of light
was different for different path orientations.  This, in turn, would indi-
rectly verify the existence of ether.

e.)  To the absolute horror of physicists around the globe, the
fringes didn't budge when the experiment was executed.  The speed of
light was, evidently, the same no matter what the orientation of the
light's path.

Put another way, the speed of light seemed to be the same no mat-
ter what frame of reference was used for the measurement.

f.)  The end of the story is mildly amusing.  Michelson and Morley
were given a fair chunk of money to re-do the experiment.  They bought
the best interferometer money could buy, placed it on a concrete slab
that was, itself, floated in a pool of mercury, and with the greatest of
precision got the same results.

According to their findings, the measured speed of light did not
change from one constant-velocity frame of reference to the next.

6.)  The Michelson-Morley experiment started out as an exercise in
proving-the-obvious; that ether exists.  Its results were devastating.  It meant
that the accepted theories of light were badly flawed and, to add insult to
injury, it meant that the theoretical underpinnings of Newtonian physics (the
required inertial frame of reference) probably did not exist.

Physicists tried all sorts of maneuvers to save the ether theory, but it
wasn't until a man named Einstein came along that things were finally
rearranged into a coherent whole.

B.)  Einstein's Special Theory of Relativity:

1.)  Einstein made three assumptions:

a.)  If ether cannot be experimentally observed, assume it does not
exist;

b.)  The laws of physics work the same in all stationary or constant-
velocity frames of reference; and
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c.)  The measured speed of light is the same in all constant-velocity
frames of reference (frames that are apparently stationary fall into this
category).  That is, the speed of light does not depend upon the constant-
velocity frame in which it is measured.

2.)  Commentary on the first two assumptions:

a.)  The first assumption--that ether does not exist--is a direct con-
sequence of the Michelson-Morley experiment.  It was a bold step, let-
ting go of the theoretical mechanism that explained light's ability to
travel through a vacuum--a step many physicists of the day were not
willing to take.  Einstein said, Enough.  If ether cannot be experimen-
tally observed, there is no reason to assume it exists at all.

b.)  The second assumption--that the laws of physics work equally
well in all constant-velocity frames of reference--was something with
which even Newton would have agreed.

Consider:

i.)  You are sitting in an airplane on the ground.  You order
tea.  It arrives and what do you do?  You pick up the tea pot, posi-
tion it over the cup, and watch the tea follow a graceful, parabolic
arc as it pours from the pot to the cup.

ii.)  Two hours later the plane is at 35,000 feet.  You decide to
have tea again.  It arrives.  The fact that you are now moving 600
mph does not require you to position the cup some number of feet
behind the pot so as to catch the liquid as it falls.  All you need to do
is repeat the movements you executed while pouring tea when on
the ground.

iii.)  In both constant-velocity frames of reference, the equations
of physics are the same.

3.)  Comments on the third assumption--the zinger:  Einstein's third
and considerably more exotic assumption was that the measure of the speed
of light will always be the same in all stationary and constant-velocity frames
of reference.  This assumption also came as a direct consequence of the
Michelson-Morley experiment.  Although it looks innocuous enough, its
presence within Einstein's theory suggests some very peculiar phenomena.

a.)  For the sake of comparison, consider the following:

i.)  A pitcher can throw a fast ball 90 mph.  With a horizontal
meter stick and timing device attached to you (Figure 22.4a shows
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ii.)  As the
ball passes the
front end of the
meter stick,
the timer engages.  As it passes the end of the meter stick, the
timer disengages.  How fast is the ball moving?

iii.)  Relative to you, the ball travels 1 meter in a known time.
Using the formula v = d/t, you can determine the velocity in m/s,
then convert it to mph.  Doing so yields a velocity of 90 mph.

iv.)  Not being satisfied with so mundane an exercise, you try the
experiment again with one difference.  You run at the pitcher as he
throws the ball (see Figure 22.4b).  Assuming your running speed
is 20 mph, the
timer engages
as the ball
passes the
front end of
the meter
stick; the
timer disen-
gages as it
passes the
end of the me-
ter stick.  How
fast is the ball moving relative to you?

v.)  Relative to you (and the meter stick attached to you), the ball
travels 1 meter in a known time.  Using the formula v = d/t, you can
determine the velocity in m/s, then convert it to mph.  In doing the
calculation, you calculate a velocity of 110 mph.

Note:  This makes sense.  Running toward the ball means it will pass
you faster than if you were standing still or running away from the ball.

vi.)  You try again by running away from the pitcher as he
throws the ball.  Relative to you (and the meter stick attached to
you), the ball travels by you with a velocity of only 70 mph.
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vii.)  There is nothing dazzling here; in each case the apparent ve-
locity of the ball, relative to your frame of reference, depends upon
the relative motion between you and it.

b.)  Taking Einstein's assumption into consideration, what hap-
pens when we do a comparable experiment using light?

i.)  Assume you are sitting in a stationary space ship out in
space.  You radio a friend on the planet below and tell her to shoot a
beam of light toward your ship.  You have a velocity-measuring de-
vice similar to the one used in the baseball experiment (but with a
much quicker timer), so as the beam passes through your ship (you
have windows at both ends), your setup measures the speed of the
passing light at 186,000 miles per second . . . the accepted speed of
light.

ii.)  Again, not being content with so ho-hum an exercise, you
accelerate the ship away from the planet until its speed is 150,000
miles per second (I should probably mention how absurdly fast this
is--our fastest military jets only go around three-quarters of a mile
per second, and the space shuttle has a top-end of only 17 miles per
second when in space).  The beam catches up to the ship and
passes through the velocity measuring device.

As this is a lot like the baseball problem, common sense leads
us to expect that the device will register a speed of 186,000 - 150,000 =
36,000 miles per second.  But that is not what happens.  The device
measures the passing light at a speed of 186,000 miles per second.

iii.)  You then turned the ship around so that it approaches the
planet at 150,000 miles per second.  As the light beam from the
planet passes through your ship, you might expect its speed to
measure 336,000 miles per second.  Not so.  What you find is that
the speed of the passing light, relative to your moving ship, is
186,000 miles per second . . .

c.)  Is Einstein's assumption strange?  You'd better believe it is!
Nevertheless, it has been experimentally confirmed.  Contrary to all
common sense, the measured speed of light will always be 186,000
miles per second whether you are traveling into the light beam, away
from the light beam, or just standing still relative to the light source.
Just as the Michelson-Morley experiment suggested, the speed of light
will always be the same when measured in a constant-velocity frame of
reference.
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4.)  Why?  Einstein had a perfectly simple, straight forward explana-
tion for this apparently mysterious behavior of light, but to understand it we
need to take a quick look back at Newtonian physics.

a.)  When Newton created his physics, he made certain common-
sense assumptions--assumptions that both you and I would undoubt-
edly have made if we had been in his place.

b.)  One of his first informal assumptions had to do with time.  By
time, we are talking about "a measure of the rate at which the moment
passes."  As far as Newton was concerned, time was universal--
something that was constant and independent of all else.

i.)  This isn't that unusual.  Time doesn't appear to be running
any faster in the mountains than it does at the seashore; time ap-
pears to run at the same rate here as it does there.

c.)  Another of Newton's informal assumptions had to do with
space.  For Newton, space was a homogeneous, three dimensional
void.

i.)  Again, not a hard assumption to accept when you think
about it.  A void does seem to be the same in all directions (i.e., ho-
mogeneous), and space does seem to be associated with length,
width, and height--three dimensions.

d.)  Einstein's argument began by noticing that speed is simply the
ratio of a spatial measurement (a distance traveled) and a temporal
measurement (the time to travel that distance).  Einstein then observed
that the only way the speed of light could possibly be constant in all
constant-velocity frames was if there existed a not-so-obvious
relationship between spatial and temporal measurements.  In plain
English, he said that space and time are NOT independent of one
another.

e.)  Taking this a little further, Einstein noted that if time is not the
universal constant Newton thought it to be, and if time and space are
somehow related, the measure of the rate at which the moment passes
must depend upon WHERE the measurement is being taken.

That, dear reader, is what gave Einstein the idea that real space is
not a three-dimensional, homogeneous void, but rather a FOUR
DIMENSIONAL entity whose fourth dimension is (gulp) TIME itself.

Put another way, Einstein's Theory of Relativity maintains that
TIME IS QUITE LITERALLY A PART OF THE FABRIC OF SPACE.
In physics, this real space is called either space-time or four-space.



324

right triangle
in Euclidean
   geomtery

FIGURE 22.5

right triangle
 in spherical
   geomtery

FIGURE 22.6

point A

light burst comes
      from here
           (Point B)

rocket is here when burst 
  reaches Point A and the
   stop watch is engaged

observer sees 
rocket at Point B 
when stop watch is 
started at Point A

v  ∆t L - v  ∆trr

L

5.)  The mathematics of Relativity:

a.)  Part of the reason full-blown Special Relativity (not to mention
General Relativity) is not taught at the high school level is that
Einstein's physics requires four dimensional math.  Furthermore, the
theory assumes a geometry that is non-
Euclidean.

i.)  You are familiar with non-
Euclidean geometries, you just
aren't aware of it.  Spherical geom-
etry, for instance, is the geometry
of the earth's surface.

One difference between the two:
In Euclidean geometry the sum of
the interior angles of a right trian-
gle is 180o.  In a spherical geometry
the sum of the interior angles of a
right triangle is greater than 180o (see Figure 22.5).

ii.)  As a minor point of order: Relativity employs Minkowskian
geometry and the mathematics is associated with what is called
Riemann space.

6.)  IMPORTANT TECHNICAL NOTE:  When you or I measure a time
interval, we position ourselves at a particularly convenient spot, use a single
stop watch, start the watch at the beginning of the interval and stop the
watch at the end.  When dealing with an object that is moving at extremely
high velocity, this approach doesn't work.  Consider:

a.)  A very fast moving rocket (velocity vr) approaches an observer
located at Point A.  When the rocket is a horizontal distance L units
from Point A (call this Point B) the rocket lets loose with a burst of light
that is directed straight at the
observer (see Figure 22.6).

b.)  The observer starts her
stop watch when the light burst
arrives.  She stops her stop
watch as the rocket passes her.
The time interval is ∆t.

c.)  If the observer calculates
the rocket's velocity using the
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measured time interval ∆t and the apparent distance traveled L, she
will get an erroneous velocity result.  Why?

d.)  The problem is that when the stop watch is started, the rocket
appears to be at Point B (the light's origin) even though it has traveled
a considerable distance during the time required for the light to reach
the observer.  As such, the distance the rocket actually travels while
the stop watch is running is not L but L-vr∆t.

To alleviate this light time delay problem, a different theoretical
technique is used whenever time-interval measurements are required
in relativistic problems.  The approach is as follows:

i.)  Set up a series of closely spaced, stationary (relative to your
chosen frame of reference), synchronized clocks in space.

ii.)  To measure how long it takes the rocket to get from Point B
to Point A:  As the rocket passes Point B, have the clock at Point B
register that time.  As the rocket passes Point A, have the clock at
Point A register that time.  At some later time, visit and record the
times registered on both clocks.  The difference between those two
times will give you the time interval.

e.)  As picky as this may sound, WHENEVER A TIME-INTERVAL
IS MEASURED, it is always assumed that the measurement has been
made using a set of synchronized clocks.  Likewise, length measure-
ments are always taken using a lattice of meter sticks set up side by
side in the frame of reference in which the measurement is to be
taken.

7.)  One of the consequences of Einstein's
assumptions is the phenomenon of TIME
DILATION.  Consider:

a.)  Two sensors are mounted inside a
space ship that moves with velocity v rela-
tive to an inertial (unaccelerated) frame of
reference (in this case, relative to space).
When a photon of light passes from one
sensor to the other, synchronized clocks
inside the ship are used to measure the
photon's transit time ∆tinship (see Figure
22.7a).  Also, a lattice of meter sticks is used inside the ship to measure
the photon's path-length (call this dinship).

Put a little differently, a scientist inside the ship uses his clocks
and his meter sticks to make the measurements.
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b.)  A second scientist
floats stationary in space as
the ship passes.  She uses her
synchronized clocks and lat-
tice of meter sticks to measure
the photon's path length
(doutside) and transit time

(∆toutside) in her frame of ref-
erence.  That is, she mea-
sures the net distance the
photon travels in her frame of
reference using her meter
sticks, and the photon's
elapsed-time-of-flight using
her clocks.  This information is presented in Figure 22.7b.

c.)  Notice that during the time interval ∆toutside, the ship moves a

distance v∆toutside.

d.)  Manipulating the definition of speed (v = d/t) to get an expres-
sion for the distance traveled by the light as viewed from both frames of
reference (i.e., d = vt), and remembering that in both cases the speed of
light must be c (i.e., 3x108 m/s), we can write:

dinship= c∆tinship
and

doutside = c∆toutside.

 
e.)  Coupling these two equations with the right triangle shown in

Figure 22.7c, we can write:

doutside
2   =    dinship

2    +  (v∆toutside)
2

 ⇒   (c∆toutside)2 = (c∆tinship)2 + (v∆toutside)
2.

f.)  Manipulating this equation to solve
for the time-interval relationship between
the outside scientist's clocks and the
inside scientist's clocks, we get:
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∆toutside = ∆tinship / [1- (v/c)2]1/2.

In other words, the transit time as measured in the moving space ship
is different from the transit time as measured by the outside observer.

Examining the relationship suggests that the ticking of a clock
inside the ship measured by an observer outside the ship will tick more
slowly than will a clock outside the ship (if this isn't clear, the example
below should help).  The significance is even greater, though.  In fact,
not only will the clock seem to move more slowly inside the ship,
EVERYTHING will seem to move more slowly inside the ship.

i.)  There is an interesting example of this time dilation
phenomenon that comes from the world of sub-atomic particles.

ii.)  Cosmic radiation interacting with upper-atmosphere gasses
produces radioactive particles called mu-mesons.  A mu-meson
has a half-life of around 1.5x10-6 seconds (that is, if 1000 are created
at once, half will decay into something else within the first 1.5x10-6

seconds; half of the 500 left will decay in the next 1.5x10-6 seconds;
half of the 250 left will decay in the next 1.5x10-6 seconds; . . . etc.).

iii.)  Disregarding Relativistic effects, a mu-meson traveling at
close to the speed of light will cover about 450 meters in one half-
life.  This means that if mu-mesons are created solely in the upper
atmosphere, which seems to be the case, there should be very few
found at sea level.

What is peculiar is that, in fact, there are lots of them at sea
level.  The question is, "Why?"

iv.)  Due to time dilation, mu-mesons can travel approximately 9
times further (relative to the earth) in one half-life than would be
expected.  That is, because they are moving at close to the speed of
light (relative to the earth), their internal clock will read 1.67x10-7

seconds (that is, one-ninth of 1.5x10-6 seconds) during 1.5x10-6

seconds of Earth time.
As such, they are able to reach the earth's surface with im-

punity.

g.)  Example:  A chimpanzee sitting in a space ship moving at .8c
(eight-tenths the speed of light) eats one banana every five seconds as
measured by a Timex on the chimp's wrist.  An observer in a station-
ary space ship uses his set of synchronized clocks and a chimp banana-
eating counter to measure the chimp's banana consumption as the
chimp's ship passes.  If the observer watches for 15 seconds, how many
bananas will the chimp eat in that period?
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Solution:  To do the problem, we need to know how much chimp
time passes during the observer's 15 seconds.  Using the relationship
derived above:

 ∆toutside = ∆tinship / [1- (v/c)2]1/2

  (15 sec)  = ∆tinship / [1- (.8c/c)2]1/2

           ⇒     ∆tinship = 9 seconds.

In 15 observer seconds, the chimp will eat 1.8 bananas.

h.)  As can be seen by the example, time in the chimp's ship ap-
pears to have slowed down, relative to time in the observer's ship.  This
is not a trick.  The observer will really see the chimp moving in slow
motion.  In fact, the chimp, the chimp's watch, the chimp's heartbeat,
even the vibratory motion of the atoms in the chimp's body (assuming
this could be measured), will all appear from the outside observer's
perspective to be moving more slowly than normal.

The chimp, on the other hand, will not find anything abnormal
about his situation.  His clock will go tick, tick, tick as usual; his mo-
tion, as viewed by himself, will be as it always has been.

j.)  Now, for the killer:  We have already established that the ob-
server in the other ship sees the chimp slowed down.  Does that mean
the chimp sees the observer speeded up?

The theory answers, "No!"  We are again left with the question,
"Why?"

i.)  In the chimp's frame of reference, everything is normal.
Because the laws of physics are identical in all constant-velocity
frames, he doesn't know whether he is at rest or moving at .8c.
Being an ego-centered chimp, he thinks he's the center of the world
and all things revolve around him.  In other words, when the
chimp looks out the portal, he sees a ship passing what he believes
is his stationary ship with a velocity of .8c.

ii.)  In Relativity, no constant-velocity frame is preferred over
another as the mathematics can not tell the difference between the
two frames (everyone thinks it's the other guy who is moving).  In
short, the chimp will see the observer in the other ship SLOWED
DOWN in the same way that the observer in the other ship sees the
chimp SLOWED DOWN.

To understand how this can be, physically, we need to more
closely consider the nature of four-space.  
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POSSIBLE  PROJECTIONS

8.)  Space-Time:

a.)  Consider the following
ANALOGY:  A thin screen is
backlit by a bright light.  A book is
placed between the screen and the
light (see Figure 22.8a).  What do
you see when you view the screen
from the side opposite the light
source?

You see the book's shadow as
it is projected on the two-dimen-
sional screen.  That is, you see a
two-dimensional projection of a
three dimensional object.  What is
more, you see different projections
as the book is rotated.  As shown
in Figure 22.8b, the projection can
look like a rectangle, a diamond,
or a line (assuming the book is
thin).

THE BOOK DOESN'T CHANGE, BUT ITS PROJECTION DOES as
the orientation of the book (relative to the light) is altered.

b.)  According to Einstein, space is really a four dimensional entity.
That means that objects in space are really four-dimensional objects.
Einstein maintained that when you measure a physical object, you are
measuring a three-dimensional projection of a four-dimensional ob-
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FIGURE 22.8c
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ject.  What is different about the two situations is that our book is purely
spatial; Einstein's geometry includes time.  That means the projection
we are measuring is not only space related, it is also time related.

c.)  Just as a change in the book's orientation can change the two-
dimensional projection produced by the backlit screen, so can the three
dimensional projection of a four-dimensional object also change.

According to Einstein, what changes your projection of another ob-
ject is a high relative velocity.  That has the affect of "rotating" the
three dimensional projection of four-dimensional objects.  In the case
of the time axis, this rotation is
measured as a slowing of time--as a
time contraction.

d.)  This physical contraction has
another aspect to it.  Specifically:

i.)  Although the time co-
ordinate appears to contract so
time appears to move more slowly
in the "other" ship (no matter
which ship is the other ship),
there is also an apparent LENGTH
CONTRACTION in the direction
of motion (see Figure 22.8c).

ii.)  Put another way, the ob-
server will measure the chimp's
ship as shorter than would have
been the case if the two ships had
been sitting side by side (the
contraction occurs only in the
direction of motion).

Furthermore, by the principle of reciprocity, the scientist's ship
will appear length-contracted to the chimp.

iii.)  This contraction is called the Lorentz-FitzGerald Contrac-
tion after a man named Contraction (a little physics humor . . . the
real, true joke is that it is called the Lorentz-FitzGerald Contraction
because it was derived by Poincare).

iv.)  Without proof, the expression that relates the chimp's
measure of his ship's length--I'll call this Lo--to the scientist's
measure of the chimp's apparently contracted ship-length Lcontr is:
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FIGURE 22.9

three-dimensional space-time diagram
                 of a stationary ant

spatial
  axis "x"

the ant's world linetime axis 
     "t"
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spatial
   axis "y"
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1

1
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x

an event 
(the ant at x  , y  , t  )1 1 1

Lo = Lcontr / [1 - (v/c)2]1/2.

9.)  SPACE-TIME
DIAGRAMS:  A useful way
to visualize objects in space-
time is with a space-time di-
agram.  Because it is not
possible to generate a four-
dimensional graph on a two-
dimensional piece of paper,
we will simplify the situation
by throwing out one spatial
dimension.

a.)  Assume you
live in a two dimen-
sional world (you can
move right and left and
forward and backward,
but not up or down).
Assume also that time
is a part of the
geometry of space.
With these as-
sumptions, the grid
used to graph one's
position in space-time
will have three dimen-

FIGURE 22.10

modified space-time diagram
     (in standard form, the time axis would
     be labeled     --there are other oddities about
     these diagrams we will not be discussing here)

spatial
  axis "x"

  world line of end
of spinning wrench

time axis 
     "t"

spatial
   axis "y"

ct

sions (that is, you will
need two spatial axes and
one time axis).

b.)  Figure 22.9 uses
such a coordinate grid to
show the position of a sta-
tionary ant.  Note that
there is no variation in
the x and y coordinates
but there is motion along
the time axis.  That is
because the ant never
stands still in time--
objects are always moving
along the time axis.
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FIGURE 22.11

pole

   lengths of pole and barn when 
stationary relative to one another

barn

20 meters 10 meters

Note:  The modified space-time diagram shown in Figure 22.10 is not
standard.  If you are interested in learning more about real space-time
diagrams, get the book SPACETIME PHYSICS by Taylor and Wheeler.

c.)  An object's WORLD LINE defines the object's motion in space-
time.  A particular point on a world-line is called an event (see Figure
22.9).

d.)  Figure 22.10 (previous page) shows the world-line for a point on
the end of a spinning wrench in the x-y plane.

10.)  SIMULTANEITY:  One of the consequences of Einstein's physics is
that there is no certain way of telling whether two events that happen far
apart occur at the same time.

11.)  Simultaneity Example
#1:  A 20 meter long pole is
accelerated to .9c.  It approaches
a 10 meter long barn (see Figure
22.11).  Will the pole fit
completely into the barn?

SOLUTION:  Whether the
pole fits depends upon the frame
of reference from which you
view the problem.

a.)  From the frame of
reference of the barn (i.e.,
with synchronized clocks
and a meter stick lattice

FIGURE 22.12a

pole moving at .9c
    fits into barn

10 meters

in the barn's frame of reference), the pole will length-contract by:

  Lpole in poles frame = Lpole in barn's frame / [1 - (v/c)2]1/2

⇒      Lbf = Lpf [1 - (v/c)2]1/2

= (20 m) [1 - (.9c/c)2]1/2

= 8.7 meters.

From the barn's frame of reference, the pole's
length is 8.7 meters.  What this means is that if
someone standing at the front door were to slam
that door shut just as the rear end of the pole
entered, there would be an instant after the front
door closed before the front end of the pole came



Ch. 22--Relativity

333

FIGURE 22.12b

barn moving at .9c does 
   not allow pole to fit

FIGURE 22.12c

10 meters

you see this end as 
 it exists at time t2

you see this end as 
 it exists at time t

1

    physical explanation
  of pole-in-barn paradox
(from barn's frame of ref.)

crashing through the barn's rear-
wall window.  Put another way,
the pole will fit inside the barn
(see Figure 22.12a).

b.)  From the frame of
reference of the pole (i.e., from the
view of an ant riding on the pole--
an ant with its own synchronized
clocks and lattice of meter sticks):
From this frame, the ant and pole
are stationary while the barn
approaches at .9c.  As such, the
barn length-contracts as shown in Figure 22.12b.

The math in this case follows:

 Lbarn in barn's frame = Lbarn in pole's frame / [1 - (v/c)2]1/2

⇒     Lpf = Lbf [1 - (v/c)2]1/2

    = (10 m) [1-(.9c/c)2]1/2

    = 4.35 meters.

From the pole's frame of reference, the barn's length will be 4.35 me-
ters and the pole will not fit into the barn (see Figure 22.12b).

c.)  So which is it?  Will the pole fit into the barn or won't it?

d.)  What is important to realize here is that that's the wrong
question to ask!  Each is correct within the context of the frame from
which the measurements are taken.  That is:

i.)  If you happen to be standing next to the barn, you will actu-
ally see the
pole fit into
the barn be-
fore the front
of the pole
crashes out
through the
barn's rear
window.

ii.)  If you
are moving
along with
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FIGURE 22.13a

position of man and woman
     when Flash A occurs

position where
Flash A occurs

position where
Flash B occurs

the pole, you will actually see the front of the pole crash through the
barn's rear window before the end of the pole enters the front door.

e.)  But how can this be?  It is a consequence of the nature of four-
space.  When the pole is moving at high velocity relative to you and the
barn, you are not seeing the front of the pole and the back of the pole as
they exist at the same point in time.  What you are seeing is the front of
the pole as it exists at one point in time and the back of the pole as it ex-
ists at another point in time (see Figure 22.12c).  Because you are look-
ing into a fast moving (relative to you) frame of reference, the two
events are not simultaneous in time.

12.)  Simultaneity
Example #2:  Two indi-
viduals observe two light-
ening flashes that occur
some distance apart.  One
of the individuals, a man,
stands in a field.  The
other individual, a
woman, is in a train.
There is relative motion
between the two.

It is known that
when the lightening flash A
occurs, the man is opposite
the woman and the physical
location of the flashes are
equidistant from both (that
is, the distance between
flash A and the man, and
flash B and the man, are
the same; likewise for the
woman).  See Figure 22.13a.
Fur-thermore, the man
sees the flashes at the same time (i.e., the light from both reaches him at the
same instant) and the woman sees the flashes at different times (flash B ar-
rives later than flash A).  Did the flashes occur simultaneously?  (This example
comes from Relativity for the Millions, by Martin Gardner).

SOLUTION:  The answer depends upon whether the events are viewed
from the man's frame of reference or the woman's frame of reference.

a.)  From the man's frame of reference (see Figure 22.13b):

i.)  As far as the man is concerned, his frame of reference is
stationary.
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FIGURE 22.13b

position of stationary man and moving
        woman when Flash A occurs

train and woman moving with velocity "v"
 (train will travel some distance to the left 
 before light from Flash B reaches woman)

from man's frame

ii.)  The dis-
tance between
him and both
flashes is the
same.

iii.)  As he
sees both flashes
arrive at the
same time, he
concludes that
the flashes must
have occurred
simultaneously.

b.)  If the woman
takes the man's
frame of reference
as stationary, her
analysis agrees with
his.  That is:

i.)  She knows she is equidistant from the flash origins when
she is opposite the man.

ii.)  She knows that flash A occurs when she is across from the
man.

iii.)  She knows the speed of the train.  She can calculate how far
the train travels by the time the light from flash A reaches her.
With that information, she can calculate how long thereafter the
light from flash B should arrive if, in fact, flashes A and B
occurred at the same time.

iv.)  She makes her calculations and finds that the calculated
and observed time differences are the same.  Her conclusion is that
the flashes must have occurred simultaneously.

c.)  From the woman's frame of reference (i.e., from the frame of
reference of the train--see Figure 22.13c):

i.)  As far as the woman is concerned, her frame of reference
(and that of the train) is stationary.

ii.)  She knows the distance between herself and both flashes is
the same when both flashes occur whether they occurred simulta-
neously or not.
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FIGURE 22.13c

position of woman and stationary
      train when Flash A occurs

  earth and man moving with velocity "v"
(man will travel some distance to the right 
   before light from Flash A reaches man)

from woman's frame

How so?  The
flash origins are
the same distance
apart when she is
opposite the man,
and she is not mov-
ing!  Conclusion:
the distance be-
tween the flash ori-
gins and the
woman will
ALWAYS be the
same in this frame
of reference.

iii.)  The only
way the flashes can
travel equidistant
paths and arrive at
different times is if
they flash at different times.  In short, the two flash events must
not have occurred simultaneously.

d.)   If the man takes the woman's frame of reference as stationary
(i.e., if he accepts the notion that the earth is moving underneath the
stationary train and, hence, that he is moving to the right), his
analysis will agree with hers.  Specifically:

i.)  He knows he is equidistant from the flash origins when he
is opposite the woman.

ii.)  He knows that flash A occurs when he is opposite the
woman.

iii.)  He knows that by the time the light from flash A reaches
him, he will have moved to the right of the stationary woman.  That
means the light from flash A moves further to reach him than does
the light from Flash B.

iv.)  But the light from the two flashes arrive at the same time,
so flash A must have occurred before flash B and the two events
must not be simultaneous.

e.)  Bottom line:  Simultaneity depends upon the frame of reference
you choose.  If you find it evident in one frame, it may not be evident in
another even though both frames are perfectly legitimate.
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f.)  Again, the question "Which one is correct?" is the wrong ques-
tion to ask.  The results from each frame are correct within the context
of that frame.

i.)  This seems contradictory, but it's not.  Humans are not
equipped to think four-dimensionally, so it shouldn't be surprising
to find that the four-dimensional world appears strange when
viewed from different frames of reference.

Part of the appeal of Relativity is that within its mathematical
structure are the transformations required to translate from one
frame of reference to another.  That means that as long as you are
consistent in solving a problem within the context of one frame
only, you can then use the transformations to determine how
things will look from any other frame.

In short, there is linkage within the system even if individual
parts don't, on the surface, appear to agree.

C.)  Einstein's General Relativity:

1.)  The Special Theory of Relativity deals with phenomena associated
with constant-velocity situations.  The General Theory of Relativity deals with
situations in which acceleration is present (this includes the study of gravita-
tional effects).

2.)  We have already established that spatial and temporal measure-
ments are related to one another; that time is literally a part of the fabric of
space.  As such, the rate at which the moment passes is related to where the
moment passes.  A perfectly legitimate question is, "What makes time move
more slowly in some places and faster in other places?"

The answer: "The presence of matter."  Specifically:

a.)  Out in the void between the stars where there is no appreciable
matter, space-time is homogeneous--the same here as there.  Time
runs at some constant rate, the same everywhere.  Regions like this
are called "flat space" (flat in the sense that there is no variation in the
space-time structure).

b.)  But sidle up to a planet, star, or other massive object and, as-
suming you have the equipment required to make the measurements,
you will find that the geometry of space-time differs from place to place.
In an attempt to verbally depict this inhomogeneity, physicists call
regions like this either warped space or curved space.

i.)  To put in physics terms, the closer one gets to a massive
object, the more space-time in the vicinity warps.
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c.)  One observable consequence of warped space is related to time.
The rate at which the moment passes depends upon the curvature of
the warped space in which the measurement is taken.  The more
warped space-time is, the more deeply curved the region and the more
time slows down (actually, curvature is related in a complicated way to
the second derivative of the rate at which time passes).

Note:  This is not like the apparent slowing of time in the chimp's fast-
moving space ship.  That was a situation in which high relative velocities
rotated the perceived three-dimensional projection of four-dimensional
objects.  The phenomenon we are examining now is the consequence of space-
time being altered quite literally by the proximity of a massive object.

i.)  As bizarre as this may seem, this slowing of time as one
gets closer to the surface of the earth (or any massive body) has
been experimentally observed.  The Pound-Rebka experiment at
Harvard University used a gamma ray source, a Mossbauer detec-
tor and the Doppler effect to indirectly show that time on one floor of
a Harvard building ran more slowly than time on an upper floor of
that same building.  In 1969, another experiment determined that
time measured at the Bureau of Standards at Boulder, Colorado
(altitude 5400 feet above sea level) gains 5 microseconds per year
relative to a similar clock at the Royal Greenwich Observatory in
England (altitude only 80 feet above sea level).  Nowadays, all clocks
used to track international time (i.e., in Paris, in Tokyo, etc.) must
be adjusted to correct for the fact that time runs more slowly at sea
level than it does in the mountains.

3.)  Acceleration fields--Newton's theory:

a.)  Newton dealt with the acceleration field we associate with
gravity using what is called an action at a distance model.  He
theorized as follows:

i.)  Massive bodies are attracted to one another due to a force, a
gravitational force.  The magnitude of that force is Gmm1/r2,
where m1 is taken here to be the mass feeling the force, m is the
field-producing mass (m and m1 are actually interchangeable), r is
the distance between the center of mass of m and the center of mass
of m1, and G is a constant.

b.)  When m1 is in a gravitational force field, it will accelerate
(assuming there are not other forces present to prevent it from doing
so).  Using the gravitational force equation quote above with Newton's
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Second Law, we can write 
  

Gmm1

r2 = m1a .  Dividing out the m1 terms

leaves us with the acceleration expression  
  
a = Gm

r2 .

c.)  Observation 1:  According to our derived acceleration equation,
the acceleration of m1 is completely independent of the size of the mass
of m1.  Evidently, it doesn't matter whether a body's mass is one
kilogram or two kilograms or three kilograms (neither does it matter
what the body is made of), the body will always accelerate at the same
rate at a given place (on Earth at sea level, this rate is the ever favorite
9.8 m/s2).

d.)  Observation 2:  As an object's acceleration has nothing to do
with its mass, even massless photons of light will fall when in an ac-
celeration field like the one produced by the earth (that's right, light
passing by the earth at sea level falls at 9.8m/s2 toward the earth's cen-
ter--this assertion was first verified using satellites in the early 1990's).

e.)  Reiterating:  Newton's theory is based on an action at a distance
model--one body affecting a distant body through what Newton called a
gravitational force.

4.)  Acceleration fields--Einstein's theory:

a.)  Put simply, Einstein did not view gravitational effects (apples
falling out of trees, etc.) from an action at a distance perspective.
Einstein suggested that such effects were the consequence of a body's
interaction with the local geometry in which it resides.  He maintained
that bodies accelerate at 9.8 m/s2 at the earth's surface because that is
what the curved space-time geometry at the earth's surface motivates
bodies to do.

b.)  An example:

i.)  According to Newton, the moon follows its orbital path
around the earth because the earth applies a gravitational force
(action at a distance) that pulls the moon centripetally into a nearly
circular trajectory.

ii.)  According to Relativity, the massive earth warps the
geometry of the space-time in which the moon moves.
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FIGURE 22.14

you following a straight-line
  path in a curved geometry

earth

iii.)  In relativity, there are no outside action at a distance gravi-
tational forces acting on the moon, so it moves as all force free ob-
jects do--it moves in a straight line.  But because the geometry of
space in which the moon travels has been warped (curved!), the
moon follows this straight line path in a curved geometry.  As
such, it moves on what is to us a curved path around the earth.

iv.)  This following a straight line path in a curved geometry is
not as bizarre as you might think--even you can experience it.  All
you have to do is begin walking toward the east; sooner or later you
will come up over the horizon from
the west.  You will have followed a
straight line path, but you will have
done it in a curved (spherical) ge-
ometry (see Figure 22.14).

This is similar to what Einstein
believed the moon was doing, except
in the case of the moon the curva-
ture is due to warped space-time.

c.)  A commonly used analogy be-
tween curved space-time geometry and
everyday life is as follows:  Visualize a
bowling ball placed on a thin, tightly
stretched piece of rubber.  The rubber's

FIGURE 22.15

ball

stretched rubbermarble's path through 
 the curved geometry

geometry will deform as shown in
Figure 22.15.  Shoot a marble past
the ball and it will change
directions.  Why?  Not because there
is a gravitational/action at a dis-
tance-type force between the ball
and the marble (this would be anal-
ogous to Newton's theory of gravity).
The marble changes directions be-
cause it is affected by the geometry
of the space through which it
passes.

d.)  In a nutshell, Einstein at-
tributed gravitational effects to the
curvature of space-time.  An inter-
esting astronomical experiment in
1919 was done to test this hypothesis:

i.)  Under normal circumstances, sun light blots out all other
star light during the day.  Only during a total solar eclipse can
light from other stars be seen.
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ii.)  In 1919, there was a total eclipse.  Before the eclipse, as-
tronomers realized that one, known, particularly bright star would
just peek out from the behind the sun's disk during the eclipse.  In
other words, with the sun blanked out by the moon, that star's ap-
pearance from behind the sun would be visible.

iii.)  Newton's theory of gravity predicts that a photon of light
passing close to the sun should be deflected by the sun's accelera-

tion field (remember 
  
a = Gm

r2 ).  A little Calculus shows that the

angle of deflection from its otherwise straight-line path in such

cases is 
  

2Gm
rc2 , where m is the mass of the field-producing body (the

sun in this case), c is the speed of light, and r is the closest distance
between the body and light's path (this is called the impact parame-
ter).

Assuming Newton was correct, scientists calculated the exact
time the bright star in the 1919 eclipse would show itself from be-
hind the sun.

iv.)  Einstein's theory, based on the idea that a body's accelera-
tion is related to the curvature of the geometry of space through
which it passes, produced a theoretical light deflection angle of

  

4Gm
rc2 --twice as large as that determined using Newton's theory.

As a consequence, assuming that Einstein's theory about warped
space was correct, the light from the star should show itself from
behind the sun prematurely (prematurely, that is, in comparison to
Newton's suggested time of arrival).

v.)  The experiment was done and the star's light presented itself
exactly as Einstein's theory predicted.  Light had, evidently, fol-
lowed a straight-line path through the curved geometry in close to
the sun, and had become visible to the earth before the star was ge-
ometrically beyond the edge of the sun's disk.

Einstein's theory was corroborated.

5.)  The TWINS PARADOX and Special Relativity:

a.)  Assume you and your twin sister are both twenty years old.
You get into your space ship, accelerate to a high velocity over a long
period of time, then after ten of your years (i.e., years as measured by
your space-ship clock), you return.  Biologically, you are thirty years
old.  Why?  Because ten of your years have passed.  But when you open
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the space-craft's door and greet your sister, you find she is forty years
old.

This is a statement of what is called the Twins paradox.  Before we
get to the paradox itself, let's examine the basis of the situation.  How
can the twins be different ages?

b.)  Although acceleration problems generally fall within the do-
main of General Relativity, we can cleverly make this acceleration
problem into a series of constant velocity problems, then analyze it us-
ing Special Relativity.  The idea is to break the ship's motion into tiny
segments.  In each segment, the ship has an average relative velocity
(relative to the earth).  This means that the amount of time dilation
(relative to the earth) associated with each segment can be calculated.
As the acceleration takes the ship to higher and higher relative veloci-
ties, the ship's clock ticks more and more slowly (relative to the earth's
clocks).  To get the net time difference between the two frames of refer-
ence, all we have to do is count the number of ticks that occur on Earth
while the ship is away, do the same for the number of ticks that occur
in the ship during that same interval (i.e., sum the ticks in each seg-
ment), and we end up with twins of unequal ages.

i.)  An interesting and truly bizarre corollary to this: If your
mother were to step into a space ship when she was forty and you
were twenty, she could accelerate to high velocities out in space,
then turn around and arrive back on Earth with a biological age of
fifty-five when your biological age was sixty.

6.)  The TWINS PARADOX and General Relativity:

a.)  Although the Twins Paradox is usually analyzed using Special
Relativity, it is instructive to look at it for what it is--an acceleration
problem.  In a theoretical sense, this is not mathematically easy.  One
has to use elegant conformal geometry and what is called Rindler
space to do the problem (this is the kind of thing Stephen Hawking
does).  Nevertheless, a qualitative explanation is interesting.

b.)  BACKGROUND:  One of the things Einstein noticed is that
there is no difference between a frame of reference that is under the
influence of what Newton would have called gravity (i.e., one that
resides in curved space) and a frame of reference that is accelerated
(Einstein called this observation the Principle of Equivalence).

How so?  Consider:

i.)  You are standing in a small room.  You feel the floor
pushing up against you as expected.  Can you tell whether the
room is sitting stationary on the earth's surface, or whether the
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room is in an enclosed rocket ship that is accelerating at 9.8 m/s2

out in space?
Answer:  You have no way of telling.

ii.)  What Einstein said was that if you cannot experimentally
tell the difference between two situations, they must be treated
comparably.  As such, the effects that one observes as a conse-
quence of curved space (the slowing of time, etc.) should also be ob-
served in an accelerating frame of reference.

c.)  In relativity, time is expected to slow down close to the earth's
surface (the earth warps the space around itself).  Time is also ex-
pected to slow in an accelerating space ship due to the Principle of
Equivalence.  What is peculiar is that if a ship's acceleration is 9.8
m/s2, time will not slow in the ship in the same way that it slows on
Earth where the gravitational acceleration is 9.8 m/s2.  Why?  Because
the relationship between curved space and the slowing of time is not a
linear one--the relationship is quite complex.  In short, if the ship ac-
celerates to high velocities at a rate of 9.8 m/s2, time will slow more in
the ship than on earth and our twins will age at different rates.

d.)  To be complete, the paradox part of the Twins Paradox is as
follows:  If, from the earth's frame of reference, the traveling twin ages
less than the earth-bound twin, what happens if we look at the problem
from the space ship's perspective?  In that case, the earth accelerates to
high velocity away from the ship and, seemingly, should act like a
platform on which time slows down.  In other words, it looks from that
frame as though the twin on Earth should age less than the twin in the
space ship.

There is a perfectly acceptable solution to this apparent paradox,
but it takes time to explain.  I'll leave it as my little puzzle for you--
something to spur you on to independent study of your own.  After all,
that's what education is all about--piqueing curiosity and tweaking the
student to want to learn more.

Consider yourself tweaked.

7.)  Black holes and warped space-time--BACKGROUND:

a.)  The following is more for fun than anything else.  Treat it so:

b.)  When a moderately large star dies, it does so by exploding in
what is called a supernova.  How does this occur?

i.)  Although there are currently competing theories as to the
exact mechanisms involved, it is generally accepted that stars form
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when enormous amounts of galactic gas and dust gravitationally
attract (notice we are using Newtonian terminology here) and
coalesce into a huge ball.  As the attraction proceeds, the ball's
density gets greater and greater.  When the core's pressure
reaches a billion atmospheres (one atmosphere equals 14.7 pounds
per square inch) and its temperature reaches 10,000,000o Celsius,
hydrogen fusion begins, energy is given off, and a star is born.

ii.)  Hydrogen fusion is the process whereby two hydrogen atoms
are forced together to make a helium atom.  An enormous amount
of energy is released with this process.  Specifically, .7% of the
fused mass is converted into pure energy via E = mc2.

Example 1:  In fusing one gram of hydrogen into helium, .007
grams of mass is turned into pure energy.  Using E = mc2, that is
enough energy to send 200 four-thousand pound Cadillacs 100
miles up into the atmosphere.

Example 2:  The sun fuses 657,000,000 tons of hydrogen into
653,000,000 tons of helium every second.  The 4,000,000 missing tons
are turned into pure energy (that is why the sun, which is
93,000,000 miles away, can so easily heat the earth).

iii.)  After a long period of time (anywhere from millions to
billions of years, depending upon the size of the star), the hydrogen
used to fuel the fusion reaction has been replaced by helium and
the core runs out of fuel.  When this happens, the core begins to
collapse.  As it does, the core temperature rises (objects that
contract heat up).  If the core temperature reaches 100,000,000o

Celsius, helium will begin to fuse to make still larger atoms.

iv.)  In very large stars, this process repeats itself over and over
again with smaller atoms fusing to make larger, then the large
atoms fusing to make larger atoms yet.  The process can continue
until the core is mainly iron.  Fusion of elements heavier than iron
does not give off energy in the process but rather absorbs energy.

v.)  Assume we are looking at a star that has gone beyond the
hydrogen-fusion stage (i.e., a moderately large star).  There will
come a time when the star's fuel runs out and its core begins to
contract due to the fuel depletion.  If the contraction does not
generate temperatures high enough to begin the next level of fusion
(i.e., fusion of still larger atoms), the envelope of the star (the area
outside the core) begins to gravitationally collapse in on the core
(the core will also continue to contract).  As this occurs, electrons
in the core's atoms begin to degenerate (that is, they are forced into
energy states they would not normally occupy).  If the star is
massive enough, the degeneracy escalates to the point where the
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core electrons are literally forced into the nuclei of their respective
atoms.  Once there, they combine with protons to make neutrons.
As the electrons provide the pressure needed to hold the star in
form, when they disappear, the star contracts.

vi.)  All the electrons in the core execute this collapse at the same
time.  That means that in only a few seconds, a core whose initial
radius had been, say, 1,000 kilometers will implode to a radius of,
maybe, 10 kilometers.

Note:  This sudden collapse is stopped by nuclear forces.  That is, it is
neutrons jammed up against one another that stops the implosion.

vii.)  A tremendous amount of gravitational potential energy is
released when this collapse occurs.  That energy explodes out from
the core, moving through the envelope like a shock wave.  If the
energy content of this shock wave is great enough, the envelope will
be blown completely off into space (in a ten solar mass star, this
would amount to around eight solar masses worth of material)
leaving the compressed core behind.

viii.)  This is a supernova.  It leaves a super-dense core called a
neutron star (a neutron star typically has a weight density of
somewhere around 7,000,000,000,000 pounds per cubic centimeter)
and many solar masses worth of debris moving outward into space
(if this material is backlit by stars in the vicinity, and if it is visible
on Earth, we call it called a nebula).

Note 1:  During a supernova, a star puts out millions of times its
normal energy emission.  That is why the Chinese-observed supernova (we
also have American Indian drawings of the event on cave and pueblo walls)
in 1054 was visible during the day for a full two weeks (this nebula is called
the Crab Nebula and is visible with a backyard telescope--what you see,
should you look, is the cooling, ejected stellar envelope kept illuminated by the
spinning neutron star at its center).

Note 2:  Under normal conditions, stars haven't the ability to fuse
elements larger than iron because iron fusion requires the taking-in of
energy, versus the giving-off of energy observed with small-element fusion.

So when are elements larger than iron produced?  During supernovas.
The gold in your rings and the silver in your fillings, not to mention every
other element on Earth that is larger than iron, was created during the death
of a star.  You and I are, quite literally, made up of the stuff of stars.

c.)  If the energy content of the shock wave created by the core
implosion is not great enough to blow off the star's envelope, the star's
envelope will proceed to gravitationally collapse down on the core.  As
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the implosion progresses, it becomes so fierce that not even nuclear
forces can stop it.  That means the implosion continues on forever
(though the idea of time becomes blurred here for relativistic reasons
that will become evident shortly).

When all the mass of the star has been compressed down inside a
diameter of around 2 kilometers (remember, this could be, maybe, ten
or twenty solar masses worth of material), the structure's density is so
great that light leaving from a source inside that radius will be pulled
back to the star's surface.

This radius is called the event horizon, and this structure is called
a black hole.

d.)  In relativistic terms, the super massive nature of a black hole
warps the curvature of space around it so radically that not even light
emitted inside the event horizon can escape (just outside the event
horizon, light traveling directly away from the star can escape; light
traveling obliquely will be pulled back down to the star).

8.)  Black holes and warped space-time--What would it be like if you
went for the ultimate thrill and jumped into a 108 solar mass black hole?

a.)  If a friend was watching from a distance, he or she (we'll say
it's a he) will see something unexpected.  Specifically, as you approach
the event horizon, you will (from their vantage point) begin to slow
down.  The closer you get, the slower you will go.  In fact, if your friend
could watch long enough, you would sooner or later come to an
apparent, complete stop just outside the event horizon.

Strange, but true.

b.)  From your perspective, on the other hand, things will happen
very fast.  If you go in feet first, the tidal forces at your feet will be so
much greater than at your head that in only a few seconds you will just
noodle out into an aggregate of individual atoms.

c.)  BUT, if you could look out into the universe during those last
fleeting seconds, you would witness amazing things.  You would see
the evolution of our universe passing before your eyes at incredible
speed.  You would witness the birth, life, and death of whole galaxies,
and it all would happen in the time it takes you to wink.

Why?  Because the incredibly massive character of the black hole
would so warp the geometry of space-time around you that, as seen
from "out there", your time would slow almost to a standstill.  You
would feel normal because you would be a part of it, but in relation to
the rest of the universe, your moment would take aeons.
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