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Chapter 16

DC  CIRCUITS

A.)  Preamble:

1.)  Consider a system de-
signed to force a steady flow of
water through a pipe.  A sche-
matic of the proposed system is
shown in Figure 16.1.  Note the
following:

a.)  Energy is pro-
vided to the system by a
water pump.  Water at
low pressure enters the
pump's intake port, has
work done on it, and
leaves the output port at
higher pressure.  All flu-
ids move from high pres-
sure to low pressure; the
pressurized output water
moves clockwise toward
the low pressure side of the system.

b.)  In some cases it is useful to know how much water passes a
particular point in the circuit per unit time.  This is called the flow-
rate; its units are in gallons per second.

Note:  Flow-rate should not be confused with rate of change quantities
like acceleration.  Flow-rate does not measure how far the flow travels per
unit time (in my country we call that quantity velocity).  Instead, it assumes a
counter is sitting in the water's path counting the number of gallons of water
that pass by per second.

Important Note:  Assume, for the sake of argument, that someone at
one point in the circuit records 12 gallons of water passing per second.  If
there is no place for the water to go except around the one closed circuit, how
could someone else at another point record only 8 gallons passing by per
second?  Where would the lost 4 gallons have gone?
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Bottom line:  It does not matter whether a pipe's diameter is constant
throughout or narrow in some spots and wide in others.  The very nature of
steady state water flow implies that THE AMOUNT OF WATER PASSING
BY PER UNIT TIME AT ANY GIVEN POINT MUST BE THE SAME AT
ALL POINTS IN THE CIRCUIT BRANCH.

Note to the Important Note:  If the flow-rate is constant in a single-
branch circuit, the quantity of water passing through narrow sections of pipe
(per unit time) must be the same as the quantity of water passing through the
broader sections.  The only way the water can do this is by speeding up
through the narrower sections.

That is exactly what happens.  The water's speed changes with pipe
diameter whereas the flow-rate stays the same throughout.

c.)  There will undoubtedly be resistance to the water flow.  This
can be due to:  1.) the clinging of the water to the pipe, and  2.)
restrictions on water-flow as a consequence of narrow piping.

For a given pump, the net resistance in a water circuit "limits the
water flow" in the sense that high resistance (a narrow pipe) allows
only a modest flow-rate whereas low resistance (a broader pipe) allows
a substantial flow-rate.

2.)  In some ways, an electrical system acts like a water system.  Both
require a power source; both experience the flow of some substance; both
have a flow-rate of sorts; and both feel resistance to flow.  But in many ways,
there are also major differences.  Specifically:

a.)  Water flow through a pipe is affected by creating a pressure
difference.  Water at high pressure is motivated to move to lower
pressure.

b.)  In electrical circuits, electrical charges at the high voltage side
of a power supply do not push neighboring charges to make them
move.  What creates charge motion is the electrical potential difference
provided by the power supply.  That potential difference creates an
electric field which motivates all moveable charge carriers (i.e., the
electrons) to move at the same time in response to the electric field (the
field sets itself up at nearly the speed of light).

c.)  Bottom line:  Charge-motion in an electrical circuit is not a
domino effect.  It's more like a drill instructor ordering, "March!"
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B.)  Electrical Circuit Elements--Definitions and General Information:

1.)  The electrical circuit in Figure 16.2 is
a very simple example of the kind of circuits
and circuit-elements you will be dealing with in
this chapter.  This section deals with the ele-
ments, their uses, and theoretical points-of-
interest associated with each.

2.)  The Power Supply:

a.)  Power supplies do exactly as their
name implies.  They provide energy to a
circuit through an electrical potential difference generated between
their terminals.

b.)  There are two kinds of power supplies: DC power sources and
AC power sources.  AC power supplies provide electric fields that
alternate in direction.  We will study AC circuits later.

DC sources provide an electric field that is always in the same
direction.  That means DC currents always flow in one direction only,
hence the name Direct Current.

c.)  The basic circuit representation for a DC power supply is
shown in Figure 16.3a.

i.)  The high voltage ter-
minal, often referred to as the
hot terminal, is usually
labeled "+" on a circuit dia-
gram.  Whether labeled or
not, the high voltage side is
always the longer of two verti-
cal lines in the schematic
representation.

ii.)  The low voltage
terminal, often referred to as the ground or common terminal, is
usually labeled "-".  Whether labeled or not, the low voltage side is
always the shorter of the two vertical lines in the schematic
representation (it looks like a vertical negative sign).

Note:  When actually confronted with a power supply in the lab, the low
voltage terminal is normally color-coded black while the high voltage termi-
nal is normally color-coded red.
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d.)  The representation for a variable
DC power supply is shown in Figure 16.3b.
The representation of a group of DC power
supplies connected together in series is
shown in Figure 16.3c.

e.)  When a battery is rated at, say, 12
volts, the voltage rating is the potential
difference between the + and - terminals.

f.)  The absolute electrical potential of
the ground (-) terminal is always assumed
to be ZERO.

3.)  Current:

a.)  The flow of electrical charge through a circuit is called
current.  Its symbol is i and it is mathematically defined as:

i = q / t,

where q is the amount of charge that passes by a particular point in a
circuit and t is the time required for the passing (it is also written as i =
dq/dt when a differential form is applicable).

Current is the analog to flow rate in a water circuit.

b.)  The MKS units for current are coulombs per second.  This is
given a special name--the ampere--which is often shortened to amp.

In the MKS system, one amp is equal to one coulomb of charge
passing by per second.

c.)  Current is denoted in a circuit by an arrow (see Figure 16.4).

d.)  Just like water-flow-rate, the
current in a particular branch will be
the same no matter where you are in
the branch.  In Figure 16.4, the current
measured at Point A (i.e., the amount
of charge that passed by Point A per
unit time) must be the same as the
current at Points B and C.

e.)  MAJOR THEORETICAL FAUX
PAS:  Notice that the current in Figure
16.4 is directed from the higher to lower
voltage terminals of the power supply
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(i.e., in the direction that POSITIVE CHARGE would move if positive
charge could move in wire).  This is due to the fact that when this
theory was being developed, scientists didn't know whether positive or
negative charges moved through circuits.  As all previous theory was
based on the electrical response of positive charge, it was assumed that
positive charge was the charge-type that circulated through electric
circuits.

You and I and all of science now know that electrons move in
metals, but because the "positive charge carriers" theory was so firmly
rooted by the time the true nature of charge motion became evident,
and because the model works as it stands, CURRENT DIRECTION IN
CIRCUITS IS DEFINED AS THE DIRECTION POSITIVE CHARGES
WOULD MOVE IF THEY COULD MOVE.

Be aware: when this or any other textbook
refers to current, the assumption is that positive
charges are in motion.

f.)  The circuit device that measures current
is called an ammeter.  The circuit symbol for an
ammeter is shown in Figure 16.5.

Ammeters have high voltage and
low voltage terminals.  These are
usually marked on ammeters by + and
- signs.

Note:  If we put two ammeters in series
with one another (Figure 16.6), notice that we
will have the - terminal of the first meter
hooked to the + terminal of the second meter.
There is nothing wrong with this.  The signs
are SPECIFIC TO EACH METER.  That is, a
+ sign simply designates the higher voltage
side of the meter.

4.)  Resistance:

a.)  Under everyday circumstances,
there will always be some resistance to
the flow of charge through a circuit.  The cause of resistance is
summarized below:

i.)  Having felt the electric field set up by a power supply, free
charge carriers in a wire will accelerate.  Theoretically, they will
move from higher electrical potential to lower electrical potential
(we are assuming positive charges here) and in doing so they will
turn their electrical potential energy into kinetic energy.
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ii.)  After moving some distance (this distance varies from
material to material; for a given material, the average of this
distance is called the mean free path), they inevitably collide with
an atom in the atomic structure of the wire.  When this happens,
they bounce off the atoms, giving up their kinetic energy in the
process.

iii.)  Atoms absorb energy in one of two basic ways: they either
begin to increase their vibrational motion relative to one another
(this translates into what we call heat) or under the right condi-
tions they throw one of their valence electrons into an upper atomic
orbital.  As the electron spontaneously cascades down to lower and
lower orbitals on its way back to the ground level, it gives off energy
as electromagnetic radiation.  If the radiation's frequency is in the
optical range, we see it as light.

iv.)  Bottom line:  No matter how the energy is dissipated,
charge-carrier motion is impeded.  Put another way, charge-
carriers experience resistance to flow.

b.)  There is an electrical element
that is designed specifically to increase
the resistance to charge flow in a circuit.
It is called a resistor.  The symbol for a
resistor in a circuit diagram is shown in
Figure 16.7.  Resistor characteristics are
listed below:

i.)  Resistors remove energy as
charges pass through them.  As
such, the electrical potential (the available potential-energy per
unit charge) on the charge-entry side of a resistor will always be
higher than the electrical potential on the charge-exit side.  In
other words, charge carriers passing through resistors experience
a voltage drop.

ii.)  If the voltage drop across a resistor is VR (note that this is

really a change of voltage ∆V across the resistor, though no
physics text writes it so--VR is sloppy notation but unfortunately
conventional), the current iR through the resistor will be
proportional to VR.  That is, doubling the voltage across the
resistor will double the current through the resistor.  To express
this relationship, we write:

       VR = (iR) R.
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The proportionality constant R is defined as the resistance of the
resistor.

iii.)  The units for resistance--volts per amp--are given a special
name--the ohm.  In the MKS system, a one ohm resistance will
allow a one volt potential difference to generate a one amp current
through the resistor.

iv.)  The symbol for the ohm is Ω.  Resistance values run
anywhere from a few thousandths of an ohm (the resistance of a
short piece of wire) to millions of ohms.  Abbreviations are often
used, most commonly:

--1000 ohms ⇒ 1 kΩ  (the k stands for kilo, or thousand)
--1,000,000 ohms  ⇒ 1 MΩ  (the M stands for mega, or million).

Note:  Even though a 43,500 ohm resistor will usually be written as 43.5
kΩ on circuit diagrams, all formulas using resistance values must be
calculated in ohms.  That is, you have to convert a resistance value like 43.5
kΩ to 43,500 ohms before you can use it in a problem.

v.)  The resistance to charge flow in a wire is quite small.  That
means very little energy
is lost when charge
moves through wire.  It
also means the electri-
cal potential at the high
voltage terminal of the
power supply shown in
Figure 16.8 will, to a
good approximation, be
the same as the voltage
just before the resistor
(i.e., at Point A).  On the
other side of the resis-
tor, the voltage between
Point B and the ground
terminal will be approx-
imately the same.  The
consequences of this are
simple:

1.)  It is legitimate to make the assumption that there is no
voltage drop across wires linking circuit elements.
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2.)  In the case shown in Figure 16.8, the voltage difference
across the power source Vo will be the same as the voltage dif-
ference across the resistor VR.

vi.)  Ammeters measure current--they tell you how much
charge is passing through the meter per-unit-time.  As such, they
are placed directly into the flow of charge in the circuit.  If they are
to measure the current without changing the current characteris-
tics of the system, ammeters must have very small resistances.

Voltmeters measure the voltage difference across a circuit el-
ement (i.e., the difference in the voltage between one side of an ele-
ment and the other side of the element).  If they are to do so without
changing the current characteristics of the circuit, they must
draw as little current as possible.  As such, the resistance of a
voltmeter is very large (usually at least 1000 times larger than the
resistance of the element across which they are placed).

Note:  If you inadvertently put an ammeter in place of a voltmeter, the
ammeter's tiny resistance will allow large currents to be drawn from the
power supply and you will most probably blow out both the power supply and
the ammeter.

In other words, don't do that!

5.)  Ohm's Law:

a.)  If the relationship between the current through an element
and the voltage across an element is proportional, the element is said
to obey "Ohm's Law."  The most commonly cited example of this
situation is the resistor.

b.)  From the relationship noted above, the voltage/current charac-
teristic of a resistor is:

     VR = (iR)R.

This relationship is often referred to as Ohm's Law (even though
Ohm's Law technically covers a broader range of circuit elements).

6.)   Nodes, Loops, and Branches:

a.)  A loop in an electrical circuit is formally defined as any closed
path within the circuit.  The electrical diagrams so far presented have
been very simple one-loop circuits.  Most electrical systems are multi-



Ch. 16--DC Circuits

117

1

2 3

R

Vo

R R

basic circuit

FIGURE 16.9a

the three loops in this circuit are 
        depicted by dotted lines

  branches go from node to node:
the three branches in this circuit 
  are depicted with dotted lines 

      nodes are junctions:
there are two in this circuit

node B

node A

Pt. E

FIGURE 16.9b FIGURE 16.9c FIGURE 16.9d

loop systems.  The circuit in Figure
16.9a has three loops (they are
shown in Figure 16.9b).

b.)  A node is defined as a
junction within the wiring of a
circuit--a place where two or more
wires meet.  The current on one
side of a node will never be the
same as on the other side of the
node.  Figure 16.9c highlights the
two nodes found in that circuit.
Notice that Point E in that sketch is
not a node (square corners don't
automatically denote nodes).

c.)  A section of circuitry
between two nodes is called a branch.    The current in a branch is the
same throughout (there are no nodes in the middle of a branch where
current can exit or enter).  Figure 16.9d shows the three branches in
our circuit.

7.)  Voltmeters and Ammeters in a Circuit:

a.)  In Figure 16.10 (next page), an ammeter and a voltmeter have
been added to the above circuit.
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b.)  Meters are de-
signed to measure elec-
trical quantities within
electrical circuits.
Although all meters
work by sensing the
amount of current that
flows through them, at
least in theory their
presence is not supposed
to change the electrical
nature (i.e., the current
characteristics) of a cir-
cuit in which they are
present.

In other words, IN
THEORY, AS FAR AS
CHARGE-FLOW GOES, THERE IS NO DIFFERENCE BETWEEN THE
CIRCUIT SHOWN IN FIGURE 16.9a AND THE CIRCUIT SHOWN IN
16.10.

c.)  As stated above, ammeters are designed to measure currents.
An ammeter is placed directly in the path of charge-flow.  As such, the
resistance of an ammeter must be very low (theoretically, zero).

d.)  As stated above, voltmeters measure the voltage difference
between two points.  That is, hook a voltmeter up to a power supply
(this is usually termed "putting a voltmeter across a power supply")
and it will measure the power supply's voltage (i.e., the voltage
difference between its terminals).  By the same token, putting a
voltmeter across a resistor will measure the voltage difference between
the resistor's two sides.

Voltmeters are used in parallel to the element the-voltage-of-
which-they-are-measuring.  As voltmeters should not change the
current characteristic of the circuit, they must sense the voltage by
drawing just a tiny bit of current from the circuit (exactly how this
process works will be discussed later).  To keep from drawing more
than an inconsequential trickle of current through the voltmeter, the
resistance of a voltmeter must be enormous (theoretically, infinite).

e.)  Bottom line:  If you don't like seeing meters cluttering your
circuits, TAKE THEM OUT (i.e., re-draw the circuit without the
meters).  If you do, though, remember that a question like, "What does
the ammeter read?" is really asking, "How much current is in this
branch?"  Likewise, "What does the voltmeter read?" is the same as,
"What is the voltage across this element?"
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C.)  Series and Parallel Combinations of Resistors:

1.)  Figure 16.11 shows a
series combination of resistors.
Series combinations have three
characteristics:

a.)  Each resistance ele-
ment in a series combination
is linked to its neighbor at
one place only;

b.)  Although the voltage across each element may differ, the cur-
rent through each element will always be the same.  Put another way,
CURRENT is common to all elements in a series combination;

c.)  There can be no junctions between elements in a series combi-
nation (if there were, current would not be constant throughout).

2.)  There will always be a
single resistor that can take the
place of the entire series combi-
nation in the circuit.  The resis-
tance of that resistor is called the
equivalent resistance Req of the
series combination.  Replacing a
series combination with its equi-
valent resistance does nothing to
the circuit.  The same current io
will be drawn from a given
power source Vo in both cases
(see Figures 16.12 and 16.13).

In the case of the series combination, the
equivalent resistance is obvious--it is just the sum of
the individual resistors in the combination.  The proof
of this follows.

a.)  The voltage drop across the resistor R1
in the circuit shown in Figure 16.12 is Vo = ioR1.
Similar expressions exist for the voltages
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across the other resistors
(see Figure 16.14 for sum-
mary).  If the total voltage
across the entire series
combination is the battery
voltage Vo, we can write:

Vo = V1 + V2 + V3 . . .
 = iR1 + iR2 + iR3 . . .

b.)  When the
equivalent resistor for our
series combination Req is
hooked up across the power supply Vo, the current drawn will BY
DEFINITION be io--the same as that of our series combination.  Figure
16.13 shows that hook-up along with the equivalent-resistance-related
expression for Vo (i.e., Vo = iReq).

c.)  Putting together the results from Parts a and b above, we can
write:

                 Vo = V1 + V2 + V3 . . .
        iReq = iR1 + iR2 + iR3 . . .

d.)  Dividing out the current terms yields:

   Req = R1 + R2 + R3 . . .

e.)  Example:  If the resistances in a series combination are 350 Ω,
125 Ω, 455 Ω, and 170 Ω, the equivalent resistance for the combination
is:

Req = R1 + R2 + R3 . . .

                = 350 Ω + 125 Ω + 455 Ω + 170 Ω
                = 1100 Ω.

3.)  Figure 16.15 (next page) shows a parallel combination of resistors.
Parallel combinations have three characteristics:

a.)  Each resistance element in a parallel combination is linked to
its neighbor on both sides;
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b.)  There will be junctions
between elements in a parallel
combination;

c.)  Although the current
may differ, the voltage across
each element in parallel will
always be the same.  Put
another way, VOLTAGE is
common to all elements in a
parallel combination.

4.)  As was the case with resis-
tors in series, there is a single equiva-
lent resistance Req that, when put
across the power supply Vo, draws
current io (exactly the same current as
was drawn by the parallel combina-
tion).  To determine the algebraic
relationship that exists between Req

FIGURE 16.16a
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and the parallel combination it mimics, consider the following:

a.)  Although the voltage across each individual resistor will be the
same in the parallel combination, the current through each resistor
(i.e., i1, i2, and i3) will be different.

b.)  The sum of the currents
through the various resistors (i1+
i2 + i3 + . . . ) must be equal to the
total current io being drawn from
the power supply.

c.)  By Ohm's Law, the current
through a resistor R1 is i1 = Vo/R1.
Similar expressions exist for the
currents through the other resis-
tors (see Figure 16.16a).  This
means:

  io =    i1     +     i2    +     i3 . . .
  = Vo/R1+ Vo/R2+ Vo/R3 . . . .
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FIGURE 16.16b
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d.)  Figure 16.13 shows a typical Req circuit.  As the voltage Vo
across Req is the same as the voltages across each element in the
parallel circuit, the current through Req will be io = Vo/Req.

e.)  Putting together the results from the above steps, we get:

    io    =    i1     +     i2    +     i3 . . .
Vo/Req = Vo/R1+ Vo/R2+ Vo/R3 . . .

f.)  Dividing out the voltage terms yields the final Req relationship
for a parallel combination of resistors:

     1/Req = 1/R1 + 1/R2 + 1/R3 . . .

g.)  Example:  If the resistances in a parallel combination are 350
Ω, 125 Ω, 455 Ω, and 170 Ω, the equivalent resistance for the combina-
tion is:

1/Req = 1/R1 + 1/R2 + 1/R3 . . .

1/Req = 1/(350 Ω) + 1/(125 Ω) + 1/(455 Ω) + 1/(170 Ω)

           = .01894 (1/Ω)
     ⇒     Req = 52.8 Ω.

5.)  There are some interesting things to note about the equivalent
resistance of a parallel circuit.  To begin
with, Req is SMALLER than the smallest
resistance in the combination.  That is
the exact opposite of a series combination
(the equivalent resistance of a series
combination is always larger than the
largest resistance in the combination).
This actually makes sense if viewed from
the power supply's perspective.  Follow
along:

a.)  Consider the parallel
circuit shown in Figure 16.16b.
The resistors R1 and R2 have
currents i1 = Vo/R1 and i2 = Vo/R2
flowing through them respectively.
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b.)  If we look at the circuit from the viewpoint of the power supply,
we see a net, effective resistance "out there" to which we are required
to supply current i = i1 + i2.

c.)  A third resistor is added, as shown in the original circuit
(Figure 16.16a).  As a consequence:

i.)  The power supply still supplies resistors R1 and R2 with
currents  i1 and i2 respectively (the voltage across R1 and R2 hasn't
changed--it is still Vo--and the currents through those two
resistors will still be Vo/R1 and Vo/R2 whether R3 is in the circuit
or not).

ii.)  The power supply is now providing R3 with current i3 =
Vo/R3.

iii.)  This means that from the battery's point of view, the
current now being drawn from it is i = i1 + i2 + i3.

d.)  Remember that resistance limits the current flow (huge
resistance across a given power supply will elicit a tiny current
whereas a tiny resistance across a given power supply will elicit a
huge current).  If the current seems to have gone up due to the
addition of the extra parallel resistor, then from the battery's point of
view, the net effective resistance "out there" must have gone down.

e.)  Bottom line:  The more resistors there are added to a parallel
circuit, the more current will be drawn from the power source and the
more the equivalent resistance will diminish.  The more resistors we
take out of a parallel circuit, the less current is drawn from the power
source and the more the equivalent resistance increases.

i.)  Illustration:  Two 1 ohm resistors in parallel yield an
equivalent resistance of .5 ohms; three 1 ohm resistors in parallel
yield an equivalent resistance of .333 ohms; four 1 ohm resistors in
parallel yield an equivalent resistance of .25 ohms; etc.

D.)  Parallel and Series Combinations in Combination:

1.)  We want to determine the current io being drawn from the power
supply Vo in the circuit shown in Figure 16.17 on the next page.  One possible
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approach is to replace the
mess of resistors with their
net equivalent resistance Req,
then use io = Vo/Req to de-
termine io.  The trick is in the
determination of Req.

2.)  Notice that the orig-
inal circuit is a series combi-
nation--R1 in series with a
mess of resistors (mess #1 in
Figure 16.18).  The mess is ac-
tually a parallel combination--
R2 in parallel with mess #2.
Mess #2 is really R3 and R4 in
series with R5 and R6 in par-
allel.  This information is all
schematically represented in
Figure 16.18.  Starting from
the inside going outward:

a.)  Mess #3--R5
and R6 in parallel--has
an equivalent
resistance of:

Rmess 3 = (1/R5 + 1/R6)-1.

b.)  The equivalent
resistance for mess #2:

Rmess 2 = R3 + R4 + Rmess 3.

c.)  The equivalent resistance for mess #1 is:

Rmess 1 = [1/R2+1/(Rmess 2)]-1.
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FIGURE 16.19
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d.)  The net equivalent resistance for the entire combination is,
after the "mess" expressions are inserted:

Req = R1 + Rmess 1

        = R1 + {1/R2 + 1/[R3 + R4 + (1/R5 + 1/R6)-1] }-1.

e.)  Assuming we have resistance values and a power-supply-
voltage-reading, we can now solve for io.

Note:   Questions like this are a lot easier if you use numbers from the
beginning.  The problem with this lies in the fact that once we begin com-
bining numbers, quantities get absorbed into other quantities and it becomes
very difficult for a second reader to follow one's reasoning.

Solution to the dilemma:  Use sketches like those shown below in
Figure 16.19.

3.)  The problem outlined in #2, but with numbers:

a.)  Let resistors R1 = 5 Ω, R2 = 15 Ω, R3 = 18 Ω, R4 = 12 Ω, R5 = 28 Ω,

R6 = 20Ω.  Determine the current drawn from a 12 volt battery as
shown in Figure 16.17.

b.)  The progression of equivalent resistances is shown in Figure
16.20 on the next page.
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FIGURE 16.20
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c.)  Using the final circuit, we can write:

io = Vo/Req
         = (12 volts)/(16.02 Ω)
         = .75 amps.

Note:  The importance of this section is that you become able to
determine the equivalent resistance of a mixed assortment of series and
parallel combinations of resistors.

E.)  Determining Branch Currents By the Seat of Your Pants:

1.)  Note:  There is a more orderly way of approaching circuitry
problems outlined in the next section.  This section has been included
because it presents a fair amount of creative problem solving.  You should
intellectually understand what is being done here even if there is no bottom-
line approach being presented.

2.)  Consider the circuit shown in Figure 16.21 on the next page.
Assume R1 = 25 Ω, R2 = 18 Ω, R3 = 23 Ω, and Vo = 15 volts.   What is the
current in each branch of the circuit?



Ch. 16--DC Circuits

127

FIGURE 16.21
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a.)  Things to notice:

i.)  There are three branches
and two nodes in the circuit;

ii.)  There is one simple parallel
combination of resistors in the cir-
cuit (whether it is obvious or not,
R2 is in parallel with R3--see "Big
Note" below), and R1 is in series
with that parallel combination.

Big Note:  Circuits are often drawn
with the convenience of the designer over-
shadowing the convenience of all others.
Following that tradition, notice that in
Figure 16.21 R3 is in parallel with R2 even
though the two do not look like a standard
parallel set-up.  This can be easily remedied
by sliding R3 around to the position shown in
Figure 16.22.

The moral:  Look at your circuits
closely.  Be sure there are no oddball sections
that can be simplified by using your head. Do
not be bashful about re-drawing your circuit if you think the circuit creator is
being tricky or obscure.

b.)  At this point, we haven't
much choice.  Defining the branch
currents as in Figure 16.23, we can
determine Req for the circuit's
resistors and from that, use i1 =
Vo/Req to determine the battery
current i1.  As for the other currents,
we will have to see.

c.)  In the circuit, R1 is in series with the parallel combination of
R2 and R3.  Mathematically, the equivalent resistance for this
combination is:

 Req = R1 + (1/R2 + 1/R3)-1
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        = (25 Ω) + [1/(18 Ω) + 1/(23 Ω)]-1

          = 35.1 Ω.

d.)  Using the Req and the known power supply voltage Vo, we get:

i1 = Vo/Req
        =  (15 volts)/(35.1 Ω)
        = .427 amps.

e.)  Knowing i1, we can determine the voltage drop across R1.  It is:

V1 = i1 R1
            = (.427 amps) (25 Ω)
            = 10.675 volts.

f.)  We know the voltage across the entire resistor combination is
the same as the voltage across the battery (Vo = 15 volts).  If we take the
voltage across R1 to be V1 (as already defined) and the voltage across
the parallel combination to be V2, then:

Vo = V1 + V2
     ⇒     V2 = Vo - V1
                = (15 volts) - (10.675 volts)
                 = 4.325 volts.

g.)  Because they are in parallel, V2 is the voltage across both R2
and R3.  Using that information and Ohm's Law, we get:

i2 = V2/R2
        = (4.325 volts)/(18 Ω)
        = .24 amps.

i3 = V2/R3
        = (4.325 volts) / (23 Ω)
        = .188 amps.

Note:  The current into the upper node is i1 whereas the current out of
the upper node is i2 + i3.  It should not be surprising to find that to a very good
approximation (giving round-off error, etc.):
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i1 = i2 + i3,
or

       (.427 amps) = (.24 amps) + (.188 amps).

3.)  Reiterating this section's opening comment:  Even though we have
successfully analyzed this problem by using Ohm's Law, the idea of equiva-
lent resistance, and a little bit of logic, there really was no rhyme or reason to
the approach we employed.  There is a more orderly way to approach such
problems.  That approach will be discussed shortly.

F.)  Power:

1.)  Power is defined as the amount of work per unit time done on an
object.  In the case of electrical systems, it is related to the time rate of work
done on charge carriers moving through a circuit.  As would be expected, the
units of power are joules per second or the short-hand term watts.

a.)  Example:  A light bulb rated at 110 watts dissipates 110 joules of
energy every second.  The dissipated energy "leaves" as heat and light.

2.)  How much power is provided to a circuit by a power-supply-voltage
V when the current being drawn from the source is i?  To determine that
relationship, consider the following:

a.)  A length of wire is hooked to a power supply whose voltage is
Vo and whose current is i.

b.)  Assume that it takes time ∆t for charge to travel from the high
voltage to low voltage terminals.  Assume also that the distance
between those points is d.  If q's worth of charge passes by any point in
the circuit during that time interval:

i.)  The current in the circuit is q/∆t;

ii.)  The relationship between the electric field E set up in the
wire and the voltage difference ∆V across the power supply's
terminals is E.d = -∆V, where d is the distance charge moves in
traveling from the higher to lower voltage terminal;

iii.)  The relationship between electric force F on a charge q in an
electric field E is F = qE;
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c.)  With this information, the net work per unit time done on the
total charge q as they move during the time period ∆t will be:

P = W/∆t
    = (F.d)/∆t
    = [(qE).d]/∆t
    = (q/∆t)(E.d)
    = i-∆V
    = i∆V.

Note:  We have used absolute values because we are interested in the
magnitude of the power rating only.

d.)  Using the skimpy notation commonly used in electrical circuits
(in this case, ∆V = V), we find that the power supplied to a circuit by a
power supply is equal to the product of the current drawn from the
power supply and the voltage across the power supply.  Mathematical-
ly, this is:

     P = iV.

3.)  Although this derivation came from a specific situation, the
expression is generally true.  The amount of power that any circuit element
puts into the system or takes out of the system will always equal the voltage
across the element multiplied by the current through the element.

4.)  Consider the resistor's role in electrical circuits:

a.)  A resistor characteristically limits current and additionally
dissipates energy (usually as heat) in a circuit.  According to the
generalization made above, a resistor's rate of energy dissipation--its
power rating--is equal to the voltage drop across the resistor VR times
the current through the resistor iR.  That is:

     PR = iRVR.

b.)  According to Ohm's Law, the voltage across a resistor is:

      VR = iRR.
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c.)  Combining these two relationships gives us the power
dissipated by a resistor as:

     PR = iR(iRR)

         = iR
2R.

d.)  There is one other way to write this:  As iR = VR/R, we can
substitute in for iR and get:

     PR = (VR/R)2R

         = VR
2/R.

5.)  Bottom line:

a.)  Knowing the power rating of an element tells you how much
energy per unit time the element can handle.

b.)  If the element is a power supply, energy is supplied to the
system and the power rating is iV, where V is the voltage across the
terminals and i is the current drawn from the power source.

c.)  If the element is a resistor, energy is removed from the system
as heat or light and the power rating is iV, i2R, or V2/R depending
upon which variables you know.

Note:  I would not suggest you memorize all of these.  If you remember
P = iV and Ohm's Law, you can easily derive the rest.

G.)  Kirchoff's Laws--Preliminary Definitions and Discussion:

1.)  The approach used on the problem in Section E above can best be
described as "by guess and by God."  It doesn't hurt to be able to think
through such a problem--the ease or difficulty involved should tell you a lot
about how much you understand circuits--but there was no real technique to
what was done.

Fortunately, there is a more orderly way of dealing with circuit
problems using what are called Kirchoff's Laws.
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FIGURE 16.24
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2.)  Kirchoff's First Law states that
the net (total) current into a node must
equal the net current out of a node.

a.)  Example:  If wires are
connected at the node shown in
Figure 16.24, we can write:

     iin = iout
      ⇒     i1 + i2 + i4 = i3 + i5.

Note:  The problem executed in
Section E numerically substantiates this
claim.  The calculated value (rounded) for the
current entering the top node in that problem
was i1 = .43 amps; the calculated values for the
currents leaving that node were i2 = .24 amps
and i3 = .19 amps. The sum of the currents in
equals the sum of the currents out.

3.)  Kirchoff's Second Law states that the
sum of the voltage differences around a closed
loop must equal zero.

a.)  The easiest
way to see Kirchoff's
Second Law is to
graphically track the
electrical potential dif-
ferences around a
single loop circuit (see
Figure 16.25).

To make the plot-
ting easier, we will
unfold the circuit (see
Figure 16.26).  The
beauty of the unfold-
ing is that it allows us
to easily plot the volt-
age versus position at
various points around
the circuit.
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b.)  In the circuit, the electrical potential of the power supply's
ground terminal has been assumed to equal zero while the high
voltage terminal is set to Vo.  Beginning at Point A on the unfolded cir-
cuit, we move toward the battery.  As we do, notice that:

i.)  The voltage is the same at Point A as it is at the battery's
ground terminal (at least to a very good approximation), which
means Point A's voltage is zero;

ii.)  Once at the power supply, the voltage changes from zero at
the ground terminal to Vo at the high voltage terminal.  The differ-
ence between those two terminals is a voltage increase;

iii.)  The voltage at every point between the high voltage terminal
and R1 is the same, or Vo;

iv.)  We know that current flows from higher voltage to lower
voltage.  As the current flows from left to right through the resis-
tor, the left side of resistor R1 must be at higher electrical potential
than the right side.  That means there must be a voltage drop
across the resistor.  The magnitude of this voltage drop will be iR1;

v.)  Between the resistor R1 and R2, the voltage will be the
same;

vi.)  There will be a voltage drop across resistor R2--a drop that
must bring us back to the voltage at Point A, or zero.

vii.)  NOTICE THAT THE NET CHANGE AS WE ADD UP ALL
THE VOLTAGE INCREASES AND DECREASES AROUND THE
CLOSED LOOP IS ZERO.  That is what Kirchoff's Second Law
states.

c.)  It should always be remembered that Kirchoff's Laws are use-
ful only as a technique for generating equations in which current vari-
ables are present and from which specific current values for specific
circuit designs can be calculated.

4.)  Kirchoff's Laws--The Technique:  There is a specific technique to
using Kirchoff's Laws.  Simply stated, that technique is described below (it
will be applied to a problem in the next section).



134

R

R

RV1

1

2 3

R4

A

V

FIGURE 16.27

a.)  Begin by defining and appropriately labeling a current variable
for every branch (a branch starts and ends at a junction).

Note 1:  Students often assume one has to "psyche out" a circuit
problem before actually doing it.  That is, you might think it was important to
somehow determine the direction of the current in a particular branch before
assigning a current direction and variable to that branch.  The beauty of this
technique is that it does not matter whether current direction is obvious or
not.  As long as you are consistent throughout the problem, the mathematics
will take care of any incorrectly assigned current directions.  It will do so by
generating a negative sign in front of each calculated current value whose
direction was incorrectly assumed.

Note 2:  If this is not clear, don't worry.  The current defined as i3 in
the problem presented in the next section has intentionally been defined in
the wrong direction.  When you get there, watch to see how the mathematics
takes care of the oversight.

b.)  Write out Node Equations:  Pick a node and apply Kirchoff's
First Law for that junction.  Do this for as many nodes as you can find,
assuming you aren't duplicating equations (you will see just such a
duplication situation in the next section's problem).

c.)  Write out Loop Equations:  Choose a closed loop and apply
Kirchoff's Second Law to that closed path.  Do so for as many loops as
are needed to accommodate the number of unknowns you have.

d.)  Solve the Loop and Node Equations simultaneously for the
currents in the circuit.

Note 3:  There is a technique for solving selected currents using matrix
analysis.  That technique is discussed further on in this chapter.  You will be
expected to know that technique.

H.)  Kirchoff's Laws in Action--Two
Examples:

1.)  Consider the circuit in Figure
16.27.  Determine the voltmeter and amme-
ter readings when R1 = 25 Ω, R2 = 18 Ω, R3 =

13 Ω, R4 = 10 Ω, and V1 = 15 volts.  Note that
this is essentially the same problem you did
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FIGURE 16.28
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"by the seat of your pants" in Section E.  The only change has been to break R3
= 23 Ω into a new R3 = 13 Ω in series with an R4 = 10 Ω (the change has been
made to make the problem more general in appearance).

By the numbers:

a.)  Removing the meters for the
sake of simplicity, we define current
variables for every branch and iden-
tify all nodes in the circuit (see
Figure 16.28).

Note:  The current i3 in this problem
has intentionally been defined in the wrong
direction.  Watch how the mathematics
takes care of the error.

b.)  Kirchoff's First Law written
for Node A:

     iin = iout
    ⇒     i1 + i3 = i2.

Note:  Satisfy yourself that the node equation written for Node A will
give you the same information as the node equation written for Node B (this
second equation is the above promised duplicate expression).

c.)  Loop Equations:  The loops
are defined in Figure 16.29.  We will
need only two (there are three un-
knowns and we already have one
equation courtesy of the node equa-
tion above).

Note:  The voltage DROPS (i.e., ∆V is
negative) when one traverses through a
resistor IN THE DIRECTION OF
CURRENT FLOW.  The voltage
INCREASES (i.e., ∆V is positive) when
traversing through a resistor IN THE
DIRECTION OPPOSITE CURRENT FLOW.
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Loop I:  (traversing clockwise from Node B):

V1 - i1R1 - i2R2 = 0

     ⇒     i1 R1 + i2 R2 = V1
          ⇒     25 i1 + 18 i2 = 15.

Loop II:  (traversing counterclockwise from Node B):

- i3R4 - i3R3 - i2R2 = 0

     ⇒     i2R2 + i3R3 + i3R4 = 0

     ⇒     i2R2 + i3(R3 + R4) = 0

          ⇒     18 i2 + 23i3 = 0.

Note 1:  Notice that if we had traversed Loop I counterclockwise, the
Loop Equation would have read:

  - V1 + i1R1 + i2R2 = 0

       ⇒      i1R1 + i2R2 = V1.

This is the same equation as was acquired by traversing clockwise.
Bottom line:  You can traverse in any direction you wish.  I usually try

to move through batteries from ground to high voltage terminal because that
gives positive voltage values for power supplies, but it really does not matter
which way you do it as long as you keep your signs consistent.

Note 2:  There are three loops in this circuit--the two used above and
the one that moves around the outside of the circuit (Loop III).  Although we
don't need it, the third Loop Equation would have been:

V1 - i1R1 + i3 R3 + i3R4 = 0.

Note 3:  Just below we will be solving three equations simultaneously--
two loop equations and one node equation.  The temptation might be to forget
the node equation and try to solve the three loop equations.  PLEASE NOTE:
The equation from Loop I added to the equation from Loop II gives us the
equation from Loop III.  That is, even though we have executed Kirchoff's
Second Law on three loops, we have only two INDEPENDENT equations.

Bottom line:  There will always be one more node and one more loop
than there are independent node equations and/or independent loop
equations.  We will always have to use at least some node and some loop
equations in solving circuit problems via simultaneous equations.
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d.)  Solve simultaneously:

        i1 + i3 = i2 (Equation 1)
   25i1 + 18i2 = 15 (Equation 2)
    18i2 + 23i3 = 0 (Equation 3).

Manipulating Equation 1 yields:

        i1 = i2 - i3 (Equation 4).

Substituting Equation 4 into Equation 2 yields:

        25i1 + 18i2 = 15
      25(i2 - i3) + 18i2 = 15 (Equation 5).

Manipulating Equation 5:

    43i2 - 25i3 = 15

        ⇒     i2 =  (25i3 + 15)/43
         = .58i3 + .35 (Equation 6).

Substituting Equation 6 into Equation 3 yields:

         18i2 + 23i3 = 0
18(.58i3 + .35) + 23 i3 = 0 (Equation 7).

Manipulating Equation 7:

10.44i3 + 6.3 + 23i3 = 0

     ⇒     33.4i3 = -6.3

⇒     i3 = -.189 amps.

Note 1:  The negative sign simply points out that the direction of the
current i3 was originally defined in the wrong direction.  There is no need to
change anything now--THE NEGATIVE SIGN SPEAKS FOR ITSELF.

Substituting back into Equation 6 yields:

 i2 = .58i3 + .35
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      ⇒     i2 = .58 (-.189) + .35
        = .24 amps.

Substituting back into Equation 1:

       i1 = i2 - i3
           = .24 - (-.189)
           = .43 amps.

Note 2:  These solutions are exactly the same as we determined using
the less methodical "seat of your pants" technique outlined in Section E.

e.)  The solutions to the problem:  a.)  The ammeter will read the
current i1 which equals .43 amps.  b.)  The voltmeter will read the
voltage across R3 which is  i3R3 = (.189 amps)(13 ohms) = 2.46 volts.

Minor Technical Note:  Voltmeters read magnitudes.  If our voltmeter
had been hooked up on the assumption that the current in R3's branch ran
counterclockwise (that is what we assumed in the problem), the voltmeter
would have been hooked up backwards and the meter's pointer would have
been forced to move to the left off-scale instead of to the right on-scale.

Bottom line:  In theory, the mathematics will take care of any mis-
assumptions you may make about current directions.  In lab, things are not
so forgiving.  That is why all meters used in lab must initially be set on their
highest, least sensitive scale and power must be increased slowly.

2.)  Consider the circuit in Figure
16.30.  Determine the branch currents
when V1 = 12 volts, V2 = 15 volts, R1 = 25 Ω,

R2 = 18 Ω, R3 = 13 Ω, and R4 = 7 Ω.  (Note
that there are neither series nor parallel
combinations in this circuit).

By the numbers:

a.)  Define: current variables for
every branch; circuit nodes; and
circuit loops (see Figure 16.31 on the
next page).
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FIGURE 16.31

R

R

RV1

1

2
3

i

i

i1
2

3

R4

node A

2V

L II

L I

b.)  Node Equations written for
Node A:

iin = iout
     ⇒     i2 + i3 =  i1.

c.)  Loop Equations:

Loop I:  (traversing
clockwise from node A):

V1 - i1R1 - i2R2 = 0

     ⇒     i1R1 + i2R2 = V1
     ⇒   25i1 + 18i2 = 12.

Loop II:  (traversing counterclockwise from A):

V2 + i3R3 + i3R4 - i2R2 = 0

     ⇒     i2R2 - i3(R3 + R4) = V2
          ⇒      18i2 - (13 + 7)i3 = 15

     ⇒      18 i2 - 20 i3 = 15.

d.)  Solve simultaneously:

    i1  = i2 + i3 (Equation 1)
   25i1 + 18i2 = 12 (Equation 2)
   18i2 - 20i3 = 15 (Equation 3).

Substituting Equation 1 into Equation 2:

   25i1 + 18i2 = 12

 ⇒     25(i2 + i3) + 18i2 = 12 (Equation 4).

Manipulating Equation 4:

 43i2 + 25i3 = 12

      ⇒     i2 =  (-25i3 + 12)/43
        = -.58i3 + .28 (Equation 5).

Substituting Equation 5 into Equation 3 yields:
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    18i2 - 20 i3 = 15

⇒     18(-.58 i3 + .28) - 20i3 = 15 (Equation 6).

Manipulating Equation 6:

 - 10.44i3 + 5.04 - 20i3 = 15

      ⇒     − 30.44i3 = 9.96

⇒     i3 = -.327 amps.

Substituting back into Equation 5 yields:

i2 = -.58i3 + .28

     ⇒     i2 = -.58 (-.327) + .28
      = .47 amps.

Substituting back into Equation 1:

i1 = i2 + i3
        = .476 + (-.327)
        = .14 amps.

I.)  Matrix Approach to Analyzing Simultaneous Equations

1.)  With three or more variables, there is a much easier way to solve
simultaneous equations.  It requires the manipulation of matrices, and
although that might sound horrifying, it is not that difficult.  This section
lays out the technique (without proofs).

2.)  A matrix can be used to write out simultaneous equations in a
shorthand way.  Assume you have the equations:

ax + by + cz = m1,
dx + ey + fz = m2,
gx + hy + iz = m3,

where x, y, and z terms are variables; the a through i terms are coefficients
(positive or negative); and the m terms are constants.  For those who would
like an example, try:  3x + (-4)y + 2z = -16.
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If we want to solve for the variable z without solving for the other
variables in the process, the following approach will do the job.

a.)  Notice that we can display the coefficients as shown below.

a b c m1

d e f m2

g h i m3  

b.)  There are a number of things to note about this situation:

i.)  Row #1 holds the coefficients of the first equation ax + by +
cz = m1, while;

ii.)  Column #1 holds the x coefficients for each of the equations.
Likewise, column #2 holds the y coefficients, column #3 holds the z
coefficients, and column #4 (this is actually a 1x3 matrix unto it-
self) holds the constants.

c.)  It may not be obvious at first glance, but this presentation of the
variable coefficients is a natural matrix.  Put in classical matrix nota-
tion, we end up with:

 

a b c
d e f
g h i

m
m
m

















=
















1

2

3

d.)  The matrix on the left is called the determinate matrix D.

3.)  Side note:  The evaluation of any matrix yields a number.  The
technique for doing such an evaluation has been or will be discussed in class.
If the following explanation doesn't make perfect sense at first reading, don't
panic.  It will make sense sooner or later.

To evaluate a 3x3 matrix, one must be able to evaluate a 2x2 matrix
first.  That is where we will begin.

a.)  The evaluation of a 2x2 matrix follows:
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−
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os pq






= −( ),

where the elements o, p, q, and s can be either positive or negative.
That is, it is executed by subtracting the product of the upper right

and bottom left entries from the product of the upper left and bottom
right entries.

b.)  Example of a 2x2 matrix evaluation:  Evaluating the matrix
presented below, we get:

4.)  Consider now the 3x3 matrix shown below (it will become obvious
shortly why the first and second columns are repeated to the right of the
matrix).  The evaluation of that matrix requires the sum of the evaluations of
three 2x2 matrices.    The technique follows:

a.)  Begin by drawing a line across the top row and down the first
column of the 3x3 matrix.  This will leave the top-left entry with a
double-line through it:

b.)  From the double-crossed entry (the a term in this case), there is
a 2x2 matrix that starts in the row just below and the column just to
the right of that entry (i.e., in the second row, second column).  The
first part of our 3x3 evaluation is the product of a times the evaluation
of that 2x2 matrix, or:

    a(ei - fh).
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c.)  Next, leaving the top row penciled out, draw a
line down through the second column.  This will leave
the middle-top entry with a double-line through it (the
b term in this case).  From that double-crossed entry,
there is a 2x2 matrix that starts in the row just below
and the column just to the right of that entry (i.e., in
the second row, third column).

The second part of our 3x3 evaluation is the product of b times the
evaluation of that 2x2 matrix, or:

    b(fg - di).

Note:  It should now be obvious why the first column was repeated to
the right of the matrix.

d.)  Following a similar pattern, the third member of our 3x3
matrix evaluation is evaluated as:

     c(dh - eg).

e.)  The final evaluation is the sum of the three parts determined in
Sections b, c, and d above.  Mathematically, that is

       a(ei - fh) + b(fg - di) + c(dh - eg).

5.)  Let's assume we want to determine the z variable that satisfies our
three equations but we do not care about the solutions for the variables x and
y.  There is a matrix technique that allows us to selectively solve for z while
virtually ignoring x and y.

The technique maintains that the value of the z variable is equal to the
ratio of the evaluation of two matrices--the determinate matrix D and a
modified version of the determinate.  Specifically:

z = Dmod,z / D.
            

a.)  We have already defined the determinate matrix D.  The
modified determinate matrix is the determinate matrix with one
change.  The column associated with the variable for which we are
solving (in this case, the z column) is replaced by the constants column
from the original configuration (i.e., the 1x3 matrix that holds the
constants in our equations).  The modified matrix is shown below:
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D
a b m
d e m
g h m

zmod, =
















1

2

3

 

z
D

D
z= =

−
−

















−
−

















mod,

1 3 4
3 4 12
2 5 9
1 3 1
3 4 2
2 5 0

b.)  Mathematically, our z variable is equal to:

z = Dmod,z / D .
    

6.)  An example with numbers.  Assume:

    x + 3y -  z  =  -4,
           3x - 4y + 2z = 12,

         2x + 5y + 0z =   9.
Determine z.

a.)  The original matrix configuration for this set of equations is:

 

1 3 1
3 4 2
2 5 0

4
12
9

−
−

















=
−















b.)  According to our technique:

c.)  The evaluation of these two matrices is:

       z =  (1)[(-4)(9) - (12)(5)]  +  (3)[(12)(2) - (3)(9)]  +  (-4)[(3)(5) - (-4)(2)]   
       (1)[(-4)(0) - (2)(5)] + (3)[(2)(2) - (3)(0)] + (-1)[(3)(5) - (-4)(2)] 

          = 
 

( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ]
1 96 3 3 4 23
1 10 3 4 1 23

− + − + −
− + + −

          = (-197)/(-21)
          = 9.38.
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1 1 1
25 18 0
0 18 20

0
12
15

− −

−

















=
















7.)  With this in mind, reconsider the two-battery circuit presented in
the example in Section H-2 of this chapter.  The circuit is shown in Figure
16.30; the equations generated through Kirchoff's Laws were:

   i1 - i2 - i3 = 0 (Equation 1)
25 i1 + 18 i2 + 0i3 = 12 (Equation 2)
 0i1 + 18 i2 - 20 i3 = 15 (Equation 3).

Note 1:  The equations have been put in order in the sense that all the i1
coefficients are in the first column, all the i2 coefficients in the second
column, etc.

Note 2:  Even if there were, say, no i2 coefficient in a particular
equation, we would still need to acknowledge that spot in the matrix by
placing a zero in the appropriate spot.

a.)  Presenting and solving:

 

i
D

D1
1

0 1 1
12 18 0
15 18 20
1 1 1

25 18 0
0 18 20

= =

− −

−

















− −

−

















mod,

so that

b.)  The evaluation of these two matrices is:

 i1 =   (0)[(18)(-20) - (0)(18)]  +  (-1)[(0)(15) - (12)(-20)]  +  (-1)[(12)(18) - (18)(15)]
  (1)[(18)(-20) - (0)(18)]  +  (-1)[(0)(0) - (25)(-20)]  +  (-1)[(25)(18) - (18)(0)]

=
  

0 + (−1)[240] + (−1)[−54]
1[−360] + (−1)[500] + (−1)[450]

= (186)/(1310)
= .14 amps.
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Note that this is the same value we calculated using the much more
complicated substitution method.

8.)  Bottom line:  Kirchoff's Laws, in conjunction with the matrix
approach we have been examining, are a very powerful tool for analyzing
circuits in which only resistors and power supplies reside.

9.)  MAJOR TECHNICAL NOTE:  For those of you who have a
calculator comparable to the TI-82 (or better), there is a tricky way you can
solve for all three unknown currents at once (or, for that matter, as many
unknown currents as you'd like).  I'll prove the assertion below, but simply
stated, it maintains the following:

a.)  Enter the matrix (call it A) into your calculator.

b.)  Have the calculator determine the inverse matrix A-1.

c.)  Multiply the inverse matrix A-1 by the constants matrix (this
will be the single-column matrix in which the VOLTAGE terms have
been placed).

d.)  Your calculator will give you a single-column matrix.  The
value of the first entry in that matrix will numerically equal i1, the
second entry will numerically equal i2, etc.

e.)  Proof:  Technically, our 3x3 matrix should be written as

 

  

a b c
d e f
g h j

x
i
i
i

V
V
V

































=
















1

2

3

1

2

3

, where we can shorthand the 3x3 matrix by

calling it matrix A (that is, A = 

 

a b c
d e f
g h j
















 so that 

  

Ax
i
i
i

V
V
V

1

2

3

1

2

3

















=















).  If we

multiply both sides of our matrix equation by A-1, we get:

  

( )A xA x
i
i
i

A x
V
V
V

− −

















=
















1
1

2

3

1
1

2

3

.  Noting that (A-1xA) = 1 (or, at least, a unit
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matrix), we get the expression 

  

i
i
i

A x
V
V
V

1

2

3

1
1

2

3

















=
















− .  Going back to our

original assertion, if you multiply the inverse matrix A-1 by the single-
column constants matrix (i.e., the matrix in which the voltages are
found), you will end up with a matrix whose first term is numerically
equal to the current associated with the first column of A, etc.

J.)  Exotica--Real, Live Light Bulbs:

1.)  There are a couple of fine points about electrical circuits that are
brought out nicely when we examine real, working light bulbs.  We will do
this through two seperate scenarios.

2.)  Scenario I:  The resistor in the circuit shown in
Figure 16.32a is a 40 watt household light bulb (note that
household light bulbs require the equivalent of 120 volts
DC to operate properly).  We will assume that the power
supply in the circuit is a variable DC source.

a.)  To begin with:  Assuming we are using a
couple of those mythical ideal meters physicists
are so fond of utilizing (i.e., an ammeter that has no
resistance and a voltmeter whose resistance is
infinite), there is absolutely no difference in the circuit
shown Figure 16.32a and the circuit shown in Figure
16.32b.

Note:  This is a minor side point, but it never hurts to
reinforce the fact that meters are theoretically assumed to do
NOTHING in a circuit except sense whatever they are
designed to measure.  That's why I suggest that students redraw diagrams
without the meters included when confronted with a circuit they are expected
to evaluate.

b.)  With the observation from Part J-2a made, consider the
following:  Set the voltage across the variable power supply (hence the
voltage across the light bulb) at 40 volts.  Once done, examine your
ammeter.  Let's say it reads .20 amps.

c.)  What should happen when you double the voltage to 80 volts?
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i.)  According to Ohm's Law, if you double the voltage across a
resistor, the current through the resistor should double.  The light
bulb is acting like a resistor (or so we assume), so doubling its
voltage to 80 volts should generate a doubled current of .4 amps.

ii.)  In fact, if you try this in real life, you will find that the
current goes up to only around .27 amps.

d.)  So what's going on?  It turns out that the resistance of a light
bulb is dependent upon the temperature of the light bulb's filament.

i.)  At low temperatures, there is very little vibratory motion of
the atomic lattice through which charge carriers must flow.  As a
consequence, the carriers can travel fairly far (relatively speaking)
before running into something.

ii.)  At a macroscopic level, this long mean free path translates
into little resistance to current flow.

iii.)  At high temperature, the atomic lattice through which
charge carriers must flow experiences a lot of vibrational motion.
As a consequence, charge carriers can't go very far (relatively
speaking) without running into something.

iv.)  At a macroscopic level, this short mean free path translates
into high resistance to current flow.

Side Note:  Although it is complicated, this partially explains why
near-death light bulbs blow when they are being turned on, versus blowing
after they've been on for a while.  As was deduced above, a light bulb that is
off has a very low filament temperature and, hence, low resistance to charge
flow.  When turned on, 120 volts is placed across the initially low resistance
filament and a high current surges through the filament.  This high current
is what snaps the wire, sort of.  Actually, this is a simplification.  There's
more to the story.

In fact, there are three reasons why bulbs blow.  First, the filament
physically thins down with time as atoms slough off the hot wire when at
operating temperature.  This thinning down makes the filament more
vulnerable to breakage.  Second, manufacturers who are not willing to wait
for the natural demise of a thinning filament have dallied with planned
obscelescence by putting a little bit of water vapor inside the bulb to corrode
the filament with time.  This also makes the filament more vulnerable to
breakage.  And third, the filament flexes as it expands due to heating when
turned on and contracts when cooling after being turned off.  With time, this
expansion-contraction-expansion cycle fatigues the wire in the same way
that the metal of a paper clip is fatigued when bent back and forth.  At some
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point, the sudden expansion caused by the big initial current surge through a
cold, low resistance, already fatigued and frail filament is what snaps the
wire and kills the bulb.

e.)  Back at the ranch, standard household light bulbs operate at
the DC equivalent of 120 volts.  So at 40 volts, the filament temperature
is relatively low.  When you double the voltage, the current and
filament temperature will go up.  As a consequence of the increase in
temperature, the bulb's net resistance will also go up.

f.)  In short, increasing the voltage will increase the current, but
because the resistance has also gone up, the current won't go up as
much as we might otherwise have expected.  For that reason, in our
example, the current went up from .2 amps to .27 amps instead of from
.2 amps to .4 amps.

g.)  Bottom line:  Because a light bulb's resistance is temperature
dependent, and because the filament temperature changes at different
voltages, the current and voltage assocated with a lit bulb are not
linearly related. This is an example of a non-Ohmic device.  Most
electrical devices, from capacitors to inductors to transistors, are non-
Ohmic devices.

Note:  On AP tests, unless stated otherwise, a light bulb is assumed to
be an Ohmic device with a constant resistance value regardless of the
current.

3.)  Scenario II:  Consider the parallel circuit shown
in Figure 16.33a.  Assume the DC power supply is variable,
and assume the resistors are two, identical, 40 watt light
bulbs.

a.)  To begin with, a standard, trick AP question
is to present the circuit in Figure 16.33a and ask
what would happen to the current through the top
resistor if the middle resistor were removed from the
circuit.

i.)  Because the resistors are identical, most students observe
that the current being drawn from the power supply (let's assume
it is .6 amps) will split at the junction labeled A with half going
through the middle resistor and the other half going through the
top resistor.  That's .3 amps through each resistor.
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ii.)  What a lot of students think is that when the middle resistor
is removed, that full .6 amps will then flow through the top
resistor.  NOT SO!

iii.)  What determines the amount of current that flows through
a resistor is the size of the resistance and the voltage across the
resistor.  By taking the middle resistor out, you haven't changed
the voltage or resistance of the top resistor.  As a consequence, it
will continue to draw the same amount of current it always drew--
.3 amps in this case.

iv.)  In other words, what changes in the circuit due to the
removal of one of the parallel resistors is not the voltage or current
through the remaining resistor.  What changes is the amount of
current being drawn from the battery.  There is now one less path
requiring current, so the battery current goes down.

b.)  Having made the observation in Part J-3a, consider the
following:  Set the voltage across the variable power supply in Figure
16.33a (hence the voltage across the two light bulbs) at 50 volts.  Once
accomplished, what will happen if you unscrew the middle light bulb?

i.)  What you'd expect, according to our theory as presented, is
that the upper light bulb would continue to burn with the same
brightness as before.  After all, nothing has changed in that
branch of the circuit.

ii.)  In fact, what happens if you try this is that the upper light
bulb becomes MORE BRIGHT.

iii.)  Furthermore, you will also find that the voltage across the
power supply, as measured by the voltmeter in the circuit, will
have increased.  (When I tried this with my equipment at school, it
went all the way up to 70 volts.)

d.)  So what's going on?  The key is in the fact that the voltage
across the power supply seems to have gone up on its own.  On the
surface, this is very strange.  Yet if you understand how power
supplies really work, it makes sense.  Follow along.

e.)  Until now, all we have known about any power supply we've
used has been what our voltmeter has told us.  What voltmeters
measure is called the terminal voltage of the source.  That is, they
measure the electrical potential difference between the terminals of the
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supply.  This quantity is usually characterized as V, though for clarity,
I will refer to it here as either Vterm or Vterminal.

f.)  What people usually ignored, at least if they treat their power
supplies as "ideal," is that real power supplies have two relevant,
measureable qualities that need to be considered if we are to have an
accurate reflection of what the power supply actually, fully does within
a circuit.

g.)  The first of these qualities is the ability to supply energy to the
circuit thereby motivating charge to flow.  Power supplies do this
internally by creating an electric field via an electrical potential
difference across the supply's terminals.

i.)  A true measure of the actual, energy-supplying, charge
motivating aspect of the power supply is technically called the
supply's electromotive force, or EMF.  That quantity is usually
characterized by an ε .

Note:  This name happens to be a misnomer.  The quality we are
talking about here is not, as the name suggests, a force.  It is a measure of
the actual electrical potential difference internally available within the power
supply.  Its units are volts (note that these are the same units as the power
supply's terminal voltage), not newtons.

h.)  What has so-far been ignored is the second current-affecting
quality associated with a power supply.  That has to do with the power
supply's internal resistance rinternal.  (This will sometimes be
characterized as ri.)  This internal resistance also creates a potential
difference which is associated with the energy that is lost as current
flows through the power source.

i.)  This means that when we
use a voltmeter to measure a power
supply's terminal voltage, we are
really measuring the energy-
providing EMF (in volts) minus the
energy-removing voltage drop due to
the internal resistance (see Figure
16.33b).  This is formally expressed
as:

Vterminal = ε  - irinternal.
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j.)  With all of this in mind, what happened with our parallel
circuit?

i.)  Once the power supply's EMF was initially set, it remained
constant and doesn't change.

ii.)  There was a certain amount of net resistance wrapped up
in the parallel combination of resistors coupled with the internal
resistance of the power supply.  The power supply generated the
appropriate current for that net resistance and all was well.

iii.)  One resistor was then removed.

iv.)  With one less resistor drawing current, the current from
the power supply went down.

v.)  The EMF didn't change, but less current meant a smaller
irinternal drop (if i goes down, ir goes down).  That meant the

terminal voltage Vterminal went UP (look at the expression--if ε

stays the same and irinternal goes down, then Vterminal goes up).

vi.)  This was why the terminal voltage in our scenario went
from 50 volts to 70 volts.

vii.)  Continuing, an increase in the terminal voltage increased
the voltage across the remaining light bulb.  That elicited a
corresponding  increase in current  through that light bulb.  That's
why the bulb got brighter.

Note:  Yes, when the current in the circuit goes up, there will be an
increase in iri drop which will, in turn, decrease the terminal voltage some
. . . but not enough to counteract the terminal voltage increase due to the
removal of the light bulb.  It all works out in the end.

k.)  So why is all of this being thrown at you?

i.)  Most books talk about EMFs and internal resistance, but it
usually seems like hair-splitting as they don't give concrete
examples as to why you might want to care.  Now you know how
you can get messed up in at least one circumstance if you don't
understand what is really going on inside a power source.

ii.)  Standardized tests like the AP test will often give you a
terminal voltage and nothing else.  In that case, what they are
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telling you is that the power supply's internal resistance isn't
going to play a part in the problem and you can forget it.

iii.)  If, for whatever reason, the
AP folks want you to consider the
power supply's internal resistance,
they will use the ε  symbol for the
battery's voltage and will include a
resistor labeled ri in series with the
EMF value.  Figure 16.34 depicts
the two general ways this is done.
It isn't a big deal.  It simply means
you have to treat that additional resistance as you would any other
in the circuit.

l.)  So much for amusement.

QUESTIONS

16.1)  Considering Figure I:
a.)  If no current is to flow

through R5, what must be true?
b.)  If VA = 3.36 volts and VB =

5.25 volts (Points A and B are defined
in the sketch to the right), in which
direction will current flow through
R5?

c.)  Given the situation outlined
in Part b and assuming R5 = 3 ohms,
what is the current through R5?
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16.2)  In the circuit in Figure II, the current
through the 12 Ω resistor is .5 amps.

a.)  What is the current through the 8 Ω
resistor?

b.)  What is the power supply's voltage?

16.3)  In Figure III, R2 is decreased.  What
happens to:

a.)  R2's voltage;
b.)  R2's current;
c.)  R1's voltage;
d.)  the power dissipated by R2?

16.4)  In Figure IV, all
the resistors are the same
and all the power sources
are the same.  If the current
in the series circuit is .4
amps, what is the current
drawn from Vo in the
parallel circuit?

16.5)  Resistors R1 = 10Ω, R2 = 12Ω, and R3 = 16 Ω are connected in

parallel.  If the current through the 12 Ω resistor is 2 amps, determine the
currents through the other two resistors.

16.6)  A battery charger delivers 6 amps of current to a 45 Ω resistor for 30
minutes.

a.)  How much charge passes through the resistor?
b.)  How much work does the charger do?
c.)  How much power does the charger deliver?

16.7)  A power supply provides 125 watts to an 18 Ω resistor.  Determine:
a.)  The current through the resistor; and
b.)  The voltage across the resistor.
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16.8)  Assuming all resistors available are 5Ω, determine the equivalent
resistance of each of the four independent circuits found in Figure V.

16.9)  Using as many 12 Ω resistors as
you need, produce a resistor circuit whose
equivalent resistance is:

a.)  18 Ω; and
b.)  30 Ω.

16.10)  The power dissipated by the cir-
cuit in Figure VI is 800 watts.  What is R?

16.11)  Examine Figure VII:
a.)  How many nodes are

there in the circuit?
b.)  How many loops?
c.)  Write out any three

node equations using the
information provided in the
circuit.

d.)  Write out any three
loop equations.
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16.12)  Using a matrix approach, solve the three equations presented
below for i2.  (Note: The equations have not been presented in any particular
order; you may find it useful (read this "necessary") to re-write the equations
in a re-ordered form).

  13i1 - 9 i2 = - 4i3 - 6

   -7i3 = 4i1
 -5i1 = -3i2.

Note:  The only expression with a constant (-6 volts) in it has been
placed first in the listing.  I've done this because it will make the matrix
manipulation easier should you do it longhand.  Whenever you generate
equations like this, put the expressions with non-zero voltage terms first.

16.13)  Use Kirchoff's Laws to determine the meter readings in the four
circuits shown in Figure VIII (see notes on next page).
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Note 1:  There are four primary branches in circuit "a" (primary
branches do not include voltmeter branches).  That means you are either
going to have to analyze a 4x4 matrix or be clever in the way you define your
currents.  My suggestion: be clever.  Begin by defining a current or two, then
use your node equations to define all the other currents in terms of the first
few.  In doing so, you should be able to whittle the number of variables down
considerably (or, at least, by one).

Note 2:  You may have to use the trick mentioned in Note 1 more than
once when doing these circuits!
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