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Chapter 17

CAPACITORS

A.)  Capacitors in General:

1.)  The circuit symbol for the capaci-
tor (see Figures 17.1a and b) evokes a feeling
for what a capacitor really is.  Physically, it
is no more than two plates (the symbol de-
picts the side view) that do not touch (there
is normally insulation placed between the
two plates to insure no contact).  In other
words, a capacitor in a circuit technically ef-
fects a break in the circuit.

Note:   Although there are AC capacitors made to take high voltage at
either terminal, DC capacitors have definite high and low voltage sides.  When
a designer of circuitry wants to specify a DC capacitor, he or she uses the
symbol shown in Figure 17.1b.  The straight side of that symbol is designated
the high voltage side (the positive terminal) while the curved side is designated
the low voltage side.  We will use either symbol in DC situations.

2.)  A circuit element that does not allow charge to freely flow through it
probably sounds like a fairly useless device.
In fact, capacitors do allow current to flow
under the right conditions.

3.)  Consider a circuit in which there is
an initially uncharged capacitor, a power
supply, a resistor, and an initially open switch
(this is commonly called an RC circuit).

a.)  When the switch is first closed,
neither plate has charge on it.  This
means there is no voltage difference
between the two.  As the right-hand
plate is connected to the ground
terminal of the battery, both plates
must have an initial electrical potential
of zero (see Figure 17.2a).
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electrical potential configuration for RC circuit 
    at some arbitrary time after switch closed

FIGURE 17.2b
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FIGURE 17.3

b.)  Just after the switch is closed, a voltage difference exists across
the resistor (again, see Figure 17.2a) and, hence, current flows through
the circuit.

c.)   As time proceeds, positive charge accumulates on the capacitor's
left plate (remember, our theory assumes that it is positive charge that
moves in an electrical circuit).

d.)  As it does, two things happen:

i.)  Electrostatic repulsion from the positive charge accumulated
on the left plate forces an equal amount of positive charge off the
right plate.  That leaves the right plate electrically negative.

Note:  The amount of negative charge on the right plate is always equal
to the amount of positive charge on the left plate.  That means that current ap-
pears to be passing through a capacitor
even though the capacitor's plates are
not connected.

ii.)   The second
consequence is that the left
plate's voltage begins to
increase and a voltage
difference begins to form
across the capacitor's plates.

e.)   As the voltage of the
capacitor's left plate increases,
the voltage on the resistor's low
voltage side also begins to
increase (that point and the
capacitor's left plate are the
same point).  This decreases the
voltage difference across the
resistor (Figure 17.2b shows the
voltage distribution around the circuit midway
through the capacitor's charge-up cycle), which in
turn decreases the current in the circuit (Figure 17.3
shows the Current vs. Time graph for a circuit in
which a capacitor is charging).

f.)   In looking back at Figure 17.2b, it should be
obvious that current will flow until V1 builds up to
and equals Vo.  At that time, the voltage of the
capacitor's left plate will equal the voltage of the
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voltage distribution a long time after 
                                                  switch is closed

FIGURE 17.4
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power supply's high voltage terminal and the voltage difference across
the resistor will be zero.  Put another way, once the voltage across the
capacitor equals the
voltage across the power
supply, current ceases.

Note 1:   In a little different
light, current will flow until the
left-plate holds as much charge as
it can, given the size of the power
source to which it is attached.

Note 2:   Does this analysis
hold in theory if we switch the
positions of the capacitor and
resistor?  Figure 17.4 shows the
situation, along with the circuit's
voltage distribution just after the
switch has been closed.  Notice
that the voltage drop across the
capacitor is still initially zero, and that a voltage drop across the resistor
insures that current will flow.  With time, the bottom plate of the capacitor
accumulates positive charge, electrostatically repulsing a like charge off the
top plate.  That means the voltage of the top plate decreases.  As the top plate
of the capacitor and the left side of the resistor are one point, the voltage across
the resistor diminishes with time, as does the current in the circuit.

In short, this analysis is awkward but does yield the same outward
results as did the first analysis.

4.)  Bottom Line:

a.)  A capacitor stores
charge and, in doing so,
stores energy in the form of
an electric field between its
plates (see Figure 17.5).

b.)  If a capacitor has
Q's worth of positive
charge on one plate, it
must by its very nature
have Q's worth of negative
charge on its other plate.

c.)   If the magnitude
of the charge on ONE
PLATE is Q when the
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magnitude of the voltage drop across the capacitor's plates is Vc (this is

actually V--V+--as happens so often in physics, calling this Vc is sloppy
but conventional notation), the capacitance of the capacitor is defined as:

          C = Q/Vc.

Put another way, the magnitude of the voltage Vc across the plates
of a capacitor is proportional to the charge Q on one plate.  The
proportionality constant is called the capacitance C, and the relationship
between the variables is:

     Q = CVc.

d.)  By the definition of capacitance (i.e., C = Q/V), the MKS units
are coulombs per volt.  The name given to this set of units is the farad.

One farad is an enormous capacitance.  It is common to use
capacitors that are much smaller.  The following are the ranges most
often encountered (you should know not only their prefixes and
definitions but also their symbols):

i.)  A millifarad is symbolized as mf and is equal to 10-3 farads;

ii.)   A microfarad is symbolized as µf and is equal to 10-6 farads;

iii.)  A nanofarad is symbolized as nf and is equal to 10-9 farads;

iv.)   A picofarad is symbolized as pf and is equal to 10-12 farads.

5.)  Example of a Capacitor In Action:
Consider the camera-flash circuit shown in Figure
17.6.

a.)  The switch is initially connected in
the down position so that the capacitor is
hooked across the power supply.  This
allows the capacitor's plates to charge up.

b.)   When the flash is activated, the
switch flips to the up position.  The capaci-
tor discharges across the resistor (i.e.,
charge flows from one plate to the other,
passing through the resistor/light bulb in
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the process) with the large, momentary charge-flow lighting the
flashbulb.

c.)   Once fired, the switch automatically flips down, allowing the
capacitor to once again charge itself off the power supply.

B.)  Equivalent Capacitance of Parallel and Series Combinations:

1.)  The Equivalent Capacitance for Capacitors in Series:

a.)  Just as current is common for all resistors connected in series,
charge accumulation on capacitor plates is the common quantity for
capacitors in series.

i.)  Examining Figure 17.7,
the positive charge electrically
forced off the right plate of the
first capacitor must go some-
where.  Where?  It accumu-
lates on the left plate of the
second capacitor.

ii.)   Conclusion:  The
amount of charge associated
with each series capacitor
must be the same.

b.)   At a given instant, the sum
of the voltage drops across the
three capacitors must equal the
voltage drop across the power
supply, or:

       Vo = V1 + V2 + V3 + . . .

c.)   As the voltage across a capacitor is related to the charge on and
capacitance of a capacitor (V = Q/C), we can write:

       Vo     =   V1   +   V2   +   V3   + . . .
      Q/Ceq = Q/C1 + Q/C2 + Q/C3 + . . .

d.)  With the Q's canceling nicely, we end up with:
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   1/Ceq = 1/C1 + 1/C2 + 1/C3.

e.)   In other words, the equivalent capacitance for a series combi-
nation of capacitors has the same mathematical form as that of a paral-
lel combination for resistors.

2.)  The Equivalent Capacitance for Capacitors in Parallel:

a.)  Just as voltage is common for all
resistors connected in parallel, voltage
across capacitor plates is the common
quantity for capacitors in parallel (see
Figure 17.8).

b.)   Over time, the charge that
accumulates on the various capacitors has
to equal the total charge drawn from the
power supply, or:

        Qo = Q1 + Q2 + Q3 + . . .

As each capacitor's charge is related to the
voltage across its plates by Q = CV, we can
write:

   Qo    =   Q1   +   Q2   +   Q3   + . . .

CeqVo = C1Vo + C2Vo + C3Vo + . . .

With the Vo's canceling nicely, we end up
with:

          Ceq = C1 + C2 + C3.

c.)   In other words, the equivalent capacitance for a parallel
combination of capacitors has the same mathematical form as that of the
series combination for resistors.
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DC version of an RC circuit

FIGURE 17.9

  switch closes
at t = 0 seconds
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C.)  The Current Characteristics of a Charging-Capacitor Circuit:

1.)  Because there is no charge on the plates of an uncharged capacitor, a
capacitor will initially provide no resistance to charge flow in an RC circuit.
But as the capacitor charges up, it will become increasingly more difficult for
additional charge to be forced onto the capacitor's plates, and the current in
the circuit will decrease.  We would like to derive an expression for the current
in a DC-RC circuit as a function of time.

2.)  Figure 17.9 shows the circuit.
Remembering that the voltage drop
across a capacitor will be q/C, we can use
Kirchoff's Laws to write:

     Vo - q/C - iR = 0.

a.)  The first thing to notice is
that just after the switch is closed
(i.e., at t = 0+), there is effectively
no charge on the capacitor.  That
means Kirchoff's loop equation
reduces to:

     Vo - (0) - ioR = 0

and the initial current in the circuit is found to be:

io = Vo/R.

b.)   Additionally, after a very long period, the capacitor will have
charged to its maximum Qmax and the current in the circuit will be zero.
That means Kirchoff's loop equation reduces to:

     Vo - Qmax/C - (0) = 0

and the maximum charge on the capacitor is found to be:

Qmax = CVo.

c.)   The question arises, "What is the current function that defines
the charge flow in the circuit as time progresses?"

To answer that question, we must deal with Kirchoff's loop equation
in its most general state.
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3.)  Kirchoff's loop equation for this situation, written in its most
convenient form and expressed showing the time dependence of q and i, states
that:

       i(t)R + q(t)/C = Vo.

a.)  Two observations:

i.)  The current in the circuit at a given instant and the rate at
which charge accumulates on the capacitor's plates are related by
the definition of current, or:

     i = dq/dt.

ii.)   Also, because we know that current, etc., is varying with
time, we can for the sake of simplicity ignore the time-dependence
notation.  That is, from here on out we will assume that i = i(t).

b.)   With these observations and dividing everything by R, we can
rewrite Kirchoff's loop equation as:

  dq/dt + [1/(RC)]q = Vo/R.

c.)   This is a differential equation.  It essentially states that we are
looking for a function q such that when we take its derivative dq/dt and
add to it a constant times itself (i.e., (1/RC)q), we will always get the
same number (in this case, Vo/R).

d.)  From experience, the solution to a differential equation of this
form is:

    q = A + Bekt,

where A, B, and k are all constants to be determined.

e.)   Solving for the constants is essentially a boundary value
problem.  That is, we must use what we know about the system at its
boundaries--at t = 0 and at t = ∞.  Doing so yields:

i.)  At t = 0, the charge q on the capacitor must equal ZERO.
Using that, we can write:

     q = A + Bekt
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⇒     0 = A + Bek(0)

⇒    B = -A.

ii.)   At t = ∞, the charge q on the capacitor must equal Qmax.
Using that and the information gleaned above, we can write:

     q = A - Aekt

⇒     Qmax = A - Aek(∞).

The only way this can not be infinitely large is if the constant k is
negative.  From physical constraints (i.e., the fact that there is a
limit on the amount of charge the capacitor can hold), we can un-
embed the negative sign inside k and rewrite the above equation as:

     Qmax = A - Ae-k(∞)

    = A - A
  

1
ek( )∞







     ⇒     Qmax = A            (as 1/ek∞ = 0).

iii.)  Using the information gleaned from above, we can write the
current as:

i = dq/dt

    = 
  

d Qmax − Qmaxe
−kt[ ]

dt
   = kQmaxe-kt.

iv.)   At t = 0, we know that io = Vo/R.  As such, we can write:

  
io = Vo

R






and

  

i kQ e

kQ
o

k=
=

−
max

( )

max.

0

   

v.)  Equating the two io expressions, we get k = (Vo/Qmax)(1/R).
Noting that (Vo/Qmax) = 1/C, we can rewrite our k expression as:
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vi.)   With this, q(t) is:

q = Qmax - Qmaxe-t/RC.

As i = dq/dt, the current is:

i = -[-Qmax/(RC)]e-t/RC.

Substituting in Qmax/C = Vo:

     i = (Vo/R)e-t/RC

       = ioe-t/RC.

f.)   See Figure 17.10.

g.)  The graph also
points out a particular point in time that has been deemed important--
the amount of time defined as one time constant.  Consider:

i.)  We would like to have some idea as to how fast the capacitor
will charge, which is to say how fast the current in the system will
drop (the two questions are essentially the same).

ii.)   With that in mind, how much charge is on the capacitor, and
how much current is in the system, at time t = RC?

Note:   You may wonder why this particular time was picked.  It was
originally picked solely because it was the amount of time required to make the
exponent of the exponential equal to -1.

iii.)  This amount of time is called one time constant.  Its symbol
is a baby tau (i.e., τ) and it equals RC.  The amount of charge on the
capacitor after a time interval equal to τ will be:

   q = Qmax - Qmaxe-RC/RC

      = Qmax - Qmax(e-1)
      = Qmax - .37Qmax
      = .63 Qmax.
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and the amount of current in the circuit will be:

i = ioe-RC/RC

     = io(e-1)
     = .37io.

h.)  What does this tell us?  It tells us that if we multiply the value
of the capacitance and resistance together, the number we end up with
will:

i.)  Have the units of seconds (this has to be the case if the
exponent is to be unitless);

ii.)   Be the amount of time required for the capacitor to charge to
63% of its maximum; and

iii.)  Be the amount of time required for the current to drop to
37% of its maximum.

Note 1:   In doing the math, the time interval 2τ will give us approxi-
mately 87% charge-up for the capacitor and a current that will have dropped to
approximately 13% of its initial value.

Note 2:   The time it takes to charge a capacitor to .63Qmax is the same
amount of time required to discharge .63Qmax from the capacitor.

i.)  Why is τ important?  It would be idiotic to build a camera flash
using a resistor and capacitor whose time constant was, say, ten seconds.
Waiting twenty seconds for 87% of your charge to dump through the
resistor would never do.  Knowing a system's time constant is helpful.

D.)  Capacitance in Terms of Physical Parameters for a Parallel Plate
Capacitor :

1.)  What is the capacitance of a parallel plate capacitor in terms of its
geometric parameters (i.e., its plate area, the distance between its plates, etc.)?
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2.)  To delve into this question,
consider a typical, parallel plate
capacitor (Figure 17.11a to the right).
Assume the distance between the
plates is d meters and the area of one
plate is Ao square meters.

3.)  Assuming there is a charge
Q on the high voltage plate and that
the magnitude of the voltage
difference across the plates is a
positive Vc, we can begin with the
definition of capacitance, or:

        C = Q/Vc.

Note:   Moving from the high
voltage plate to the low voltage plate,
we see a voltage difference that is
∆V = (V- - V+) = - Vc, where Vc is defined as the magnitude of the voltage drop
across the plates of the capacitor.  This observation will be useful to us shortly.

4.)  If we can determine the electric field function for the region between
the plates, we can derive an expression for
∆V across the plates by using:

  ∆V = -∫E.dr.

5.)  To get the electric field function,
we must use Gauss's Law.  Figure 17.11b
shows a cut-away view of the capacitor,
Gaussian surface and all.  Note that the
Gaussian plug has one of its end-faces
inside the conductor (i.e., in a region in
which the electric field is zero).  Assuming
the end-face of the Gaussian surface has an
area of A1, and noting that the surface
charge density on the positive plate's
surface is σ = Q/Ao, we can write:
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Note 1:   Although the net electric field between the plates is the vector
sum of the electric fields generated by the positive charge on the left plate and
the negative charge on the right plate, the net electric field will be the same
everywhere within the region (this is due to the symmetry of the situation).

The electric field very close to the left plate is produced primarily by the
charges on the left plate.  By using a Gaussian surface very near the left plate,
we can determine the electric flux due to that charge, then deduce its resulting
electric field.  Knowing the field at one point, we know the field at all points
between the plates.

Note 2:   The constant εο equals 8.85x10-12 farads per meter.  This works

out to 1.26x10-6 C2.s2/kg.m3.

6.)  We are now ready to use ∆V = -∫E.dr .  Noting that we will move in
the direction of the electric field (i.e., from the left plate with its higher
electrical potential to the right plate with its lower electrical potential), and
denoting the voltage on the positive plate as V+ and the voltage of the negative
plate as V-, we can write:
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7.)  With a general expression for the voltage difference Vc across the
capacitor's plates, we can return to the general expression for capacitance and
write:

  

C
Q
V

Q
Qd
A

A
d

c

o o

o
o

=

=










=

   

   

ε

ε .

8.)  As involved as this may seem, the approach allows us to derive
expressions for the capacitance of a capacitor in terms of the capacitor's
geometric characteristics.  Reviewing, the approach is straightforward:

a.)  Assuming a charge Q on the plates, begin with:

C = Q/Vc.

b.)   The magnitude of the voltage drop across the plates (i.e., Vc) is:

Vc = -(V- - V+)

          = +∫E.dr,

where E is the electric field expression for the region between the plates
and dr is a differential path directed from the higher to the lower volt-
age plates.

c.)   If the electric field function is not known, use Gauss's Law to
determine it.

d.)  Once you have E, determine Vc and put it back into the
relationship C = Q/Vc.

E.)  Dielectrics:

1.)  Consider the situation in which a piece of insulating material, called
a dielectric, is placed between the plates of the capacitor (see Figure 17.12a).
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The capacitor is charged, then isolated
(that is, once charged it is disconnected
from the power supply).  What must be
true?

a.)  Let Eo be the electric field
without the dielectric between the
capacitor's plates.

b.)   When the insulator is
placed between the plates, the
surface of the insulator facing the
positive plate of the capacitor will
experience a Van der Waal-type
charge separation that makes that
face appear negative.  A similar
effect will be found on the other
face making it appear positive (see
Figure 17.12b).

c.)   The charge separation in
the dielectric creates a second
electric field Ed between the plates
(again, see Figure 17.12b) in the
opposite direction of Eo.  Although
Ed is considerably smaller than Eo,
the effect is to decrease the net
electric field between the plates.

d.)  As the electric field between
the plates is proportional to the
voltage difference across the plates,
decreasing the electric field by
inserting the dielectric effectively
decreases the voltage across the
plates.

e.)   We know that C = Q/Vc.  If
the charge on the plates stays the
same while the voltage across the
plates goes down the capacitance C
increases.

f.)   Bottom Line:  Inserting a dielectric between the plates of a
capacitor INCREASES THE CAPACITANCE.
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F.)  Derivation of Capacitance in Terms of Physical Parameters for a
Dielectric-Filled, Parallel Plate Capacitor :

1.)  There is a small problem that arises when we try to use the geomet-
ric parameters of a dielectric-filled capacitor to derive its capacitance.

Note:   Sections a through e below are provided solely to allow students
to understand the origin and theoretical underpinnings of what is called the
dielectric constant.  You will not be required to duplicate the information
presented; you will be expected to understand the bottom line presented in
Section f.

a.)  We have already established that when a dielectric surface is
placed near or against a positively charged capacitor plate, a negative
surface charge is induced on the dielectric's surface.

b.)   What that means is that if we use Gauss's Law to derive an
expression for the electric field between the plates, the charge enclosed
within the Gaussian surface will not be made up solely of the charge on
the capacitor plate.  We will also have to take into account the charge
induced on the dielectric.

c.)   Mathematically speaking, this means that the charge enclosed
inside the Gaussian structure will be:

        qencl = qplate - qdiel

leaving Gauss's equation looking like:

      
    

E • dS =
qplate − qdiel

εoS
∫ .

d.)  We know nothing about qdiel.  To get around this problem, we

can define a dielectric constant κd (some books use the symbol εd) such
that:

  

1
κd

=
qplate − qdiel

qplate

.

With this, we can write:
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e.)   As the dielectric constants for commercially produced dielectrics
are known values, we can safely use the dielectric constant in Gauss's
Law, ignore the surface charge on the dielectric, and deal solely with the
charge on the capacitor's plates.

f.)   A more conventional way of writing Gauss's Law with the
dielectric constant included is:

          
    
κd E • dS

S
∫ = qencl

εo

,

where qenclosed is assumed to be the free charge on the capacitor's plates
inside the Gaussian surface.

2.)  How does this affect the derivation we did to determine the
capacitance of a parallel plate capacitor in terms of its geometric parameters?
With a dielectric filling up ALL the space between the plates, that calculation
looks like:

κ
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With this E, we can write:
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That yields a final expression for the capacitance of a parallel plate capacitor
with a dielectric in place between its plates (call this Cd).  It is:
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3.)  There are two observations that can be made when dealing with this
kind of situation:

a.)  As Cd = κdεo(Ao/d) and Cw/o = εo(Ao/d), it would appear that the

dielectric constant κd links the capacitance of an air-filled capacitor to
the capacitance of a dielectric-filled capacitor by the relationship:

         Cd = κdCw/o.

b.)   Put in a little different way, the dielectric constant for a material
is simply a number that tells you how much the capacitance of an air-
filled capacitor will be boosted when the dielectric is placed between its
plates.

4.)  Dielectrics used in conjunction with capacitors are useful for three
reasons:
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a.)  As explained above, the presence of a dielectric between a
capacitor's plates inherently increases the capacitance of the capacitor.

b.)   A piece of insulating material (a dielectric) placed between the
plates acts like a gap-jumping barrier for electricity.  That means much
larger voltages, hence much larger electric fields, can be dealt with using
a capacitor that would not otherwise have been able to handle the
situation.  Put another way, more charge can be stored on the plates
without fear of breakdown that would otherwise have been the case
(breakdown occurs when the electric field between the plates is so large
that charge leaps the gap--once breakdown is achieved in a dielectric-
filled capacitor, the capacitor is ruined).

c.)  Due to its insulating properties, dielectrics allow plates to be
brought very close to one another.  As the capacitance is inversely pro-
portional to the distance d between the plates, this allows for both the
miniaturization of capacitors as well as the increasing of a capacitor's
capacitance per unit of plate area.

G.)  Capacitance in Terms of Physical Parameters for a Partial,
Dielectric-Filled Parallel Plate Capacitor:

1.)  Figure 17.13 shows a parallel plate capacitor (plate area Ao, distance
between plates d) with a dielectric material (dielectric
constant κd) filling the space between the plates to a
distance 2d/3 units from the left-hand plate.  In terms
of geometric parameters of the capacitor, what is the
capacitor's capacitance?

2.)  Until now, we have proceeded in capaci-
tance in terms of physical parameters-type problems
as follows.  We have:

a.)  Used Gauss's Law to determine an ex-
pression for the electric field in the region be-
tween the plates; then

b.)   Used Vc = -(V- - V+) = -[-∫E.dr] to
determine the voltage across the capacitor's
plates; then
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c.)   Used the relationship C = Q/Vc to determine the capacitance of
the capacitor.

3.)  The twist here is in the fact that the dielectric does not completely
fill the space between the plates, which means there are two distinct electric
fields in that region--one in the dielectric-filled region and one in the air-filled
region.  To accommodate this, we must:

a.)  Use Gauss's Law to determine an expression for the electric field
in both regions between the plates (the only difference between the two
expressions will be the limits and the presence of the dielectric constant
in the electric field expression for the dielectric-filled region); then . . .

b.)   Note that the voltage difference across the dielectric added to
the voltage difference across the air-filled region will yield the net
voltage difference across the plates.  Combining this with our electric
field expressions yields:
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c.)   With Vc we can use the relationship C = Q/Vc to determine the
capacitance of the capacitor.

4.)  Doing the problem:

a.)  In Section D-5, we used Gauss's Law to derive the electric field
expression for an air-filled region between capacitor plates.  That
expression was:

     E = Q/(εoAo).

b.)   In Section F-2, we used Gauss's Law to derive the electric field
expression for a dielectric-filled region between capacitor plates.  That
expression was:

     E = Q/(κdεoAo).

c.)   Using this with our electrical potential difference relationship,
we get:
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d.)  Using our definition for capacitance, we get:
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H.)  Capacitance in Terms of Physical Parameters  for Geometries
Other Than That of the Parallel Plate:

1.)  Figure 17.14 (next page) shows an air-filled coaxial cable with inside
radius R1 and outside radius R2.  In terms of geometric parameters of the
capacitor, what is the capacitor's capacitance per unit length?

2.)  Notice that the problem does not define charge for the plates.  That
is something we must assume on our own.  As such, assume there is a linear
charge density +λ on the inner cylinder and an equal and opposite linear
charge density -λ on the outer cylindrical shell.
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FIGURE 17.14
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3.)  We need an expression
for the electric field between the
plates.  Using a Gaussian cylinder
of length L and radius r, where R2
> r > R1, and assuming there is
Q/L's worth of charge inside the
Gaussian surface (i.e., λ = Q/L), we
can write:
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4.)  Using our electrical potential difference relationship, we can write:
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5.)  Using our derived expression for Vc and the definition of capaci-
tance, we can write:
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6.)  This is the capacitance per unit length for an air-filled coaxial cable.
Coaxial cables used in industry (i.e., for TV and VCR hook-ups) are dielectric-
filled.  You will have the thrill of determining their capacitance per unit length
in the Questions section.

Big Note:  We haven't said anything about spherical capacitors.  Think
about how you could put the above theory to use in determining the capaci-
tance of a partial dielectric-filled spherical capacitor (you won't find the answer
anywhere in this book--this is something for you to chew on on your own).
Sounds like a great little test question.

I.)  Energy Stored in a Capacitor:

1.)  The work done to charge a capacitor is stored as electrical potential
energy in the electric field created between the capacitor's plates.  As such, we
can determine the amount of energy stored in a capacitor by determining the
amount of work required to charge the capacitor.

a.)  To be as general as possible, assume a capacitor of capacitance C
initially has charge q on its high voltage plate and -q on its low voltage
plate.  If the voltage across the plates is initially Vc, how much work
must be done to add an additional dq's  worth of charge to the positive
plate?

b.)   The amount of work we are looking for will equal the amount of
work required to move the charge dq from one plate to the other (that is
effectively what is happening as electrostatic repulsion pushes dq's
worth of positive charge off the capacitor's low voltage plate).
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c.)   The relationship between the work dW done on charge dq as it
moves through a potential difference (V- - V+) = -Vc is:

          dW/dq = -∆V
 = +Vc.

d.)  Remembering that V c = q/C, where q is the charge already on
the plates, we can rewrite this as:

    dW = (Vc)dq
= (q/C)dq.

e.)   The total amount of energy required to place a net charge Q on
the capacitor's plates will be the sum (i.e., integral) of all the differential
work dW quantities evaluated from q = 0 to q = Q.  Doing that operation
yields:
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f.)   As Q = CVc, the work expression can be re-written as:

     
  
W = 1

2
CVc

2.

This is the amount of ENERGY wrapped up in a capacitor whose
capacitance is C and across whose plates a voltage Vc is impressed.
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QUESTIONS
  

17.1)  Assuming
there is no charge ini-
tially on any capacitor,
answer all the following
questions for the capaci-
tor circuit in sketch a.
When done, repeat the
process for the circuit
shown in sketch b:

a.)  Determine
the initial current
in the circuit when
the switch is first
thrown.

b.)   A long time after the switch is thrown (i.e., by the time the caps
are charged up fully), how much charge is there on each plate?

c.)  What is the voltage across the 6 µf capacitor when fully charged?
d.)  How much energy does the 6 µ f capacitor hold when completely

charged?
e.)   Determine the RC circuit's time constant.  What does this

information tell you?
f.)  How much charge is there on the 6 µf capacitor after a time in-

terval equal to one time constant passes?

17.2)  Three identical capacitors are connected in several ways as shown in
Figure II.

a.)  Order the combinations from the smallest equivalent capacitance
to the largest; and

b.)   Which combination has the potential of storing the most energy?
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17.3)  A parallel plate capacitor is connected to a 20 volt power supply.
Once charged to its maximum possible Q, the capacitor's plates are separated
by a factor of four (that is, the distance between the plates is quadrupled) while
the capacitor is kept hooked to the power supply.  As a consequence of this
change in geometry:

a.)  How will the capacitor's capacitance change?
b.)   How will the charge on the capacitor change?
c.)   How will the energy stored in the capacitor change?
d.)  If a dielectric (κ d = 1.6) had been placed between the plates of the

original setup, what would the new capacitance have been?

17.4)  Determine:
a.)  The equivalent capacitance of the circuit

shown in Figure III.
b.)   Assuming each capacitor's capacitance is 25

mf, how much energy can this system store if it is
hooked across a 120 volt battery?

17.5)  The capacitors in the circuit shown in Figure IV
are initially uncharged.  At t = 0, the switch is closed.
Knowing the resistor and capacitor values:

a.)  Determine all three initial cur-
rents in the circuit (i.e., the currents just
after the switch is closed).

b.)   Determine all three currents in
the circuit after a long period of time (i.e.,
at the theoretical point t = ∞).

c.)   Without solving them, write out
the equations you would need to solve if
you wanted to determine the currents in
the circuit at any arbitrary point in time.
Be sure you are complete.

d.)  Determine the total charge the 6
µf capacitor will accumulate (i.e., the
amount of charge on its plates at t = ∞).

e.)   Once totally charged, how much energy do the capacitors hold?
f.)   After a very long time (i.e., long after the capacitors have fully

charged), the switch is opened.  How long will it take for the two
capacitors to dump 87% of their charge across the 30 Ω resistor?
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17.6)  A very long, cylindri-
cal, coaxial cable has a certain
amount of capacitance per unit
length associated with it (the
sketch to the right shows a cross-
section of the cable).  The cable
is made up of a wire of radius R
(this acts like the inner plate of
the capacitor) and an outer,
cylindrical, conducting mesh of
radius 5R (this mesh looks like a
metal pipe and acts as the outer
plate of the capacitor).  Addition-
ally, between R and 4R there is a
dielectric whose dielectric con-
stant is κ, and between 4R and
5R there is a second dielectric
whose dielectric constant is 7κ.
Derive from scratch an expres-
sion for the capacitance per unit length for this cable.

17.7)  THE PROBLEM THAT WASN'T (Hint:  You haven't done anything
with spherical capacitors . . . that should make you wonder!).
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