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CHAPTER 13 -- ELECTRIC FORCES and FIELDS

13.1)  Coulomb's Law  gives you the magnitude of the force on one point
charge due to the presence of another point charge (there is an equal and oppo-
site force on the "other" charge due to N.T.L.).  Coulomb's Law states that that

force equals 
  

1
4πεo







q1q2

r2 , where the q's are the respective point charges in-

volved, r is the distance between the charges, and the constant 1/(4πεo) = 9x109

nt.m2/coulomb2 (to save space, the symbol k will in some cases be used below in
place of 1/(4πε o)).  Coulomb's Law does not give direction--that has to be
eyeballed given the fact that unlike charges attract and like charges repulse.

a.)  For this situation:

Fnet on 1 =  Fdue to 2   +   Fdue to 3
    = kq1q2/r1,2

2 - kq1q3/r1,3
2.

Note that the negative sign is
not due to the fact that q1 and q3
are like charges and, hence, re-
pulse one another.  Like charges do repulse one another, but in this case
the negative sign relates the direction of the force on q1 due to the pres-
ence of q3.  Switch the two and that direction would have been positive.

Pulling out q1 and k, then rewriting, we get:

Fnet = (9x109 nt.m2/C2)(5x10-4 C) [(7x10-4 C)/(3 m)2 - (4x10-4 C)/(8 m)2]
        = (321.88 nts) i.

b.)   Assuming the positive charge q2
and the negative charge q3 are fixed, q1
would have to be placed to the right of the
two.  Why?  Because only in that configura-
tion will the repulsion of the closer, smaller
negative charge q3 be offset by the attrac-
tion to the larger, further positive charge q2
(q2 has been made large in the sketch to highlight its relative size).
Mathematically, Fnet will be:
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for x > 3
  (i.e., in region III)

-k(7x10-4 C)(5x10-4 C)/x2 + k(4x10-4 C)(5x10-4 C)/(x - 5)2 = 0

Using the Quadratic Formula, we get x = 20.49 meters.

Note:  The Quadratic Formula yields a second so lution--that of 2.85 meters.
That solution has been thrown out because it places q1 between q2 and q3.

c.)   Again, for simplicity, assume that k = (1/4πεo) for the calculations
below.  Also, the variable x is used to represent a magnitude in all three
regions.  That is, all negative signs will be unembedded.

There are three regions to be considered: the region x > 3, the region 0
< x < 3, and the region x < 0.  (The variable x on each sketch identifies one
possible point for that case.)

For x > 3:

E(x) = -kq1/x2 + kq2/(x - 3)2.

--as x → +∞, E(x) → 0;
--as x → 3, E(x) → +∞.

For 0 < x < 3:

1
-q q

2

x

for 0 < x < 3
  (i.e., in region II)

region I

region II

region III

E(x) = -kq1/x2 - kq2/(3 - x)2.

--as x → 3, E(x) → -∞;
--as x → 0, E(x) → -∞.

For x < 0:

1
-q q

2

x

region I
region II

region III

for x < 0
  (i.e., in region I)E(x) = +kq1/x2 - kq2/(x+3)2.

--as x → 0, E(x) → +∞;
--as x → -∞, E(x) → 0.

The graph of all of this information is
shown on the next page.  It is interesting
to note that if the size of the charges had
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deflection point

E(x) for unequal charges:
  (the smaller q is at x = 3)

E(x) for equal charges:

E(x) = 0

been unequal with, say, the magnitude of q1 > q2, there would have been a
place to the right of q2 where the electric field would have been zero.  As
E(x) would have still gone to zero at infinity, the graph would have had to
have had a deflection point (a numerical value for that deflection point can
be obtained by minimizing the electric field function associated with the
region to the right of q2--that is, by determining the x for which d[E(x)]/dx

= 0).  That situation is also shown below.

13.2)  Our q = -5x10-8 coulombs, m = 2x10-4 kg, and F = 3x10-3i  nts.

a.)  By definition, the magnitude of an electric field is:

E = F/q
    = (3x10-3 nts)/(5x10-8 coulombs)
    = 6x104 nts/coulomb.

b.)   When in an electric field, the acceleration of a negative charge will
be opposite that of a positive charge.  Positive charges accelerate in the di-
rection of the electric field (that is how the electric field is defined).  In
other words, the negative charge's acceleration in the +i direction must be
due to an electric field in the -i  direction.

13.3)
a.)  An electric field is a modified force field.  When generated by a

point charge, the field's magnitude is 
  

1
4πεo

Q
r2 , where Q is the field-produc-

ing charge, r is the distance between the charge and point-of-interest, and
1/4πεo = 9x109 nt.m2/c2 (to save space, we will call this constant k below).
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Electric fields must be treated as vectors.  When you have a number of
point charges producing a net field at a point, you must be able to deter-
mine the direction of each field produced by each charge at the point.

In this problem, notice THERE IS NO CHARGE AT POINT (-a,-b).
This is important.  An electric field will exist in the vicinity of a field-
producing charge whether other
charges exist in the field or not.

Figure III to the right shows
our problem, complete with vector
components and the math needed
to solve the problem.  Of particular
note is the fact that:

-- sin θ = a/(a2 + b2)1/2 and
-- cos θ = b/(a2 + b2)1/2.

With that in mind:

E =  (-E1 sin θ + E2) i + (-E1 cos θ)j

    = [-kq1/((a2 + b2)1/2)2][a/(a2 + b2)1/2] + kq2/(2a)2]i +
[-kq1/((a2 + b2)1/2)2][b/(a2 + b2)1/2] j

    = [-kq1a/(a2 + b2)3/2 + kq2/4a2]i - [kq1b/(a2 + b2)3/2]j.

b.)   With a = .4 meters, b = .3 meters, q1 = 7 µC (i.e., 7x10-6 C), and q2
= 5 µC, we can pull out the k term and write:

E = 9x109 {[-(7x10-6)[(.4)/(.42 + .32)3/2] + 5x10-6/[4(.4)2]]i
- (7x10-6(.3)/(.42 + .32)3/2j}

    = (-131,287.5 i - 151,200 j ) nt/C.

Note:  The numbers are a bit outrageous, but you get the idea.

c.)   If you know the electric field intensity (as a vector) at a particular
point, you can easily find the magnitude and direction of the force on ANY
point charge placed in the field at that point using Fnet = qE, where the q
variable carries with it its sign (the direction of force on a negative charge
will be opposite the direction of the electric field in which it resides).
Doing so yields:

   Fnet =  (-.012x10-6 C)[(-131,287.5 i - 151,200 j) nt/C]
 = (1.575x10-3i + 1.8x10-3 j) nts.
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13.4)

a.)  A force on the charge must exist that opposes
gravity, which means the electric force must be up.  As
the charge is negative, this means the electric field must
be down.

b.)   Using the math yields:

qE - mg = ma             (= 0 as a is zero)
     ⇒     m = qE/g

       = (-.04 C)(-800 nt/C)/(9.8 m/s2)
        = 3.27 kg.

Note that the sign of both the charge and the electric field is included in
the equation F = qE.

13.5)

a.)  This is a centripetal force problem.  The center-seeking force on
the circling electron is produced by its electric attraction to the proton in
the nucleus (this is a Coulomb force).  Using N.S.L. and k = 1/4πεo we get:

Fdue to proton = meacent
                  kqeqp/r2 = me(v2/r).

As the charge on a proton and an electron is the same (1.6x10-19 C), and
as the radius of motion is half the diameter of the atom (.5x10-10 meters):

    v = [kq2/(mer)]1/2

       = [(9x109 nt.m2/c2)(1.6x10-19 C)2/[(9.1x10-31 kg)(.5x10-10 m)]]1/2

       = 2.25x106 m/s.

b.)   The force on the electron due to its presence in the proton's elec-
tric field is:

Fdue to proton = kqeqp/r2

      = (9x109 nt.m2/c2)(1.6x10-19 C)(1.6x10-19 C)/(.5x10-10 m)2

      = 9.2x10-8 nts.
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The force on the electron due to its presence in the earth's gravita-
tional field is:

     Fdue to gravity = meg

      = (9.1x10-31 kg)(9.8 m/s2)
      = 8.9x10-30 nts.

Comparing the two, we find that the electric force is:

     Felectric/Fgravity = 9.2x10-8/8.9x10-30

= 1.03x1022.

This means the electric force on an electron in an atom is ten-billion
trillion times greater than the gravitational force on an electron close to
the earth's surface.

13.6)  The fact that the masses share a horizontal line means the electrical
force on both masses will be in the horizontal.

a.)  An f.b.d. for the forces acting on
mass m1 (= 2m) is shown to the right.
N.S.L. yields:

   ΣFy:

T1 cos θ1 - m1g = m1ay = 0

     ⇒     T1 = m1g/cos θ1.

  ΣFx:

T1 sin θ1 - 
  

1
4πεo

q2

r2  = m1ax = 0

     ⇒     
  

1
4πεo

q2

r2  = T1 sin θ1

⇒     
  

1
4πεo

q2

r2  = (m1g/cos θ1) sin θ1

         = m1g tan θ1.

         = (2m)g tan θ1.



Solutions--Ch. 13  (Electric Forces and Fields)

431

-

-

-

Using a similar analysis on mass m2, and noting that m2 = m, we get:

  

1
4πεo

q2

r2  = (m)g tan θ2.

Equating the two 
  

1
4πεo

q2

r2  terms yields:

    2mg tan θ1 = mg tan θ2
         ⇒     θ2 = tan-1 (2 tan θ1)

= tan -1 [2(tan 35o)]
= 54.5o.

b.)   With m = .03 kg and q = 5.5x10-10 coulombs, we can get r by going
back to either of the final N.S.L. equations.  Doing so yields:

         
  

1
4πεo

q2

r2  = 2mg tan θ1

         ⇒     r = [(kq2)/[2mg(tan θ1)]]1/2

         = [(9x109)(5.5x10-10 C)2/[2(.03 kg)(9.8 m/s2)(tan 35o)]]1/2

         =
8.13x10-5 m.

13.7)  The electric field
lines for the three negatively
charged wires (cross section)
are shown to the right.  Note
that their arrowheads point
toward the negative charges.
This makes sense--a positive
test charge would be at-
tracted to negative charges
and, hence, would accelerate
toward them if given the
chance.

13.8)
a.)  The direction

of an electric field line
at a point is defined
as the direction a pos-
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itive test charge would accelerate if put in the field at that point.  In this
case, that would be upward (i.e., in the +j direction).

b.)   Positive charges accelerate in the direction of electric fields.
Electrons do exactly the opposite.  As the electric field in this case is up-
ward, our electrons will accelerate downward.

c.)   By determining the time of flight through the plates, we can de-
termine the acceleration ay needed if the electron is to just miss the plate's
edge as it exits.  Knowing that acceleration, we can use N.S.L. to deter-
mine the size of the force required to effect that motion and, from that, the
size of the required electric field.  Executing all that:

    ∆x = v1,x∆t + .5ax∆t2.

As ax = 0, ∆x = .12 meters, and v1,x = 4x104 m/s, we find the transit time to
be:

∆t = ∆x/v1,x
         = (.12 m)/(4x104 m/s)

    = 3.0x10-6 seconds.

In that period of time, the y motion will be such that:

      ∆y = v1,y∆t + .5ay∆t2.

As ay  is unknown (that is what we are looking for), and as ∆y is
downward, its value will be ∆y = -.02 meters.  Also, v1,y = 0.  With all of
this, we find the acceleration to be:

ay = [∆y - v1,y∆t] / [(1/2)∆t2]

     = [(-.02) - 0] / [.5(3.0x10-6)2]
     = -4.44x109 m/s2.

The net force required for this motion will be:

Fnet = meay
        = (9.1x10-31 kg)(-4.44x109 m/s2)
        = -4.04x10-21 nts.
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=   (Rd0)

d0

0

dq =   ds

ds = Rd0

We haven't been given enough information to know how the plates are
oriented relative to gravity, so we will do the problem first assuming grav-
ity is a factor.  Doing so yields a gravitational force downward coupled
with an electric force on the electron that is also downward (remember,
the charge on the plates produces an electric field upward, which means
an electron will accelerate downward).  Adding the two forces yields:

Fnet = -mg - Fe
        = -mg - qeE

⇒     E = (-mg - Fnet) / qe
     = [-(9.1x10-31 kg)(9.8 m/s2) - (-4.04x10-21 nts)]/(1.6x10-19 C)
     = 2.53x10-2 nt/C.

Ignoring gravity, we get:

Fnet = -Fe
        = -qeE

⇒     E = -Fnet/qe
     = -[-4.04x10-21 nts]/(1.6x10-19 C)

         = 2.53x10-2 nt/C.

Evidently, in this case, it makes very little difference whether you in-
clude gravity in the calculation or not.

13.9)
a.)  As λ = -kθ, the units for k must be such that when they are mul-

tiplied by radians, they yield the units of charge/length (these are the
units for a linear charge density).  As such, k's units must be coulombs per
meter per radian, or C/(m.rad).

b.)   Select an arbitrary, differential length
ds on the rod at an angle θ with the horizontal.
If ds is subtended by an angle dθ, the arclength
will equal Rdθ, where R is the radius of the arc
(see the figure to the right).  Noting this, the
charge magnitude on the differential section is:

 dq = λds = (kθ )(Rdθ ).
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dE

0

dq

dE

dEx

y

The electric field at the center of the arc gener-
ated by this differential charge is shown in the sketch
to the right.

There will be a dq at an angle -θ whose electric
field can be added to the electric field shown in the
sketch.  Exploiting symmetry, the y components of the
two fields will add to zero.  That means we only need
to worry about the x components, or dE cos θ.
Assuming positive x is to the left, we can write out
∫dEx for the top charge, double it to include the
bottom charge, and end up with:

    

E dE

dq
R

ds
R

k Rd
R

o

o

o

=

=
π







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
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
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∫

∫
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Simplifying where possible and integrating, we get:

    

E
k

R
d

k
R

k
R

k
R

o

o

o

o

=
π

( )

=
π

+[ ]

=
π
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=
π

π −[ ]

=

π

=
π
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2
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2 1

0

2

0

2

ε
θ θ θ

ε
θ θ θ

ε

ε

θ

θ
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cos sin

[cos( / ) ( / ) sin( / )] (cos sin )

( / ) .

/

/   

   

   

Note:   Don't be put off by the θ's in the original expression.  The integral
was of the form ∫x cos x dx.
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differential electric field at (L, L) due
  to arbitrary differential charge dq

y

dy

0dE

dE sin 0

dE cos 0

dq =    dy

y

0

L
L - y

L

r

determine the sine and cosine of 0

note that r = [L  + (L - y)  ]
2 2 1/2

so that:
sin 0 = L/r

cos 0 = (L - y)/r

13.10)  The sketch to the right shows
the general setup.  We need to determine the
differential electric field dE at (L, L) due to
an arbitrarily positioned differential charge
dq on the rod.  Having that field, we can
break it into its components, then integrate
to determine the net electric field in both the
x-direction and y-direction.  Using our sketch
and doing the math, we get:

 dE = -dE sin θ i - dE cos θ j.

Integrating this gives us:

   
    
E = − (dEsin θ)∫ i + (dEcosθ)∫ j[ ].

To do this integral, we must either
write dE in terms of dθ, or we must
write the sin θ, cos θ, and dE variables
in terms of y's and dy.  We will ap-
proach the problem by doing the latter.

Note 1:  As was the case earlier,
we don't necessarily need the angle θ.
What we really need is the sine and co-
sine of θ.  To get those quantities, con-
sider the right triangle shown to the
right.

Note 2:  The differential electric field is due to the point charge dq.  That
means we can write the differential electric field as  dE = dq/(4πεor2).  The mag-

nitude of the differential charge is dq = λdy, where λ  is defined as the rod's
charge/unit length, or Q/L in this problem.  From the sketch, sin θ = L/r and cos θ
= (L - y)/r.  Using all this information, we can proceed.
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E = − (dEsin θ)∫ i − (dEcosθ)∫ j

   = − dq
4πεor

2 sin θ




∫ i − dq

4πεor
2 cosθ





∫ j

   = − λdy

4πεo L2 + (L − y)2( )1/2[ ]2

L

L2 + (L − y)2( )1/2





























∫ i

                             − λdy

4πεo L2 + (L − y)2( )1/2[ ]2

L − y

L2 + (L − y)2( )1/2





























∫ j

   = − λLdy

4πεo L2 + (L − y)2( )3/2









y=−L /2

L /2

∫ i − λ(L − y)dy

4πεo L2 + (L − y)2( )3/2









y=−L /2

L /2

∫ j

   = −λL
4πεo











dy

L2 + (L − y)2( )3/2









y=−L /2

L /2

∫ i + dy

L2 + (L − y)2( )3/2









 + −ydy

L L2 + (L − y)2( )3/2









y=−L /2

L /2

∫y=−L /2

L /2

∫













j















What is important here is the setup of the integrals.  For those gung-ho souls
who would like an answer, the integrals can be evaluated by noting that the de-
nominator is the square root of a quadratic cubed, and by using the following
relationships:

       

  

dy

ay2 + by + c( )3/2∫ = 4ay + 2b

4ac − b2( ) ay2 + by + c( )1/2

and

         

  

ydy

ay2 + by + c( )3/2∫ = − 2by + 4c

4ac − b2( ) ay2 + by + c( )1/2 .

Note:  No, I didn't divine (sic) these relationships.  They are available in
any Table of Integrals.

13.11)  If we can show that the motion is simple harmonic in nature, we can
determine the frequency of the oscillation.  With the positive charge on the
positive side of the loop, the direction of the electric force will be negative and
N.S.L. yields:



Solutions--Ch. 13  (Electric Forces and Fields)

437

dE

dq

x ydE

dq

dE

dE

dEyx

dE

0

0

∑Fx:
        -qE = ma
⇒     a + (qE/m) = 0.

If we didn't have a function for the electric field generated by a hoop down
its axis, we would have to derive that expression.  Fortunately, it was derived in
section E-2 of Chapter 13 (the derivation was for positive charge--the magnitude
of E will be the same).  In the original derivation, a substitution was made for a
sin θ term.  Before that substitution was made, the derived expression for the
magnitude of E looked like:

                           

    

E(x) =
Q

4πε o R2 + x2( )













cosθ i

       =
Q

4πε o R2 + x2( )













sin φ i,

where 
  φ θ= −( )90o  . . . see the sketch to the

right.  Using this relationship in the x-
direction, N.S.L. yields:

     

    

a +  
q

m







E[ ] = 0

     ⇒    a +  
q

m







Q

4πε o R2 + x2( )













sin φ = 0

     ⇒    a +  
qQ

4πε om R2 + x2( )













sin φ = 0

This is not the characteristic equation for simple harmonic motion.  In the
first place, the acceleration a is a translational term while the displacement φ  is
an ANGULAR displacement term.  They have to be of the same ilk for this
technique to cooperate. Also, there is an x variable in the denominator of the
"constant."
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If you hadn't noticed any of this, you may be tempted to manipulate the
expression as though all was well.  In that case, the small angle approximation
would have allowed the sine to become the angle itself (measured in radians),
and you would have had ended up with an expression of the form acceleration
plus a constant times a displacement term equals zero (again, this assume you
hadn't noticed that the constant wasn't a constant but had the variable x in it--
for the sake of argument, let's assume you called that variable b).  Once in that
form, you would have known that the square root of the constant was equal the
angular frequency of the motion.  Following that logic, the angular frequency
would have been:

          
  
ω = qQ

4πεom R2 + b2( )










1/2

and the frequency 
  
ν ω=

π2
 would have been:

          
  
ν =

qQ
4πεom R2 + b2( )











1/2

2π
.

Unfortunately, NONE OF THIS WILL WORK!  The proton does NOT
oscillate with simple harmonic motion and, as such, we have no easy way of
determining the frequency of the motion.


