
Ch. 18--Magnetic Fields

187

FIGURE 18.1
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     in the lab frame:  the wire is stationary;
the current--positive charge--flows to the left;
 a test-charge    moves right with velocity   .

from the laboratory frame of reference

q v

Chapter 18

MAGNETIC   FIELDS

A.)  A Small Matter of Special Relativity:

1.)  Assume we have a particle of charge q moving with an initial
velocity vq parallel to a current-
carrying wire as shown in
Figure 18.1.

a.)  Consider the situ-
ation from the perspective
of the laboratory frame of
reference (i.e., the frame
in which you and I sit and
in which the wire is
motionless):

i.)  The positive
charges (the protons)
are fixed in the wire
while the negative
charges (the electrons) have some non-zero average velocity ve.

ii.)  There are as many electrons as protons in the wire before
the current begins (i.e., the wire is electrically neutral).

iii.)  As many electrons leave the wire as come onto the wire
while current flows.  As such, the wire is perceived to be electri-
cally neutral even when current is flowing.

b.)  Consider now the situation from q's frame of reference:

Note:  From this frame of reference, the charge q will be stationary
while everything else is moving around it.
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FIGURE 18.2
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FIGURE 18.3
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      From        frame, an electric field  exists due to the
predominance of postive charges in the wire.  As     is positive, 
          this electric field will push     away from the wire.  
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i.)  In q's frame
of reference (see
Figure 18.2), the
wire and all posi-
tive charges (pro-
tons) will move to
the left with ve-
locity vq.  Mean-
while, negative
charges (elec-
trons) will move to
the left with velo-
city vq- ve (we are
assuming vq > ve).
The action is summarized in Figure 18.2.

ii.)  Notice that the protons move faster than electrons from this
perspective.

2.)  Einstein's Theory of Relativity suggests that when one object passes
a second object, the second object will appear to the first to have contracted in
length.  Called "length contraction," the phenomenon is immediately evident
only at very high speeds but does occur microscopically at low speeds.

3.)  Because all of
the charge in the wire
moves relative to q's
frame of reference, the
distances between the
charges should appear
to be closer (relativistic
length contraction)
than would otherwise
have been the case if
viewed from the lab
frame.  What's more,
the protons will appear
to be more tightly
packed because they are
moving faster than the
electrons (see Figure
18.3).
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FIGURE 18.4a

compass

line defining compass direction 
          at various points
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a.)  In other words, the wire will appear to have more protons than
electrons on it.  That means charge q will perceive an electric field due
to the predominance of positive charge, and that electric field will
motivate q to accelerate away from the wire.

b.)  If we set up an experiment in which a positive charge is made
to move parallel to a current-carrying wire and opposite to the
current's direction, we will observe a force on q pushing it away from
the wire.  The force is due to the relativistic effect we have been
discussing, but observers in the previous century did not know that
(Einstein's Theory of Relativity wasn't published until 1905).  Working
strictly from empirical observation, they assumed there must exist a
new kind of force--a magnetic force--acting on the moving charge.  The
theory developed on behalf of that belief is today called "the classical
theory of magnetism."  It is the subject we are about to consider.

B.)  Some Early Observations:

There are a number of observed phenomena that led early scientists to
formulate the classical theory of magnetism.  In no particular order:

1.)  When suspended, certain metallic ores are found to have the
peculiar ability to orient themselves north/south.  They evidently align
themselves with some sort of field, a field that in the early days of "modern
science" was eventually called a magnetic field.

a.)  In experimenting with a piece of such ore, it has been observed
that this north/south orientation is always the same.  That is, the same
face always aligns itself to the north while the opposite face always
aligns to the south.  To distinguish between the two, one is called "the
North Seeking Magnetic Pole N" and the other is called "the South
Seeking Magnetic Pole S."

These observations were, in early times, the basis for what is today
called a
compass.

2.)  When a
compass is put in
the vicinity of a
"magnetized" piece
of metallic ore, the
compass is found to
point in different di-
rections at different
places.
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FIGURE 18.4b
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FIGURE 18.4c

depiction of constant
 magnetic field lines

B

a.)  Following
the needle direc-
tion for the var-
ious sample
points shown in
Figure 18.4a on
the previous page,
a line can be
drawn.  Doing
this for a number
of different posi-
tions around the
bar allows us to
sketch what are
called "magnetic
field lines" (see
Figure 18.4b).

b.)  Magnetic field lines are similar to electric field lines in the
sense that where the field lines are close together, the field is said to be
large, but:

c.)  Magnetic field lines are DIFFERENT from electric field lines in
one very important way.  The direction of an electric field line is
defined as the direction a positive test charge will accelerate if released
in the electric field.  In other words, electric fields are really nothing
more than slightly modified force-field lines (E = F/q).

The direction of a magnetic field line is defined as the direction a
compass will point if a magnetic field is present.  As will be shown
shortly, magnetic fields are NOT modified force fields (though they are
distantly related to force).

d.)  A constant magnetic field is de-
noted by field lines that are equidistant and
parallel as shown in Figure 18.4c.

3.)  The strength of a magnetic field cou-
pled with the direction of the magnetic field is
combined together to define the magnetic field
vector B.  More will be said shortly about B, its
relationship to the force on a charge moving in a
magnetic field, and its units.
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FIGURE 18.5b
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FIGURE 18.5a
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4.)  While experimenting
with electrical circuits in 1820,
a man named Oersted observed
that when a compass was
placed near a current-carrying
wire, the compass responds.
Experimenting further:

a.)  Oersted found
that magnetic field lines
CIRCLE around a
current-carrying wire
(see Figure 18.5a).

Notice that the direc-
tion of a current-pro-
duced magnetic field can
be determined by using the following "weird" right-hand rule (from
here on, this rule will be termed the right-thumb rule): Position the
thumb of the right hand
so that it follows the
direction of current
flow--the direction the
fingers curl is the
direction of the mag-
netic field's circulation
around the wire (Figure
18.5b).

b.)  Oersted con-
cluded that magnetic
fields are somehow re-
lated to CHARGE IN
MOTION.

FIGURE 18.6a

          charge 
 feels no force when 
stationary in B-field

B

q
at rest

q

5.)  From experimentation, it has been
observed that if a positive charge q is placed in a
magnetic field B:

a.)  The charge will feel NO FORCE due to
the presence of the magnetic field if the charge
is stationary (see Figure 18.6a);

b.)  The charge will feel NO FORCE due to
the presence of the magnetic field if the charge
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FIGURE 18.6b
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FIGURE 18.6c
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is moving with velocity v along the
magnetic field lines (Figure 18.6b);

c.)  The charge WILL FEEL A FORCE
due to the presence of the magnetic field if
the charge's velocity vector is oriented at
any angle other than zero or 180o relative to
the magnetic field vector B (see Figure
18.6c).

Furthermore, the direction of the force
will be perpendicular to the plane defined
by the magnetic field vector and the velocity
vector.  In the case shown in Figure 18.6c,
that direction is perpendicular to the plane
of the page.

d.)  The charge will feel a maximum
force if the velocity vector v is perpendicu-
lar to the magnetic field vector B.

e.)  Putting all of the above information
together, the experimentally determined
relationship that exists between the
magnitude of the force FB on a charge q

moving with velocity vector v at an angle θ with the magnetic field B is:

     FB = qvB sin θ.

This is the magnitude of a cross product, which implies:

            FB = q v x B.

Note:  The direction of a cross product is always perpendicular to the
plane defined by the two vectors being crossed.  That is exactly the direction
we needed for our magnetic force vector.

f.)  IMPORTANT CONCLUSION:  Magnetic fields are centripetal
in nature--they change the direction of charged bodies but do not make
them speed up or slow down.  Additionally, the relationship between
magnetic fields as defined (i.e., having a direction determined by the
way a compass orients itself) and magnetic forces as observed
experimentally is not an obvious one.  More about this later.
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C.)  Continuing With Observations--The Bar Magnet:

1.)  If a magnetic field is created by charges in motion, what kind of
motion creates the magnetic field in an apparently motionless bar magnet?
Possibilities: Electrons confined to the atom are constantly in motion-- they
both orbit about the nucleus and spin about its axis.  Let's consider both:

a.)  Orbital Motion:  While the orbital motion of electrons around
the nucleus surely produces a magnetic field, the direction of an elec-
tron's motion will be "this way" as much as "that way" (electrons
travel around the atom at speeds upward of 150,000 miles per second).
Consequently, the net magnetic field produced by electron orbital mo-
tion is, on average, zero.

b.)  Spinning On Axis:  Electron spin also produces a magnetic
field.  Due to quantum mechanical effects, electrons spin in only one of
two directions.  These directions are usually referred to as "spin up"
and "spin down."  In most elements, there are as many electrons
spinning up as spinning down which means the net magnetic field
generated by all the spinning electrons is zero.

i.)  There are some elements whose number of electrons spin-
ning in one direction is noticeably different from the number
spinning in the opposite direction.   Iron, for instance, has six
more electrons spinning one way than the other.  As a conse-
quence, the net magnetic field due to electron spin in an iron atom
is not zero.  Put another way, every iron atom is a mini-magnet
unto itself.

ii.)  Elements that exhibit this magnetic characteristic are
called ferromagnetic materials.  The most common are iron,
nickel, and cobalt.

2.)  Ferromagnetic materials do not always exhibit magnetic effects.
Iron nails, for instance, do not usually attract or repulse one another as
would be expected if they were magnetized.  The question is, "Why?"

a.)  Take a structure made of iron (a steel bolt, for example).
Within it, there exist microscopic sections called domains.  A domain
is a volume in which each atom has aligned its magnetic field in the
same direction as all the other atoms in the section.

b.)  Figure 18.7a (next page) shows a side-view blow-up of the do-
mains that reside on the face of a piece of iron.  Notice that each do-
main has its magnetic field in some arbitrary direction.  Because none
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FIGURE 18.7b
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FIGURE 18.7a
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of the domain-fields are
aligned, the net (read this
average) magnetic field on the
face is essentially zero.

This is an example of a fer-
romagnetic material that does
not appear to be magnetized.

c.)  If the bolt is placed in a
relatively strong magnetic field,
the domains will align them-
selves with the external field
and, in doing so, will align
themselves with one another
(see Figure 18.7b).  In that case,
each face of the bolt will either
be a North Pole or South Pole.
That is, we end up with a mag-
netized piece of iron.

D.)  Observations--The Earth's Magnetic Field:

1.)  Through experimentation, it was found that North Seeking
Magnetic Poles always attract South Seeking Magnetic Poles.  Like poles (i.e.,
N-N or S-S poles) repulse.  One of the consequences of this is the peculiar
situation we have with respect to the earth's magnetic field.

2.)  By definition, the North Seeking Magnetic Pole of a compass points
toward the northern geographic region of the earth.  But if North Seeking
Magnetic Poles are attracted to South Seeking Magnetic Poles, there must
exist a South Magnetic Pole in the northern geographic hemisphere.  In fact,
that is exactly the case.  The earth's magnetic field lines leave Antarctica
and enter the Arctic (they actually enter in the Hudson Bay region--see
Figure 18.8a on the next page for the theoretical distribution of magnetic field
lines around the earth).
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FIGURE 18.8a
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FIGURE 18.8b

sun

3.)  Solar
winds are
streams of high
energy sub-
atomic particles
that are con-
stantly being
emitted by the
sun.  Due to
these solar
winds, the
earth's mag-
netic field lines
are actually
compressed in
toward the
earth on the
earth's sun-side
while being
extruded out
away from the
earth on the
earth's dark
side.  See Figure 18.8b.

4.)  The earth's magnetic field
is believed to be caused by motion of
molten iron at the earth's core.  By
looking at core samples of the earth's
geological history over long periods of
time, it has been found that the
earth's magnetic field changes di-
rection periodically (sometime
between 200,000 to 400,000 years per
cycle).  Although scientists are not
completely sure why, the current
theory is that long-period oscillatory
variations in the motion of the earth's iron-rich molten interior create this
effect.
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E.)  Approach for Determining a Magnetic Field--Ampere's Law:

1.)  We have made our observations; now it is time to examine the math
that has grown up around those observations.

Theoreticians have developed a number of ways for determining
magnetic field functions for current configurations.  In the 1820's, one of
these approaches was created by Andre Ampere.

2.)  Ampere's Law states the following:

a.)  Define a closed path in a region in which a B-field exists.

b.)  Define a differential length-vector dl over a differential section
of the path.

c.)  Determine the dot product between the magnetic field B
evaluated at the differential section and the vector dl.

d.)  Sum all such dot products around the closed path.

e.)  That sum will always be proportional to the amount of current
that passes through the face of the path (the face of the path is the area
enclosed within the boundaries of the path).

f.)  Putting this all in mathematical terms, we get:

     
    

B • dl = µoithru∫  ,

where µo is the proportionality constant called the permeability of a

vacuum and is equal to 4πx10-7 teslas.meter/amp (i.e., 1.26x10-6 T.m/A).

Note 1:  The integral symbol ∫ denotes an integration around a closed
path.

Note 2:  The term ithru is used to denote the current passing through
the face of the defined Amperian path.

3.)  As a point of order, and because it puts things in perspective, it
should be noted that Ampere's Law does for magnetic fields what Gauss's
Law did for electric fields.  That is:
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a.)  In Gauss's Law, we defined an arbitrary closed surface that
had the right geometry and symmetry;  in Ampere's Law we define an
arbitrary closed path that has the right geometry and symmetry.

b.)  In Gauss's Law, we defined a differential surface area vector
dS at an arbitrary position on the surface.  In Ampere's Law, we
define a differential length vector dl at an arbitrary position on the
path.

c.)  In Gauss's Law, we dotted the unknown electric field function
E (assumed to be evaluated at dS) into the differential surface area vec-
tor dS.  In Ampere's Law, we dot the unknown magnetic field function
B (assumed to be evaluated at dl) into the differential length vector dl.

d.)  In Gauss's Law, we summed all the E.dS quantities over the
entire surface (we used a surface integral 

  S
∫ to do this) to determine

the total electric flux through the surface.  In Ampere's Law, we sum
all the B.dl quantities over the entire path (we use a line integral ∫ to
do this) to determine the total magnetic circulation around the path.

e.)  In Gauss's Law, the electric flux through the Gaussian
surface is proportional to the charge enclosed within the surface.  In
Ampere's Law, the magnetic circulation around the Amperian path is
proportional to the current passing through the path's face.

F.)  Ampere's Law and a Straight, Infinite, Current-Carrying Wire:

1.)  Consider an infinitely long current-carrying wire:

a.)  As mentioned above, Oersted found that a current-carrying
wire produces a magnetic field that circulates around the wire
according to the right-thumb rule (thumb of right hand in direction of
current; fingers curl in direction of the B-field).

b.)  To determine the magnitude of the magnetic field, we will use
Ampere's Law.

2.)  The geometry in which Ampere's Law is most easily used is one in
which the magnitude of the magnetic field is the same at every point along
the arbitrarily defined path.  This happens to be just such a case.
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FIGURE 18.9a
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a.)  Due to symmetry, the Amper-
ian path of choice here is a circle of
arbitrary radius r centered on the wire.
Figure 18.9a shows just such a path
while Figure 18.9b views the situation
looking along the line of the wire.

b.)  Just as was the case with
Gauss's Law, Ampere's Law has two
parts to deal with: the right-hand side
of the equation and the left-hand side of
the equation.  We will deal with both
separately, then put it all together.

FIGURE 18.9b

oi

closed 
   Amperian
       path

wire with current coming out of page
   (as viewed along the line of the wire)

r

dl

B

c.)  The left-hand side of
Ampere's Law is: 

    
B • dl∫ ,

or the integral sum of the dot
product of the magnetic field vec-
tor (evaluated at a point on the
Amperian path) and the differen-
tial displacement along the path
at that point.

i.)  As the vector dl is
oriented in the same
direction as the vector B (the
direction of dl was defined
that way), and as the path
was chosen so that the
magnitude of B would be constant at every point along the path, the
dot product can be treated as:

     

  

B l

           

           

• =

=

= π

∫ ∫
∫

d B dl

B dl

B r

o( ) cos

( ).

0

2

d.)  The right-hand side of Ampere's Law requires that we deter-
mine the amount of current that breaks through the face of the area
defined by the path.
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FIGURE 18.10a
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i.)  In this case, the total current breaking through the face is
simply the current through the wire, or io.

3.)  Putting everything together and presenting it the way you will be
expected to present it on a test, we write:

    

  

B l

          

          

          

               

• =

⇒ =

⇒ =

⇒ π =

⇒ =
π

∫
∫
∫

d i

B dl i

B dl i

B r i

B
i
r

o thru

o
o thru

o o

o o

o o

µ

µ

µ

µ
µ

( ) cos

( )

.

0

2

2

G.)  A Note About the Vector Nature of Magnetic Fields:

1.)  Consider the two wires shown
in Figure 18.10a.  One carries a .5 amp
current out of the page (the circle with
dot depicts an arrowhead coming out of
the page) while the other carries a .25
amp current into the page (the circle
with cross depicts an arrowhead going
into the page).  Assuming the distances
are as shown in the sketch, what is the
net magnetic field generated at Point P?

a.)  As for the B-field directions
(see Figure 18.10b for the bottom line):

i.)  Current i1 produces a B-
field whose direction at Point P is
toward the top of the page (+j
direction) while current i2
produces a B-field whose direction
at Point P is toward the bottom of
the page (-j direction).  Note that
both are tangent to circles centered on their respective current
carrying wires, just as suggested by the right thumb rule and the
Figure 18.9b.
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FIGURE 18.11a

i
3

a

Point P

i   
2

1
i   

a

b.)  The magnitude of the magnetic fields are:

i.)  For current i1:

B1 = µοi1/2πr1
             = [(1.26x10-6 kg.m/coul2)(.5 A)]/[2π(.95 m)]

      = 1.06x10-7 teslas.

ii.)  For current i2:

B2 = µοi2/2πr2
             = [(1.26x10-6 kg.m/coul2)(.25 A)]/[2π(.2 m)]

      = 2.51x10-7 teslas.

c.)  The net B-field will be the vector sum of the two fields:

Bnet = B1 + B2
             = (1.06x10-7 teslas)(+j) + (2.51 x10-7 teslas)(-j) 

      = (1.06x10-7 teslas)(j) - (2.51 x10-7 teslas)(j)
      = (-1.45x10-7 teslas) j.

Note:  In the third line, the negative sign belongs to the second term's
unit vector (i2's B-field direction was toward the bottom of the page).  It has
been brought out in front of the magnitude value to make it easier to track.

2.)  For the wire configuration shown in Figure 18.11a, what is the net
magnetic field generated at Point P?

a.)  As for the B-field directions (see
Figure 18.11b on the next page for the
bottom line):

i.)  Current i1 produces a B-field
whose direction at Point P is toward
the top of the page (+j direction).

ii.)  Current i2 produces a B-field
whose direction at Point P is toward
the bottom-left of the page at a 45o

angle to the left (i.e., in the -i + (-j)
direction).



Ch. 18--Magnetic Fields

201

FIGURE 18.11b
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FIGURE 18.12a
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ii.)  Current i3 produces a B-field
whose direction at Point P is toward the
right of the page (+i direction).

b.)  The magnitudes of the magnetic
fields are:

i.)  For current i1:

B1 = µοi1/(2πr1)

            = µοi1/(2πa).
ii.)  For current i2:

B2 = µοi2/(2πr2)

          = µοi2/[2π(  2a)].

iii.)  For current i3:

B3 = µοi3/2πr3
                 = µοi3/(2πa).

c.)  Noting that B2  must be broken into its components, the net B-
field will be the vector sum of the three individual fields, or:

Bnet =         B1                +                                          B2                                                +             B3

  
    
= µoi1

2πa




 (+ j)





+ µoi2

2π( 2a)





(cos45o )(−i) + µoi2

2π( 2a)





(sin 45o )(− j)









 + µoi3

2πa
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⇒     
    
Bnet = µo

2πa
(i3 ) − i2
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H.)  Ampere's Law and the B-Field Produced in an Infinitely Long Coil:

1.)  Consider a very long (read this infinitely
long) wire coil having n winds-per-unit-length (see
Figure 18.12a).  If we spread the coils out in order to
see how the current-produced magnetic field acts at
various places within the geometry, we will note some
interesting things.  Specifically:
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FIGURE 18.12b
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a.)  The net B-field perpen-
dicular to the coil's axis adds to
zero.  That is, the B-field gen-
erated by the charge flow in the
upper-left-side section of wire
(see Figure 18.12b) generates a
magnetic field perpendicular to
the coil's axis that is equal and
opposite to the magnetic field
generated by charge flow in the
upper-right-side section of wire.
The two fields simply add to zero.

FIGURE 18.12c

magnetic field lines for
a current-carrying coil
      (notice how intense 
       the field is down the 
       axis and how little it 
       is outside the coil)

B 

B 

b.)  For an infinitely long coil, the B-field parallel to the axis and
outside the coil will be zero, as the magnetic field lines along the
central axis will never leave that axis (again, this is for an infinite
coil).

FIGURE 18.12d

B-fields outside coil (due to 
   charge flow in bottom and 
   top sections of wires) approxi-
            mately add to zero

coil's
   axis

i

itop

bot

B Btopbot

Note:  To a very good
approximation, this is true
even for finite-length coils (see
Figure 18.12c).  The reasoning
is as follows:  Assuming we are
a fair distance from the coil, the
B-field generated by charge flow
on the top side of a given coil is
almost equal and opposite to the
B-field generated by charge flow
on the bottom side of the coil
(see Figure 18.12d).  A similar
situation exists for the net field
below the wire and, in fact, for
all points outside the perimeter of the coil.

c.)  For an infinitely long coil, the
net B-field is all down the axis of the
coil.

2.)  To determine the Amperian path:
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FIGURE 18.13
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a.)  In GAUSS'S LAW, the trick was to find a closed surface
through which the electric field was either a constant (i.e., on the
cylindrical part of a Gaussian cylinder), zero (i.e., inside a conductor),
or such that E.dS was zero (i.e., on the flat end of a cylindrical
Gaussian surface).

b.)  Ampere's Law is similar.  We
want a path upon which the magnetic
field is either a constant, zero, or such
that over the path, B.dl is zero.

c.)  The path that works for this
case is a rectangle, as shown in Figure
18.13.

3.)  With our Amperian path defined,
we are ready to use Ampere's Law.

a.)  The first thing to notice is that
the path has four sides and, hence,
will require four dot products (each
path section is shown on the sketch for convenience).

i.)  As there is no magnetic field perpendicular to the coil, the
magnetic field along Paths 2 and 4 is zero.  As such, the integrals
associated with those paths are zero.

ii.)  As there is no magnetic field outside the infinitely long coil,
the magnetic field along Path 3 is also zero.

Note:  Even if we had been working with a finite coil, the magnetic field
outside the coil is very small, especially if we allow the path to extend out a
considerable way from the coil's axis.

Bottom line:  B.dl along Path 3 will be zero (if not exactly, then to a good
approximation) whether the coil is infinitely long or not.

b.)  The total current passing through the area bounded by the path
is equal to the current in one wire times the number of wires inside the
Amperian path (see Figure 18.14 on the next page).

i.)  The number of wires inside the Amperian path will equal
the number of wires per unit length--call this n--multiplied by the
length of the path defined in the sketch (next page) as L1, or nL1.
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ii.)  That means that the net cur-
rent passing through the boundary
defined by the path will be:

ithru = (n winds/meter)(L1 meters)(io amps/wind)
 = nL1io.

4.)  Putting it all together, we can write:
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I.)  The Law of Biot Savart:

1.)  Ampere's Law is useful when there is symmetry (i.e., when the
magnitude of B is a constant over an Amperian path), or when the
magnitude of B is a constant over part of an Amperian path while B.dl is zero
over the rest of the path.  When a more general situation is at hand, a more
general approach is needed.  In such cases, we turn to the Law of Biot
Savart.

2.)  The Law of Biot Savart states that a differential section of wire will
produce a differential magnetic field dB at some point near the wire such
that:

     
    
dB = µoi

4π
dlxr̂

r2 .

In this expression:

a.)  dB is the differential magnetic field vector due to the current in
dl as evaluated at the point of interest (see Figure 18.15);

b.)  i is the current in the wire;
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c.)  dl is a vector
whose magnitude is
equal to the length of
the differential sec-
tion of wire and
whose direction is in
the direction of the
current;

d.)  r is the mag-
nitude of a position
vector drawn from
the differential sec-
tion dl to the point of
interest (call this
Point P); and

e.)      ̂r  is a UNIT VECTOR in the direction alluded to in Part d
directly above.

Note:  A number of texts write Biot Savart as:

    
dB = µoi

4π
dlxr

r3 ,

where r is the entire position vector, both direction and magnitude, and an r3

is placed in the denominator to compensate for the fact that r includes the
vector's magnitude.  Either presentation is correct, although in practice you
will find the first one easier to use.

Big Note:  The symbols dl and r are defined differently in Biot Savart
and in Ampere's Law.  KNOW AND UNDERSTAND THE DIFFERENCES.

3.)  Although the cross product operation defines the direction of the
magnetic field at Point P, there are instances when the magnitude of the
magnetic field is of sole interest.  In such cases, the magnitude of the cross
product yields a differential magnetic field equal to:

     
  
dB = µoi

4π
dl
r2 sin θ ,

where θ is the angle between dl and r (again, see Figure 18.15).
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J.)  Example of an Easy Biot Savart Problem:

1.)  Consider the current-carrying wire
shown in Figure 18.16a (the power supply has
been added, but we will ignore its presence in
the magnetic field calculation).  What is the
net magnetic field (as a vector) at the com-
mon center of the semicircles?

a.)  Figure 18.16b shows dl vectors
for each section of the system.

b.)  Using Biot Savart on the top
semicircle, we can determine the
differential magnetic field due to the
charge flow in the segment dl1.  That
expression is:

  
dB1 = µoi

4π
dl1

r1
2 sin(90o ) ,

where r1 = R1.

c.)  To determine the total
magnetic field due to the entire
upper semicircle, we must
integrate dB1.  Substituting r1 =
R1 into our expression and doing
the integration, we get:

     

  

B dB

i
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dl
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d.)  Using the right-thumb rule on the wire, we find the magnetic
field due to the upper semicircle is out of the page.
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e.)  A similar exercise generates a magnetic field expression due to
current flowing in the lower semicircle.  It equals:

     
  
B2 = µoi

4R2

.

f.)  Examine Figure 18.16b again.  The angle between dl3 and r3 is

180o.  As the sine of 180o is zero, the magnetic field due to the left-hand,
straight-wire section will be zero at the point of interest (it will not be
zero at other places, but at the center of the semicircles it is zero).  The
same is true of the straight-line section on the right.

g.)  This means that as a vector the net field equals:

     

  

B B B

   k

= +

= +








 +( )

1 2

1 24 4
µ µo oi
R

i
R

.

K.)  A Second Example of Biot Savart:

1.)  Reiteration:  So far, we have dealt with situations in which the
magnetic fields at a point of interest have all been in the same direction (i.e.,
in the previous problem, the field was out of the page for all dl segments).  In
such cases, the approach used was:

a.)  Define dl (an arbitrary segment on the current-carrying wire).

b.)  Define r (a vector from dl to the point of interest).

c.)  Define the angle θ between the line of dl and the line of r.

d.)  Use the right-hand rule on dlxr to determine the direction of
the differential magnetic field at the point of interest.

e.)  Use Biot Savart to determine the magnitude of the differential
magnetic field at the point of interest due to current in dl.

f.)  Integrate the differential magnetic field expression to
determine the net magnetic field due to all of the dl's for which your
derived dB expression is valid (in the previous problem, there were
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four such sections--the upper and lower semicircles and the right and
left-hand straight-line sections).

g.)  Add up all the derived B-field expressions to get the net
magnetic field at the point of interest, complete with a statement of
direction.

2.)  There is another twist that hasn't yet been addressed.  What hap-
pens if the major segments produce magnetic fields whose directions are dif-
ferent?  To see how such a possibility might occur, consider the following sit-
uation:

3.)  A circular wire of radius R rests in the x-
z plane (i.e., in the horizontal) with its center at the
origin of the coordinate system being used (see
Figure 18.17a).  Current i flows in the wire as
shown in the sketch.  Derive an expression for the
net magnetic field a distance y units up the y-axis.

a.)  Proceeding with our approach:  The
vector dl is defined in the direction of current
flow.  It is supposed to be an arbitrarily de-
fined segment of wire, but for simplicity and
ease of viewing on the accompanying
sketches, let's define it to be the segment that
cuts through the x-y plane moving into the
page (see Figure 18.17b).

b.)  The vector r is defined as a vector
from the segment to the point of interest.  In
this case, the point of interest is at an arbi-
trary point y units up the y-axis.  Note that
as defined, r is in the x-y plane.

c.)  Using the right-hand rule to deter-
mine the direction of the cross product be-
tween dl and r, we find that the direction of
the differential magnetic field dB produced
by that differential segment of current is in
the x-y plane as shown in Figure 18.17b.

d.)   The angle between dl and r is 90o (dl
is into the page while r is in the plane of the
page).  Additionally observing that r = (y2 + R2)1/2, we can use Biot
Savart to write:
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FIGURE 18.17c
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e.)  The magnitude of dB
will be the same for any given
dl, but the direction of dB will
be different from segment to
segment.  That means we
could break dB into its compo-
nents and integrate each com-
ponent separately, or we could
be clever.

f.)  Being clever, examine
the direction of the magnetic
field produced by a segment
that is 180o from our defined dl
(see Figure 18.17c).  The hor-
izontal component of that
vector is equal and opposite to
the horizontal component of dB
produced by dl.  As all such components will add to zero, we can ignore
the horizontal component and deal solely with the vertical components.

Note:  If you don't believe that we can ignore the horizontal component,
determine dB sin φ (i.e., dB's horizontal component) and do the integral.  You
will find that it evaluates to zero.

g.)  With the horizontal component ignored, Bnet = ∫dBy = ∫dB cos φ.

Using the geometry of a circle and Figure 18.17c, we can see that cos φ
= R/r.  As such, we can write:
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L.)  The Force on a Charge Moving in a Magnetic Field:

Note:  We have been examining the mathematics around the theoreti-
cal determination of magnetic field functions.  For the next few sections, we
will assume the availability of magnetic fields without considering their ori-
gin.

1.)  As has already been stated, a charge moving in a magnetic field
will feel a force under certain circumstances.  The relationship between this
magnetic force FB, the magnetic field strength B, the velocity of the charge v,
and the size of the charge q has been experimentally determined to be:

FB = q v x B.

a.)  This cross product yields both the magnitude and direction of
the force on a POSITIVE CHARGE moving in the magnetic field.

b.)  IMPORTANT:  If the charge is NEGATIVE, the magnitude of
the force will be the same BUT THE DIRECTION OF THE FORCE
WILL BE OPPOSITE that determined using the right-hand rule.

Note:  From the MKS units for force, charge, and velocity, the units for
the magnetic field vector B must be nt/[C.(m/s)], or kg/(c.s).  This set of MKS
units is given the special name "teslas."
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2.)  Examples:  Determine the magnitude and direction of the force on
a 4 coulomb charge moving with velocity 12 meters/second in a magnetic field
whose strength is 5 teslas if the velocity and magnetic field vectors are as
shown in Figures 18.18a through 18.18d.

Note:  Vectors pointing perpendicularly into the page are depicted ei-
ther by a group of circles with crosses in them or simply by crosses.  Vectors
pointing perpendicularly out of the page are depicted by a group of circles
with points at their centers or simply by points.

a.)  For Figure 18.18a: the magnitude of the
force is

  FB = qvB sin θ,

where θ is the angle between the line of v and
the line of B (note that the sketch is a bit tricky
--θ should be the angle between the line of v
and the line of B--that is not the angle given in
the figure.  Putting in the numbers, we get:

FB = (4 C)(12 m/s)(5 T)(sin 150o)
           = 120 newtons.

The direction is found using the right-hand rule for a cross
product.  The right hand moves in the direction of the line of the first
vector (v); the fingers of the right hand curl in the direction of the line
of the second vector (B).  Doing so yields a force direction for this
situation into the page.

You will not normally be asked to do so, but for the sake of
completeness for this first try, this force can be written as a vector in
unit vector notation as:

   FB = (120 newtons)(-k).

b.)  The magnitude of the force in
Figure 18.18b is:

      FB = qvB sin θ

    = (4 C)(12 m/s)(5 T)(sin 90o)
    = 240 newtons.
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FIGURE 18.18c
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The direction is found using the right-hand rule for a cross
product.  In this case, the direction will be toward the bottom of the
page, perpendicular to v, and to the right.  If asked a question like this
on a test, you will not be asked to put the final force vector in a unit
vector notation.  You will be asked to draw in the force direction on the
sketch in addition to determining the force magnitude.

c.)  The magnitude of the force in Figure
18.18c is:

FB = (4 C)(12 m/s)(5 T)(sin 180o)
           = 0 newtons.

There is no direction associated with zero force.

Note:  This should give you a bit of a hint as to
the order of operations on a test problem.  Determine
magnitudes first before trying to determine direction--
trying to get the right-hand rule to work on a cross product whose magnitude
is zero can be enormously frustrating.

d.)  For amusement, assume q is negative.
The magnitude of the force in Figure 18.18d is:

    FB = (4 C)(12 m/s)(5 T)(sin 90o)
          = 240 newtons.

As the charge is negative, the direction is
toward the bottom of the page.

3.)  When electric and magnetic fields are present, the net possible
electrical force acting on a charge is qvxB + qE.  This is called Lorentz's
equation.

M.)  The Force on a Current-Carrying Wire in a Magnetic Field:

1.)  Consider a current-carrying wire of length L situated in a mag-
netic field as shown in Figure 18.19 on the next page.  Find the force on the
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FIGURE 18.19
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a.)  Assume that all the free
charges in the wire move at the same
average velocity.

b.)  If time t is the average amount
of time required for one charge q to
move the entire length L of the wire,
the average velocity of that charge
(and all the others) will be L/t, where the L is a vector whose
magnitude is defined as the length of the wire and whose direction is
defined as the direction of the charge's motion.

c.)  We know that the force on a single charge q moving in a mag-
netic field is Fq,B = qv x B.  Substituting in v = L/t, we get:

Fq,B = q (L/t) x B.

d.)  The collective magnetic force FB on all the charges moving in
the wire (we'll call the total charge Q) yields a net force of:

 FB = Q (L/t) x B
      = (Q/t) L x B.

e.)  The current i is defined as the ratio of the total charge Q
passing a particular point over a period of time t (i.e., i = Q/t).  With
that in mind, we can write:

 FB = i L x B.

f.)  This relationship defines the net magnetic force felt by a
current-carrying wire in a magnetic field.

Note:  The direction of the cross product will yield the direction of the
magnetic force on the wire; the magnitude of the cross product will yield the
magnitude of that magnetic force.

2.)  Examples:  Determine the magnitude and direction of force on a .5
meter long current-carrying wire if the magnetic field intensity is 4 teslas,
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the current in the wire is 2 milliamps, and the vector directions are as shown
in Figures 18.20a through 18.20d.

a.)  The magnitude of the force in
Figure 18.20a is the evaluation of a
cross product, or:

     FB = iLB sin θ,

where θ is the angle between the line
of L and the line of B.  Putting in the
numbers, we get:

          FB = (2x10-3 amps) (.5 m) (4 T) (sin 90o)

                       = 4x10-3 newtons.

The direction is found using the right-
hand rule for a cross product.  The right
hand moves in the direction of the line of
the first vector (L); the fingers of the right
hand curl in the direction of the line of the
second vector (B).  Doing so in this problem
yields a force direction that is perpendicu-
lar to the wire and toward the bottom of the
page.

b.)  The magnitude of the force in
Figure 18.20b is:

     FB = (2x10-3 amps)(.5 m)(4 T)(sin 90o)

                          = 4x10-3 newtons.

The direction will be perpendicular
to B and toward the top of the page.

c.)  The magnitude of the force in
Figure 18.20c is:

   FB = (2x10-3 amps)(.5 m)(4 T)(sin 120o)

    = 3.46x10-3 newtons.
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The direction is perpendicularly into the page.

d.)  The magnitude of the force in Figure
18.20d is:

    FB = (2x10-3 amps) (.5 m) (4 T) (sin 180o)
   = 0 newtons.

There is no direction for a zero-magnitude force.

3.)  Example--Newton's Second
Law:  A metallic bar of mass m is
placed on two supports a distance L =
a units apart that form an incline
whose angle is φ with the horizontal
(see Figure 18.21).  A battery is at-
tached across the supports and a
constant, downward magnetic field B
permeates the setup (see Figure
18.22).  If the net resistance in the
circuit is R, what voltage Vo  is re-
quired to ensure that the bar does not
accelerate down the incline?

a.)  We know Vo= iR.  If we
can determine the current i
needed to suspend the bar, we
can determine Vo.

b.)  There are three forces acting on
the bar.  The first two are gravity and a
normal force.  The third is a magnetic
force due to the fact that the current
passing through the bar is in a B-field.
Knowing this, we should be able to ex-
ploit Newton's Second Law to derive an
equation that will be helpful.

c.)  The magnitude of the magnetic
force is F = iLxB where L's magni-
tude is a and the angle between L and B
is 90o (L is into the page while B is in
the plane of the page).  The free body
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diagram for the situation is found in
Figure 18.23 to the right with components
highlighted.  Using Newton's Second
Law:

Σ Fx: 

             mg(sin φ) - (iaB sin 90o)(cos φ) = max
          = 0

⇒     i = mg(tan φ)/aB.

d.)  As V = iR, we get:

               Vo = [mg(tan φ)/aB] R.

e.)  Assuming φ = 30o, m=.15 kg, B = 3 T, a = .2 m, and R = 5 Ω, the
voltage is found to be:

Vo = [mg (tan φ)/aB]R

      =[[(.15 kg)(9.8 m/s2) tan 30o]/[(.2 m)(3 T)]] (5 Ω)
      = 7.07 volts.

N.)  The Use of Magnetic Fields in Building Meters:

1.)  Preliminary observations:
Consider a pinned, single-looped
rectangular coil whose side-lengths are
equal to a and whose top and bottom
lengths are equal to b.  If a current i
passes through the wire while in a
magnetic field (see Figure 18.24a), the
moving charges will feel a force
according to FB = i L x B.

Note 1:  The magnetic field lines
generated by bar magnets are not con-
stant (see Figure 18.24b).  Nevertheless,
we will assume a constant B-field for
simplicity.
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FIGURE 18.24b
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Note 2:  The di-
rection of the force will
depend upon the cur-
rent's direction relative
to the magnetic field
vector.  Looking at the
wire and charge flow
from above (see Figure
18.24b), we can make
the following obser-
vations:

a.)  The
section of wire
with current
moving out of the
page (side A in
Figure 18.24b) will feel a force whose direction is toward the top of the
page and whose magnitude is iaB.

b.)  The section of wire with current moving into the page (side B in
Figure 18.24b) will feel a force whose direction is toward the bottom of
the page and whose magnitude is iaB.

c.)  Each of these forces will produce a torque on the coil about the
pin.  With r = b/2, we can write:

r x F = (b/2) (iaB) sin φ,

where φ is the angle between r and F.

d.)  As there are two such wires, the total torque on the coil about
the pin will be:

Γnet = 2 [(b/2) (iaB) sin φ]
 = AiB sin φ

(A is defined as the area--length a times width b--of the square loop's
face).

e.)  If there are N winds in the coil (our original coil had only one
loop), the net torque becomes:
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               Γnet = NAiB sin φ.

f.)  Defining a vector
µµµµm called the magnetic
moment whose direction
is perpendicular to the
face of the coil (oriented so
that the thumb of the
right hand is in the direc-
tion of this vector when
the fingers of the right
hand curl in the direction
of current flow--see
Figure 18.25) and whose
magnitude is equal to
NAi, we get the relationship:

          ΓΓΓΓnet = µµµµm x B,

where the angle between µµµµm and B is φ.

Note:  The above expression is analogous to the torque expression for
an electric dipole in an electric field.  Continuing with the analogy, the
amount of potential energy wrapped up in a current-carrying coil is:

             U = -µµµµm . B.

g.)  Noting that current-
carrying coils in magnetic fields
can have torques applied to
them, consider the magnetically
engulfed, current-carrying coil
shown in Figure 18.26.  A
spring attached to the bottom of
the coil produces a counter-
torque if the coil rotates.  When
rotation occurs, a needle at-
tached to the coil also rotates.  If
that needle is placed over a visi-
ble, calibrated scale, we end up
with the prototypical current-
sensing meter.
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FIGURE 18.27
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2.)  The most basic version of a current-sensing meter is called a
galvanometer (the sketch shown in Figure 18.26 is actually that of a
galvanometer).  A coil in a known magnetic field has attached to it a spring
that is just taut enough to allow the needle to rotate full-deflection (i.e., to the
end of the scale) when 5x10-4 amps flow through it.  In that way, if an
unknown current flows through the galvanometer and the needle fixes at
half deflection, the user knows that the current is half of 5x10-4 amps, or
2.5x10-4 amps.

ALL GALVANOMETERS ARE MADE TO SWING FULL DEFLEC-
TION WHEN 5x10-4 AMPS FLOW THROUGH THEM.  This uniformity is the
reason galvanometer scales are labeled 1 through 5 without any other hint as
to the meaning of the numbers.  It is assumed that if you know enough to be
using a galvanometer, you know that its units are "x10-4 amps" (quite a
conceit if you think about it).

As all galvanometers are made to the same specifications throughout
the industry, they are the cornerstone in the production of all other meters,
voltmeters and large-current ammeters alike.

Note:  Although it is not evident in Figure 18.26, a galvanometer's
needle always points toward the center of the scale when no current is pass-
ing through the meter.  In that way, the needle can deflect either to the right
or the left, depending upon which meter-terminal the high voltage is
connected to.  Galvanometers are the only meters that have this "center-zero"
setup.  All other meters have their zero to the left, swinging to the right when
current passes through them.
That means they depend upon you,
the user, to hook the high voltage
leads to the correct terminal.

3.)  The Ammeter:  The
sketch in Figure 18.27 shows the
circuit for a 12 amp ammeter (the
sketch is general to all ammeters;
I have arbitrarily chosen 12 amps
for the sake of a number example).
Notice the design requires a gal-
vanometer (designated by the re-
sistance Rg) and a second resistor
Rs.  Assume the resistance of the
galvanometer is 5 ohms.  The
rationale behind the design is as
follows:

a.)  We want the galvanometer's pointer to swing full-deflection
when twelve amps of current passes through the ammeter.  In other
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words, when twelve amps flow into the meter, we want 5x10-4 amps to
flow through the galvanometer.

b.)  The parallel design allows current passing through the meter
to split up.  If we pick just the right size resistor Rs (this is called a
shunt resistor because it shunts off current from passing through the
galvanometer), all but 5x10-4 amps will flow through that resistor
whenever twelve amps flow into the device.  The trick is in finding the
proper value for the shunt resistor.  To do so:

i.)  Noticing that the voltage across Rg is the same as the
voltage across the Rs (the two resistors are in parallel), we can
write:

ig,max Rg = is,max Rs.

ii.)  We know that ig,max will be 5x10-4 amps when 12 amps flow
into the circuit, so the amount of current passing through Rs must
be whatever is left over, or:

is,max = (12 amps) - (.0005 amps) = 11.9995 amps.

iii)  Putting it all together, we get:

   ig,max Rg = is,max Rs
       (5x10-4 amps) (5 Ω) = (11.9995 amps) Rs

      ⇒      Rs = 2.08x10-4 Ω.

c.)  A short piece of wire will have resistance in this range.  In
other words, a typical
ammeter is nothing more
than a galvanometer with a
measured piece of wire
hooked in parallel across its
terminals.

4.)  The Voltmeter:  The
sketch in Figure 18.28 shows the
circuit for a 12 volt voltmeter (the
sketch is general to all voltmeters;
I have arbitrarily chosen 12 volts
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for the sake of a number example).  Notice the design requires a gal-
vanometer (designated by the resistance Rg) and a second resistor R1.
Assuming the galvanometer's resistance is 5 ohms, the rationale behind the
design is as follows:

a.)  We want the galvanometer's pointer to swing full-deflection
when twelve volts are placed across the voltmeter (i.e., when the volt-
meter is hooked across an electrical potential difference of twelve
volts).  In other words, when 12 volts are placed across the meter, we
want 5x10-4 amps of current to flow through the galvanometer.

b.)  The series design requires that voltage across the voltmeter be
split up between the two series resistors (i.e., the voltage drop across
the galvanometer plus the voltage drop across the second resistor must
sum to 12 volts).  If we pick just the right size resistor R1, a current of

5x10-4 amps will flow through both resistors whenever twelve volts are
placed across the meter.  The trick is in finding the proper value for
the second resistor.  To do so:

i.)  When the total voltage across the meter is 12 volts, the gal-
vanometer's voltage must be ig,maxRg while the second resistor's
voltage must be ig,maxR1 (the two resistors are in series, hence the
current is common to both).  As such we can write:

Vo =         (ig,max Rg)        +         (ig,max R1)

   12 volts = (5x10-4 amps) (5 Ω) + (5x10-4 amps) (R1)

⇒     R1 = 2.3995x104 Ω.

c.)  In short, a typical voltmeter is nothing more than a galvanome-
ter hooked in series to a large resistor.  As would be expected, they
draw very little current when hooked across an element in a circuit.

5.)  Bottom line:  All analog meters (i.e., meters that are not digital) are
based on the galvanometer, and all galvanometers are based on the proposi-
tion that current moving through an appropriately pinned coil in a magnetic
field will feel a torque-producing force which is proportional to the amount of
current passing through the coil.
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QUESTIONS

18.1)  Copper wire is electrically neutral whether there is current flowing
through it or not.  Does this make sense in light of Einstein's theory
regarding length contraction?  That is, if there are electrons in motion in a
wire (i.e., if there is a current), shouldn't the electrons bunch up due to
length contraction, creating an electric field that would affect even stationary
charge next to the wire?  What do you think Einstein's response would be?

Note:  Don't think about this too hard--I'd say fifteen seconds should do
nicely.  You won't be tested on any of the Relativity material.  This question is
more of a teaser for the chapter on Relativity at the end of the book than
anything else (a quick and dirty answer is supplied in the Solutions).

18.2)  A series of parallel, current-
carrying wires are shown in Figure I.
What is the direction of the net magnetic
field at:

a.)  Point A on the sketch;
b.)  Point E on the sketch;
c.)  Point C on the sketch;
d.)  Point D on the sketch.
e.)  Ignoring gravity, if an

electron is placed at Point E, what
force will it feel?

18.3)  Six particles with the same mass

FIGURE II

B-field (into page)

A

F E
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G

move through a magnetic field directed into
the page (Figure II).

a.)  Identify the positively charged,
negatively charged, and electrically
neutral masses.  (Hint:  How would
you expect a positively charged particle
to move when traveling through a B-
field directed into the page?)

b.)  Assuming all the particles
have the same charge-magnitude,
which one is moving the fastest?
(Hint:  For a fixed charge, how is
charge velocity and radius of motion
related?  Think!)

c.)  Assuming all the particles have the same velocity, which one
has the greatest charge?  (Same hint as above, but reversed.)
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FIGURE III
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18.4)  At what angle will a -5x10-10 coulomb charge moving with velocity
magnitude 3x102 m/s have to enter a magnetic field B = (.138 tesla)i if the
force magnitude it feels is to be 1.7x10-8 newtons?

18.5)  An intrepid student decides she wants to
build a circular nuclear accelerator.  Her design is
simple.  A voltage difference of Vplates = 5,000 volts is
to be placed across two metal plates that are L = .5
meters apart.  A proton (mass 6.67x10-27 kg, charge
1.6x10-19 coulombs) accelerates from the positive
plate to the negative plate (i.e., through the voltage
difference), picking up energy and velocity in the pro-
cess.  Each plate has a hole in its center through
which the proton is to travel, and each plate is shield-
ed in such a way as to allow the proton to pass beyond
the plate and be free once through (that is, assume
the proton is not attracted back toward the plate it has
just passed through).  Upon leaving one such set of
plates, it enters the field of a second set of identical
plates, accelerates as in the previous situation, then
passes into another section, etc.  Figure III shows the setup.

The force field she wants to use to keep the proton moving in its circular
path is to be provided by a time-varying magnetic field (more force will be
needed as the proton picks up speed).  The circular track is to have a radius
of R = 100 meters (real accelerators have radii of around 1000 meters).

Before beginning the project, our young scientist decides to make some
calculations to see if her design will work.  Following in her footsteps:

a.)  Ignoring relativistic effects (i.e., electron mass increasing at
speeds close to the speed of light), how large must her B-field be to keep
the proton moving in the appropriate circular path when its velocity is
.95c?  Note that c is the symbol for the speed of light, or 3x108 m/s.

b.)  Ignoring relativistic effects, derive an expression for the mag-
netic field AS A FUNCTION OF TIME required to keep a proton mov-
ing along the circular track.  (Hint:  The idea behind Lorentz's Equa-
tion should come in handy here).  Your result should be in terms of
Vplates, the plate distance L, and the radius R of the track.

c.)  According to Relativity, the mass of a particle increases as the
particle's speed increases.  The relationship is:

mmoving = mrest / [1- (v/c)2]1/2,



224

FIGURE IV

B-field out of page

q

v

electrical potential Vo

electrical potential zero

.25 meters

Wire A Wire D

Point P

Wire C

.25 meters

FIGURE V

where mrest is the mass of the object when at rest, v is the object's
speed, and c is the speed of light.  With this information in mind, re-do
Part a taking into account relativistic effects.

18.6)  A positive charge q = 4x10-9

coulombs and mass m = 5x10-16 kilo-
grams accelerates from rest through
a potential difference of Vo = 2000
volts.  Once accelerated, it enters a
known magnetic field whose magni-
tude is B = 1.8 teslas.

a.)  On the sketch in Figure
IV, draw in an approximate
representation of the charge's
path.

b.)  We would like to know
the velocity of the charge just as
it enters the B-field.  Use con-
servation of energy and your knowledge about the electrical potentials
to determine the charge's velocity at the end of the acceleration (yes,
this is a review-type question).

c.)  Determine the particle's radius of motion once in the B-field.

18.7)  At t = 0 seconds, a -2 coulomb charge finds itself with velocity v = 4 j
m/s in an unknown B-field and a known electric field of E = 25 i nts/C.  Deter-
mine B (as a vector) if the particle's acceleration at that time is zero.

18.8)  A wire carries 8 amps.  The earth's magnetic field is approximately
6x10-5 teslas.

a.)  How far from the wire will the earth's magnetic field and the
wire's magnetic field exactly cancel one another?

b.)  How must the wire be oriented (i.e., north/south, or south-
east/north-west, or what?) to effect the situation outlined in Part a?
(Assume there is no "dip" in the earth's B-field)?

18.9)  Three long wires all have 15 amps
flowing through them (see Figure V).  If the
wires are positioned on a .25 meter square:

a.)  Determine the magnetic field
(as a vector) at Point P.
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FIGURE VI
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b.)  A charge q = -7x10-12 coulombs moving at 3200 m/s passes
through Point P moving out of the page.  Determine the magnetic force
(direction and magnitude) on the charge.

c.)  Re-do Part b assuming the charge is moving along a line from
wire A to wire C.

d.)  Re-do Part b assuming the charge is moving along a line
between Point P and wire A.

e.)  Determine the force per unit length on wire D.

18.10)  The Hall Effect was an ex-
periment designed to determine the
kind of charge that flows through
circuits (electrons were suspected
but there was no proof).  The device
is shown in Figure VI.  It consists of
a battery attached to a broad, thin
plate that is bathed in a constant
magnetic field.  Using the device,
how might you determine the kind of
charge carriers that move in
electrical circuits?

Step #1:  Assume electrons
flow in the circuit.  What path, on the average, will those negative charges
take as they pass through the plate in the magnetic field?  Which side of the
plate will be the high voltage side?

Step #2:  Do the same exercise as suggested in Step #1 assuming
positive charge flow.

Culmination:  If you didn't know whether the situation depicted in
Step 1 or Step 2 was the real situation, how could the use of a voltmeter help?

18.11)  Assuming the resistance of a galvanometer is 12 ohms, draw the
circuit design for and determine all pertinent data required to build:

a.)  A 300 volt voltmeter;
b.)  A .25 amp ammeter.

18.12)  An oddly constructed
coaxial cable has a normal, thin wire
down its axis.  Around the wire is
insulation, then a thick metal tube on
the outside (the tube's inner radius is
r1 and its outer radius is r2--see
Figure VII).  The inside wire carries
a current equal to io.  The outer tube
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has a current density j = (kr)io amps per unit area passing through it in a
direction opposite to the current flowing in the inside wire (note that r is a
distance out from the inside wire and k is simply included to make the units
correct).  With all this information, derive an expression for the magnetic
field (direction and all):

a.)  For r < r1;
b.)  For r1 < r < r2;
c.)  For r2 < r;
d.)  For the amusement of it, what are the units of k?

18.13)  A net current of io passes
through a thin sheet of metal whose
thickness is h and whose width is w.
Derive an expression for the net mag-
netic field produced at a point y units
above the central axis of the sheet (see
Figure VIII for an above view and
Figure IX for an on-line view).

Hint: Start by breaking the sheet
into a series of differentially thick
wires.  Once done, determine the B-
field due to one wire, then determine
the field for all the wires.  Be careful
of direction.

18.14.)  Use Biot Savart to derive an expression for the magnetic field due
to an infinitely long current-carrying wire (assume the wire's current is io).
It might be useful to note that:
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