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Chapter 13

STATIC  ELECTRIC  FORCES  AND  FIELDS
Note:  For those interested in a review of atomic bonding, charge characteristics, and the
characteristics of conductors and insulators, see the addendum at the end of the chapter.

A.)  Coulomb's Law:

1.)  From experimental observation, Charles Coulomb found that the
magnitude of the electrical force Fc acting upon a point charge q1 due to the
presence of a second point charge q2 a distance r meters away is:

         Fc = 
  

1
4πεo

q1q2

r2 ,

where εo is called the permittivity of free space (8.85x10-12 Farads/meter) and

the 
    

1
4πεo

 term is a proportionality constant numerically equal to 9x109 nt.m2/C2

in the MKS system (this term is sometimes defined as 
  
k = 1

4πεo

 to save space).

The equation is called Coulomb's Law.

Note 1:  Historically, the symbol for charge has always been q or Q.  In
the MKS system, charge has the units of coulombs (symbol C).

Note 2:  The charge on an electron is called the elementary charge unit
and is given the symbol e.  In the MKS system, it is equal to 1.6x10-19

coulombs/electron.  Inverting that number gives us the number of electrons
per coulomb.  Doing the inversion shows that it takes 6.25x1018 electrons to
generate a one coulomb charge.

Note 3:  It is not uncommon to see charge values represented as, say,
12 µC.  The symbol µ stands for micro and is equal to 10-6.  When using
Coulomb's Law, charge values must be in terms of coulombs, never micro-
coulombs (even if the charge value is given in micro-coulombs in a problem).
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Note 4:  It has been experimentally observed that two like charges (i.e.,
two positive charges or two negative charges) will repulse one another while
two unlike charges (a positive and a negative) will be attracted to one another.
This is going to be useful in determining the direction of a Coulomb force on a
given charge.

2.)  Coulomb's Law is useful for determining the magnitude of the
force between two point charges.  To determine the direction, one must eye-
ball the situation.

a.)  Example #1:  Charges q1 = 2 µC and q2 = -3 µC are 10
centimeters apart.  What is the force F1,2 that charge q1 exerts on
charge q2?

i.)  Using Coulomb's Law to determine the force magnitude:

        

    

F1,2 = 1
4πεo

q1q2

r2

      = (9x109  nt ⋅ m2 / C2 )
(2x10−6  C)(3x10−6  C)

(.1 m)2

      = 5.4  nts.

Note:  In the above equation, only the magnitude of charge q2 was used.
If we had included the charge's negative sign, our force calculation would
have yielded a negative magnitude.  Aside from the fact that magnitudes are
supposed to be positive, a negative sign in front of the force equation could be
construed as denoting direction.  Though the two charges will always attract,
the force direction depends solely upon where q2 is, relative to q1.
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ii.)  To determine direction, we need more information than was
given above.  We know that the force is an attractive one (the
charges are unlike), but we do not know how the charges are
oriented relative to one another and to
the coordinate axis being used in the
problem.  Figures 13.1a, b, and c on
the previous page show three
possibilities complete with the final
force representation for each case.

3.)  Example #2:  A charge q1 = -.7 µC is lo-

cated at the origin.  A charge q2 = 1.2 µC is lo-
cated x = .6 meters down the x axis as shown in
Figure 13.2.  Both charges are fixed to the axis.
Where on the x axis might we put a
third charge q3 = -2 µC so that the net
force on q3 is zero?

a.)  Consider the direction of
the forces acting on q3 assuming
q3 is put:

i.)  Between the two fixed
charges (see sketch in Figure
13.3a).  In that case,  q1 re-
pulses q3 pushing it to the
right; q2  attracts q3 pulling it
to the right.

At no position between
the two fixed charges will the
net force on q3 add to zero.

ii.)  To the right of both the
fixed charges (see sketch in
Figure 13.3b): q1 repulses q3
pushing it to the right; q2 at-
tracts q3 pulling it to the left.

The forces will be in op-
posite directions, but because
the smaller charge q1 is al-
ways farther away from q3,
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there will never be a position to the right of the two fixed charges
where the net force on q3 adds to zero.

iii.)  To the left of both the fixed charges (see sketch in Figure
13.3c on previous page): q1 repulses q3 pushing it to the left; q2
attracts q3 pulling it to the right.

The forces will be in opposite directions and the 1.2 µC charge
(q2) will be further away from q3 than q1.  As such, the smaller
charge will be able to overcome the attraction of the larger charge
which means there will be some position where the two exactly
balance one another out.

b.)  Having decided to put q3 to the left of the two fixed charges, we
will assign a coordinate x to q3 and proceed to determine the net force
acting on q3 due to the other charges.  This net force must equal zero
(that was the question: where will the net force on q3 equal zero?).
Eyeballing the force directions and using N.S.L. on q3, we get:

     Σ Fx:
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From here, the problem is simple algebra.

4.)  Example #3:  Consider a fixed
charge -Q1 located a distance a units up the
y-axis, a second fixed charge Q2 located a
distance b units down the y axis (i.e., at y =
-b), and a third charge -Q placed an arbi-
trary distance c units down the x axis (see
Figure 13.4).  What is the net force acting on
-Q due to the presence of -Q1 and Q2?

a.)  To begin with, the answer is
NOT kQ1Q/r1

2 - kQ2Q/r2
2 or some
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such linear sum.   Forces are not scalars--they have to be added
VECTORIALLY.

b.)  Keeping
that in mind,
we need to de-
termine:

i.)  The
direction of
each force
acting on
-Q;

ii.)  The
magnitude
of each
force acting
on -Q;

iii.)  The
x and y
components
of each
force acting
on -Q, and;

iv.)  The vector sum of those components.

c.)  The direction of force on -Q due to the presence of -Q1 will be
along a line between -Q and -Q1.  The charges are like-charges so the
force will be repulsive and the force direction will be away from -Q1.

The direction of force on -Q due to the presence of Q2 will be along a
line between -Q and Q2.  The charges are unlike-charges so the force
will be attractive and the force direction will be toward Q2.  The results
of these observations are shown in Figure 13.5a.

d.)  The magnitude of each force is determined by Coulomb's Law:

  
F1 = 1

4πεo

Q1Q
r1

2         and         
  
F2 = 1

4πεo

Q2Q
r2

2 ,

where r1 = (a2+ c2)1/2 and r2 = (b2+ c2)1/2.

e.)  To put the forces into component form (we must do that before
we can add them vectorially), we need to determine the sine and cosine
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of both θ1 and θ2.  As we haven't been given
those angles, we need to use trickery to
determine those sine and cosine quantities in
terms of variables we know (i.e., terms like a,
b, or c).  Using the right triangles shown in
Figure 13.5b, we find:

i.)  For sin θ1:

sin θ1 = (opp. side)/(hyp.)

=  a/(a2+ c2)1/2.
ii.)  For cos θ1:

cos θ1 = (adj. side)/(hyp.)

=  c/(a2+ c2)1/2.

iii.)  Similarly:
sin θ2 =  b/(b2+ c2)1/2      and

cos θ2 =  c/(b2+ c2)1/2.

f.)  We are now in a position to write vectorially the sum of the
forces acting on -Q:

i.)  Expanding the x component of force F1 (i.e., writing the

component as F1cos θ1  using the information from Figure 13.5b):

     

    

F F

Q Q

a c

c
a c

Q Qc
a c

Q Qc
r

x

o

o

o

1 1 1

1

2 2 1 2 2 2 2 1 2

1
2 2 3 2

1

1
3

1
4

1
4

1
4

,

/ /

/
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( ) ( )

( )

.

=

=
π +( ) +







=
π +

=
π

θ

ε

ε

ε

      

      

      

Note:  The defined value of r1 was r1 = (a2 + c2)1/2.  The variable r has
been used above because things are about to get messy.  Brevity here will help.

ii.)  Similarly, the entire force equation becomes:
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(F1 cos θ1 - F2 cos θ2) i + (-F1 sin θ1 - F2 sin θ2) j.

iii.)  In expanded form, this becomes:

    
F i j=

π +
−

+






+ −
+

−
+















Q Q c
a c

Q c
b c

Q a
a c

Q b
b co4

1
2 2 3 2

2
2 2 3 2

1
2 2 3 2

2
2 2 3 2ε ( ) ( ) ( ) ( )/ / / / .

Big Note:  This problem would have been considerably easier if there
had been more symmetry.  For instance, if the magnitude of -Q1 had equaled
the magnitude of Q2, and if the distance a had equaled the distance b, then
both forces F1 and F2 would have had the same magnitude (i.e., F1 = F2) and

angle (i.e., θ1 = θ2), and the force diagram would have looked like the one
shown in Figure 13.6.

Observing that the x
components add to zero
(hence, no need to deter-
mine them) and the y
components equal one
another, the problem
becomes nothing more
than determining the y
component of one of the
forces and then doubling
the quantity (there are two
forces acting).   Trickery is
still required to determine
the sine of the angle θ, but
on the whole, the problem
is not that complicated.  Its
solution is:

   
    
F jQ

o

QQ a
a c

= −
π +









2

1
4

1
2 2 3 2ε ( )

./

g.)  Bottom line:  As usual, memorizing this solution is next to
useless.  For the purpose of test-taking, you need to be able to approach
a problem similar to this (possibly with a different orientation or an
extra force) and:

i.)  Determine the individual Coulomb force magnitudes due to
all the charges acting on the charge-in-question;
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ii.)  Determine appropriate sine and cosine functions using
known parameters within the system (i.e., a's and b's, etc.), and;

iii.)  Put it all together in a vector sum.

5.)  Example #4:  Two weights of
mass m = .25 kg each are attached to
separate strings of length L = .4 meters
and hung from a common point on the
ceiling.  When a charge q is placed on
each mass, the masses repulse and
swing out away from one another
forming an angle θ = 22o (see Figure
13.7a).  What is the charge q?

a.)  As we have static forces
acting on two individual masses,
we might find it useful to con-
sider N.S.L. on one of the
masses.  An f.b.d. for the forces
acting on the left mass is shown
in Figure 13.7b below, where the
repulsive force Fe is really a
Coulomb force being generated by
the right charge.

b.)  Following through on Newton's Second Law:

Σ Fy:

      T cos (θ/2) - mg = may = 0

     ⇒      T = (mg)/(cos θ/2).

Σ Fx:

      T sin (θ/2) - Fe = max = 0

     ⇒      Fe = T sin (θ/2).

c.)  Using Fe and eliminating T, we get:

  

1
4πεo

q2

r2 = mg

cos
θ
2







sin
θ
2






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⇒    q = [mgr2 tan (θ/2)/(1/4πεo)]1/2.

d.)  Plugging in the numbers with r = 2Lsin(θ/2) = .153 meters:

  

    

q
mgr

kg m s m

x nt m C

o

o

=







π



















=







⋅



















2
1 2

2 2

9 2 2

1 2

2
1

4

25 9 8 153
22
2

9 10

tan

(. )( . / )(. ) tan

/

/

/

θ

ε

  

                   = 1.11x10-6 coulombs.

B.)  Electric Fields:

1.)  Electrical force is an important concept in electrical systems, but a
more widely used concept is that of the ELECTRIC FIELD.  An electric field
is a modified force field.  As a vector, it has a direction (this is defined as the
direction in which a positive test charge would accelerate if put in the field at
the point) and magnitude (the magnitude denotes the force per unit charge
potentially available at the point) at every point in the field.

2.)  The idea of a vector defining the "force per unit charge available at
a point" probably seems odd, but there is a solid rationale for its existence.  To
understand why, consider the following analogy from the world of
gravitational forces:

a.)  According to Newton, massive objects produce "gravitational
force fields" that affect other massive objects.  And although the effects
are noticeable only when at least one of the bodies is very large--an
apple falling from a tree due to its gravitational interaction with the
earth or the moon being centripetally accelerated into a nearly circular
path due to its gravitational interaction with the earth--the
phenomenon is characteristic of all massive objects.

b.)  Newton derived an expression to determine how large this
gravitational force was in a given case.  When mass m1 feels a gravi-
tational force due to the presence of mass m2, the magnitude of the
force is:
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              Fgrav on mass 1 = Gm1m2/r2.

In this expression, the G term is called the Universal Gravita-
tional Constant and r is the distance between the centers of mass of the
two objects.

c.)  Although the idea of a gravitational force field is much
discussed (essentially due to all the work Newton did on the subject),
the concept has a singular philosophic drawback.  Force is a mass
dependent quantity.  If you know the gravitational force on a 65
kilogram object located 35,000 meters above the earth's surface, THAT
IS ALL YOU KNOW!  Inherent within that information is nothing
about any other mass--the quantity is specific to a 65 kilogram mass
located 35,000 meters above the earth, period.

d.)  If we ignore the historical evolution of the topic, a more useful
gravity-related quantity is the acceleration of a mass due to gravity.
That quantity is universally appropriate to all masses; it is a mass
independent quantity.

e.)  Not clear?  We know from Newton's Laws that if gravity is the
only force acting on an arbitrary test mass m, the mass's gravitational
acceleration is equal to:

       ag = Fg/m.

f.)  There are two things to notice about this quantity.  First, it is
easy to experimentally test an acceleration field at a particular location
to determine the gravitational acceleration at that point.  All we have to
do is take any mass m, use a Newton's Scale to measure the
gravitational force Fg on the mass at the location of interest, then
divide that force value by the size of the test mass (i.e., Fg/m).  The
resulting force per unit mass will be the magnitude of the gravitational
acceleration at that point.

g.)  Of considerably more importance is the inherent mass-
independence wrapped up in the acceleration equation.  It makes no
difference how large the test mass m is.  The acceleration ag will
always be the same at a given point.  Acceleration really does measure
the force per unit mass available at a given point.

h.)  The point here is that because acceleration is a mass-
independent quantity, the existence of a gravitational acceleration field
is not dependent upon the presence of a mass to experience the field.
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Acceleration fields exist whether masses actually are accelerating in
the field or not.  Gravitational force fields, on the other hand, do not
have any meaning if there is not a mass to experience the force field
within the system.  Newton's gravitational force equation is
specifically dependent upon the existence of such a mass.

i.)  Bottom line:  Gravitational acceleration fields are more primary
in nature than are gravitational force fields.

3.)  Just as a gravitational acceleration field is a vector field that tells
you how much force per unit mass is available at a particular point in a
gravitational force field, an ELECTRIC FIELD is a vector field that tells you
how much force per unit charge is available at a particular point in an
electric force field.

4.)  Put another way, if we think of the earth's mass as generating a
gravitational disturbance in the space around it--a disturbance that causes
other massive objects to accelerate when placed in its field--we can think of a
charged object as generating an electrical disturbance in the space around
it--a disturbance that causes other charged objects to accelerate when placed
in its field.  That disturbance is mathematically embodied in the electric field
vector.

5.)  The mathematics in a nutshell:

a.)  The magnitude of an electric field evaluated at a particular
point is defined as:

E = F / q.

b.)  The direction of an electric field at a particular point is defined
as the direction a positive charge would accelerate if placed in the field
at that point.

C.)  The Electric Field Generated by a Point-Charge:

1.)  How to determine an electric field vector EXPERIMENTALLY:

a.)  Consider a specific example.  Assume we have a point-charge
Q sitting by itself in space.  Being charged, it will affect other charges
brought near it.

b.)  To determine the magnitude of the electric field produced by Q
at an arbitrary Point P:
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i.)  Begin by placing a small, POSITIVE test charge (test
charges are always positive!) at Point P;

ii.)  Measure the force Fq the field exerts on the test charge;

iii.)  Divide Fq by the size of the test charge q.

iv.)  If done correctly, that calculation will yield the magnitude of
the force per unit charge available at the Point P.  That is, the
magnitude of Q's electric field evaluated at Point P.

c.)  To determine the direction:

i.)  Allow a positive test charge to accelerate freely (there can-
not be any other forces acting on the charge at the time) in the
electric field.

ii.)  The direction of the acceleration of the test charge is the
direction of the electric field at Point P.

2.)  How to determine an electric field magnitude theoretically:

a.)  In the situation outlined in Part 1 above, assume the test
charge is q and the distance between the test charge and the field-
producing charge Q is r.

b.)  Coulomb's Law allows us to determine the magnitude of the
electrical force on the test charge q while near Q.  That is:

Fq = 
  

1
4πεo

qQ
r2 .

c.)  Dividing Fq by the size of the test charge, we get:

     

    

E
F
q

qQ
r

q
Q
r

Q
q

o

o

=

= π

=
π

     

     

1
4

1
4

2

2

ε

ε
.
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d.)  This is the magnitude of the electric field as evaluated a
distance r units from the field-producing point charge Q.

Note 1:  Notice that this expression is a function only of the field-
producing charge Q and the distance r between the charge and the point of
interest.  Not only is the size of Q's electric field not affected by the size of the
test charge used to probe it, Q's electric field exists whether there is a
secondary charge experiencing the field or not.

Note 2:  There are Calculus-driven techniques for deriving theoretical
expressions for electric fields generated by exotic charge configurations (all
we have worked with are point charges).  We will deal with them shortly.

3.)  Example #1:  A -4x10-12 coulomb charge Q is located at the origin.
What is the electric field (as a vector) produced by the charge at the
coordinate x = -.02 meters?

a.)  The magnitude of the field will be:

     

    

EQ = 1
4πεo

Q
r2

      = (9x109  nt ⋅ m2 / C2 )
(4x10−12  C)

(.02 m)2

      = 90 nts / C.

Note:  Notice that the sign of Q in the equation is positive even though
the charge is a negative one.  Just as was the case with Coulomb's Law, this
equation allows you to determine the magnitude of the electric field only.  As
such, only charge magnitudes are used in it.

b.)  The direction of the field:  An electric field's direction at a point
in space is defined as the direction a positive charge would be
accelerated if put in the field at the point in question.  In this case, a
positive test charge placed at x = - .02 meters (i.e., 2 cm to the left of the
origin) would feel an electric force in the +i direction.  By definition,
that is the direction of the electric field.

c.)  Putting it all together, the electric field produced by the -4x10-12

coulomb charge at x = -.02 meters is EQ = (90 nt/C)i.
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4.)  Example #2:  Assume an electric field E = (+90 nt/C)i permeates the
area surrounding the origin.  When a charge q1 = -3x10-17 coulombs is placed
at x1 = -.02 meters (i.e., to the left of the origin), that charge will feel a force.
As a vector, how large will that force be?

a.)  We know that the relationship between the force F on a charge
q in an electric field E is F = qE.

b.)  If the charge was positive (+q), the process would be simple
because the direction of F on q would, by definition, be the same as the
direction of E.  As such, we could use E = F/q to write:

              F = q E
= (+3x10-17 C) [(90 nt / C) i]
= (2.7x10-15 nts) i.

c.)  What if the charge is negative?  Technically, we should
multiply the magnitude of the electric field by the magnitude of the
charge to get the magnitude of the force, or qE = (3x10-17 C)(90 nt/C) =
2.7x10-15 nts.

 To get the force direction, we know that the electric field's direction
(+i in this case) is defined as the force direction on a positive charge, so
we know that the opposite direction will be the force direction on a
negative charge. In short, F = (2.7x10-15 nts)(-i).  Alternately, this can
be written as F = (-2.7x10-15 nts)(i).

Note:  If we had used F = qE  with the charge's sign, we would have
gotten the same answer.  That is, F = (-3x10-17C)(90 nt/C i) = (-2.7x10-15 nts)i.
THIS ISN'T TECHNICALLY KOSHER, as a charge's sign should never be
used to determine directional quantities, but due to the way electric field
directions are defined (i.e., the direction a positive charge will be forced . . .
etc.), we get the right answer.  You can use this approach, but only with the
understanding that you are fudging things in doing so.

5.)  Electric fields superimpose vectorially.  If a number of charges are
placed close to one another, a net electric field will be generated at every point
in space in the vicinity of the group.  That net electric field will be the vector
sum of each charge's electric field as it exists at the point of interest.

To see this, consider a fixed charge -Q1 located a distance a units up
the y-axis and a second fixed charge Q2 located a distance b units down the y-
axis.  What is the electric field (as a vector) a distance c units down the +x-
axis?  (See Figure 13.8a on the next page).
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a.)  Remember, electric fields are not scalars--they have to be
treated like VECTORS.  In fact, this problem is very similar to the
electric force problem done in Part A-4.  The fundamental difference is
that the vectors involved here are electric field vectors.

b.)  We need to determine:

i.)  The direction of each electric field acting at (c, 0).
ii.)  The magnitude of each electric field acting at (c, 0).

iii.)  The x and y components of each field acting at (c, 0).
iv.)  The vector sum of those components.

c.)  Electric field directions at Point (c,0):

i.)  E. fld.
due to -Q1:
As a positive
test charge
would be ac-
celerated to-
ward -Q1, the
direction of
the electric
field at c due
to that
charge will
be toward -Q1
along the line
between -Q1
and Point
(c,0)--(see
Figure
13.8a).

ii.)  E. fld. due to Q2:  The direction of the electric field at Point
(c,0) due to the presence of Q2 is away from Q2 along a line between
the point and Q2 (see Figure 13.8a).

Note:  These electric field lines are exactly the opposite of the force field
lines shown in Figure 13.5a even though the charge distributions are the
same in both cases.  The difference: Figure 13.5a showed the electric forces
on a negative charge located at Point (c,0); Figure 13.8a shows the electric
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field vectors at Point (c,0).  An electric field direction is defined as the
direction in which a POSITIVE charge would accelerate if set free in the field
at the point-of-interest.  Because we are dealing with a negative charge in the
first case and an implied positive charge in the second case, the two figures
are mirror images of one another.

d.)  The magnitude of each electric field is determined using our
equation for the E. fld. magnitude of a point charge:

  
  
E1 = 1

4πεo

Q1

r1
2               and     

  
E2 = 1

4πεo

Q2

r2
2 ,

where r1 = (a2+ c2)1/2 and r2 = (b2+ c2)1/2.

Note:  The charge values used in these equations do not include their
signs (i.e., all are treated as being positive).  That is, the equations allow us to
calculate magnitudes only.  The directional nature of each electric field must
be determined by eyeballing the situation in relationship to the coordinate
axes provided within the system.

e.)  To put the electric fields into component form, we need to
determine the sine and cosine of both θ1 and θ2.  As we haven't been
given those angles, we need to use the same kind of trickery as before to
determine those sine and cosine quantities in terms of variables we
know (i.e., terms like a, b, or c).  Using the right triangles shown in
Figure 13.8a, we find:

i.)  For sin θ1:

sin θ1 = (opp. side)/(hyp.)

=  a/(a2+ c2)1/2.

ii.)  For cos θ1:

cos θ1 = (adj. side)/(hyp.)

=  c/(a2+ c2)1/2.

iii.)  Similarly:
sin θ2 =  b/(b2+ c2)1/2      and

cos θ2 =  c/(b2+ c2)1/2.
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FIGURE 13.8b
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E    = E   cos 0
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02

E    = E   sin 0
1,y 1 1

E    = E   cos 0
1,x 1 1

E    = E   sin 0
2,y 2 2

f.)  We are now in a position to write vectorially the sum of the
electric fields acting at Point (c,0).  This becomes:

(-E1 cos θ1 + E2 cos θ2) i + (E1 sin θ1 + E2 sin θ2) j.

i.)  Expanding the magnitude of E1 cos θ1 (see Figure 13.8b
below), we get:

        

    

E E
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r

x

o

o

o

1 1 1

2 2 1 2 2 2 2 1 2

2 2 3 2

1
3

1
4

1
4

1
4

,

/ /

/

cos

( ) ( )

( )

.

=

=
π +( ) +







=
π +

=
π

θ

ε
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Note 1:  The de-
fined value of r1 was

r1 = (a2 + c2)1/2.  It has
been used above be-
cause things are
about to get messy--
brevity here will help.

Note 2:  Reiter-
ation:  Although it
has already been
mentioned above, do
not become confused
between our use of E =
kQ/r2 to determine the
magnitude of one of
the many charges
contributing to the net
electric field and our previous use of the equation F = qE.   The latter assumes
we already know the net electric field as a vector at the point-of-interest.  In
such a case, determining the force on a charge must be done by including the
charge's sign when using F = qE.  As was stated above, the reasoning behind
that move is simple:  the electric field direction and the force field direction
are the same if the affected charge is positive; they are opposite if the charge
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FIGURE 13.9
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feeling the force is negative.  Including the charge's sign in qE ensures the
correct direction for F in all cases.

In the situation we are currently working with, WE DO NOT KNOW
THE NET ELECTRIC FIELD VECTOR at the point-of-interest (that is what
we are looking for).  As such, we must determine all field DIRECTIONS by
eyeballing and all field MAGNITUDES using kQ/r2.  Being magnitudes, all Q
values used in kQ/r2 must be positive.

ii.)  In expanded form (including "eyeballed" signs), the net
electric field vector becomes:

    
E i j=

π
−

+
+

+






+
+

+
+















1
4

1
2 2 3 2

2
2 2 3 2

1
2 2 3 2

2
2 2 3 2εo

Q c
a c

Q c
b c

Q a
a c

Q b
b c( ) ( ) ( ) ( )/ / / / .

g.)  Just as was the
case with the force
problem examined in
Part A, this exercise
would have been
considerably easier if
there had been more
symmetry.  If the
charge magnitudes had
been equal (Q) and the
distances a and b equal
(r), then both electric
fields E1 and E2 would
have had the same
magnitude and angle
and the electric field
diagram would have
looked like the one shown in Figure 13.9.

In this case, as before, the x components add to zero, the y
components equal one another, and the net electric field becomes:

    E = 2 [Qa/(4π  εo
r3)]j .

D.)  Electric Field Lines:

1.)  So far, we have dealt with the mathematics of electric fields
generated by point-charges evaluated at specific positions in space.  As useful
as this is, there is a more general way of representing electric fields that does
not depend so heavily upon mathematics.
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Q

Electric Field Lines for a Point Charge Q

FIGURE 13.10

2.)  Consider a point-
charge Q.  The arrows in
Figure 13.10 show the direc-
tions a positive test charge
would accelerate if put at vari-
ous points in Q's field.  In
other words, we have schema-
tically depicted the direction of
Q's electric field at selected
points.  These lines are called
electric field lines.

3.)  Assuming the elec-
tric field lines are constructed
symmetrically about the field-
producing charge, they tell us
two things:

a.)  The arrows give
us a sense of the direc-
tion of the electric field
in a particular region
(i.e., the field is upward
swooping to the left, or
whatever), and;

b.)  The relative distance between the lines gives us a sense of the
intensity of the field in a particular region.  That is, just as a topo-
graphic map sketches elevation lines that are close together where the
geography is very steep and far apart where the geography is flat,
electric field lines are close together where the electric field is very
large and far apart where the electric field is small.

i.)  This can easily be seen by looking at our sketch in Figure
13.10.  Close to Q the electric field is large and the field lines are
very close together; further out the electric field is small and the
field lines are spread out.

c.)  In a nutshell: the information provided by electric field lines is
qualitative, not quantitative.  If you know how to interpret them, they
give you a relative reading as to the intensity and direction of an
electric field in a particular region.

4.)  How to determine electric field lines if all one has is a sketch of the
charge distribution:
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Q Q

Point A Point B

direction of electric
   force on POSITIVE
       TEST CHARGE
            let loose at Point A

two equal charges

FIGURE 13.11a

a.)  Consider the two equal, positive charges:

b.)  As has been done in Figure
13.11a, start at one of the positive
charges and place either eight or
sixteen symmetric dots around the
charge (these dots will be used as
starting places--the number of
dots isn't important but symmetry
is if the resulting field lines are to
have any significance).

c.)  Begin at a convenient dot
(Point A on the sketch will do) and
ask the question:  "If placed at this
point, in what direction will a

Q Q

         acceleration direction of
test charge  due to right-hand field-
            producing charge Q

         acceleration direction of
test charge  due to left-hand field-
            producing charge Qnet field direction

FIGURE 13.11b

positive test charge accelerate as a consequence of its interaction with
the fixed, field-producing charges (in this case, the two Q's)?"

d.)  For Point A, both field-producing charges will push a positive
test charge to the left, so the electric field vector at Point A will be in the
-i direction.  Make a mental note of that.

Next, move a short distance along the line-of-force as experienced
at Point A and, upon coming to a likely spot, mentally place a positive
test charge at that position.  Ask, "In what direction will a positive test
charge accelerate if put at this position?"  Make a mental note of your
conclusion (in this case, due to the symmetry of the situation, the field
vector will again be in the -i direction).

This is all summarized in Figure 13.11a.

e.)  Take a sec-
ond point, say Point
B in Figure 13.11a,
and repeat the query
quoted in Part d.  In
this case, the left-
hand field-produc-
ing charge will
push the test charge
to the right and
upward while the
right-hand field-
producing charge
will push the test
charge to the left
and upward.  The
left-hand charge is
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+Q +Q

  the electric field lines for
two equal positive charges

FIGURE 13.11c

closer so its push will be greater.  The net push will be in the direction
approximated in
Figure 13.11b on the
previous page.

f.)  Continue this
process for all eight
dots, using any sym-
metry that might
make your task eas-
ier (if you know the
field lines at the top
five dots of the left-
hand charge, you not
only know the bottom
dots of that charge
but also all the lines
around the right-
hand charge).  The
final configuration is
shown in Figure
13.11c.

FIGURE 13.12

x = b

R

+Q on hoop

hoop

E.)  Electric Fields and Extended Charge Configurations:

1.)  To this point, all we have talked about have been point charges.
How does one deal with extended objects that are charged?  That is what we
are about to examine.

2.)  Consider a circular hoop of radius R with total charge Q distributed
uniformly on its surface.  Derive an
expression for the electric field intensity
(i.e., the electric field magnitude) a
distance b units down the x-axis (see
Figure 13.12).

a.)  Begin by defining a differen-
tial charge dq at some arbitrary po-
sition on the hoop.  That differential
charge will produce a differential
electric field dE at x = b.

b.)  Figure 13.13a shows the
differential charge dq positioned at



22

FIGURE 13.13a

dE

R

dq

b

r = (R  + b  )2 2 1/2

0
0

dE sin 0

dE cos 0

note that:
               sin 0 = R/(R  + b  )2 2 1/2

cos 0 = b/ (R  + b  )2 2 1/2

FIGURE 13.13b

dE

dq

x ydE

dq

dE

dE

dEyx

dE

side-view of hoop

(this angle 
  will be used
      later)

0

the top of the hoop
and the differen-
tial electric field
at x = b pictured
with components.
Additionally, the
distance between
dq and x = b is
defined as r and is
presented in
terms of the
known variables
R and b, and the
sine and cosine of
the angle θ is
defined.

c.)  We could
determine the x
and y components
of dE, then integrate each to determine the i and j parts of the net
electric field at x = b.  Or, we could be clever.

d.)  The being clever approach:  On the underside of the hoop, there
is another field-producing charge dq whose electric field at x = b ex-
actly mirrors the field
produced by our orig-
inal dq (see this in the
side-view of the hoop
presented in Figure
13.13b).  Notice that
when the two fields
are added together,
the y components add
to zero.  Put in a little
different context, if
we derive an ex-
pression for dE sin θ,
then integrate it, we
will end up with zero.

Knowing this, we
can forget the y
components and
focus solely on the x
components of the
field.
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e.)  The differential electric field in the x direction is:

 

    

dE
dq
r

dq

R b

b
R b

b dq

R b

x
o

o

o

=
π











=
π +( )











 +






=
π +( )













1
4

1
4

4

2

2 2 1 2 2 2 2 1 2

2 2 3 2

ε
θ

ε

ε

cos

( ) ( )

,

/ /

/

      

      

,

where dq, r,  and θ are defined above.  The only parameter in this
expression that varies is dq.  Noting that ∫dq equals the total charge Q
on the hoop (all we are doing is adding all the differential charges on
the hoop, the sum of which must be the total charge on the hoop), we
can write:
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f.)  Note that if we allow b to become very large, the electric field
should look like that of a point charge.  Why?  Because a hoop at great
distance looks like a point.  Setting b>>R, we find that our expression

reduces to 
  

1
4πεo

Q
b2 .  This is, in fact, the expression for the electric field

generated by a point charge.

3.)  It is not difficult to extend the hoop problem to that of a flat disk.  To
make the problem more interesting, though, we will assume that the charge
on our disk is not uniformly distributed.  In fact, let's assume it has a
surface charge density (i.e., a charge per unit area) of σ = (Q/R)r, where r is
the distance from the center of the disk to the point of interest, Q is the total
charge on the disk, and R is the disk's radius.  With those assumptions,
derive an expression for the electric field a distance b units down the x-axis.
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FIGURE 13.14

dE

r

dq =    dA

b

s = (r  + b  )2 2 1/2

0
0

dE sin 0

dE cos 0

R

note that:
               sin 0 = r/

cos 0 = b/

=    (2πr)dr

(r  + b  )2 2 1/2

(r  + b  )2 2 1/2disk

dr

a.)  Con-
sider a hoop of
radius r and
thickness dr on
the disk's face
(see Figure
13.14).  We al-
ready have an
expression for
the magnitude
and direction of
the electric field
along the x-axis
produced by a
charged hoop.
Acknowledging
that the field is
in the x direc-
tion and calling
the differential
charge on the hoop dq, we can fit that expression to this problem and
write (without vector notation):

                
  
dE

b dq
r bx

o

=
π +











( )
( ) /4 2 2 3 2ε

.

b.)  The only parameters that vary in this expression are dq and r.
To eliminate one of those parameters, we need to express dq in terms of
dr.  We can do this using the surface charge density function σ =
(Q/R)r.  With that, we can write:

    dq = σdA,

where dA is the differential surface area of the hoop.  Mathematically,
this will be the circumference of the hoop times its thickness, or:

 dA = (2πr)dr.

Using dA and substituting in σ = (Q/R)r, we get:

dq =      σ            dA
     = [(Q/R)r][(2πr)dr]
     = (2πQ/R)r2dr.
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c.)  Substituting dq into our electric field expression, we get:
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d.)  Remembering that this field will be in the +i direction and
noting that the limits of integration will be r = 0 and r = R, we can do
some canceling, re-write the expression, and solve:
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Note:  It is unlikely you would have known this integral.  As usual, you
could have dug deep into your bag of Calculus tricks and figured some exotic
way of doing the integral, or you could have used a book of integrals.  One
way or the other, 95% of a test problem like this is in setting up the problem.
Evaluation of the integral is just gravy.

e.)  If we hadn't already determined the expression for a hoop, we
would have had to do the above problem from scratch.  To see what that
would have looked like, follow along:

i.)  The charge dq in a hoop of radius r and thickness dr will be
the surface charge density times the hoop's differential area, or:

dq =      σ          dA
      = [(Q/R)r][2πrdr]
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= 2πQ

R
r2dr .

ii.)  The differential electric field dE in the x direction (in this
case, the net field generated by the charges of the hoop) will be:
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iii.)  This is the same expression we integrated above.

4.)  Are there steps to attacking problems like these?  Yes!

a.)  Everything springs from the electric field expression for a point

charge, or 
  

1
4πεo

q
r2 .

b.)  In such cases, define a differential point charge dq, then
determine the electric field (as a vector) it generates at the point of
interest.  Knowing the differential field for one, small, arbitrarily
defined bit of charge, integrate it to determine the total field produced
by all the bits of charge.

c.)  If there is symmetry, exploit it to cut down on the number of
integrals required for evaluation.

d.)  If the charge is defined in terms of a surface charge density
function (or a linear charge density function, or even a volume charge
density function), use that variable to relate dq to the geometry of the
structure.
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FIGURE 13.15
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FIGURE 13.16a
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dq =   dy
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note that:
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(y  + b  )2 2 1/2

(y  + b  )2 2 1/2

5.)  Another problem:
Consider a rod of length 2a
that has +Q's worth of charge
uniformly distributed over its
upper half and -Q's worth of
charge uniformly distributed
over its bottom half (see Figure
13.15).  Derive an expression
for the electric field intensity a
distance b units down the x-
axis.

a.)  Begin by
defining a differential
charge dq at some
ARBITRARY position a
distance y units up the
axis.  That differential
charge will produce a
differential electric field
dE at the point of interest.

Note 1:  We are trying to generate an expression for the differential
electric field at x = b due to any differential charge on the rod.  We need it
because we want to integrate over ALL dq's.  Never take the charge at an
endpoint or any other special point to be your arbitrarily chosen, differential
point charge.  If you do, quantities like y that should be variables will be
replaced by specific values (i.e., y = a) and the resulting expression will not be
general.

Note 2:  Notice
that y will vary from
point to point along the
rod, which means the
distance r between any
given dq and x = b will
vary.

b.)  Figure
13.16a shows a
differential
charge dq on a
differential
length of rod dy
positioned at an
arbitrarily cho-
sen coordinate y.
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FIGURE 13.16b

y

y

dEdE
y

ydE
xdE

ydE

dEx

note that  dE   =  dE   

symmetry in rod problem

The differential electric field dE at x = b is pictured with components.
Additionally, the distance r between dq and x = b is defined and pre-
sented in terms of the known parameter b and the variable y, and the
sine and cosine of the angle θ is defined.

c.)  As
was the case
in the previ-
ous problem,
it is to our ad-
vantage to
identify and
exploit any
symmetry
within the
system.  With
that in mind,
consider the
differential
field produced
by the charge
dq located at
coordinate -y
(see Figure
13.16b).
Looking at the figure, it is evident that the x components will add to
zero in this case, which means we can ignore that direction and focus
all of our attention on the y components of the field.

d.)  The y component of the electric field generated by dq at x = b
will be:

      
  
dEy = 1

4πεo

dq
r2 sin θ.

e.)  Using sin θ = y/(y2 + b2)1/2 and r = (y2 + b2)1/2, this becomes:
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f.)  What varies in this problem is y.  Unfortunately, the above
expression is in terms of dq, not dy.  That is, we need to express dq in
terms of dy.

To do so, let's define a linear charge density function (i.e., the
amount of charge per unit length on either the upper or lower half of
the rod).  We can do this in two ways:

i.)  Macroscopically:  Take the total charge Q on the upper half
of the rod and divide by the length a of that section, or:

       λ = Q/a.

ii.)  Microscopically:  Take the differential charge dq and divide
it by the length of the section of rod upon which it sits, or:

      λ = dq/dy
            ⇒     dq = λdy.

iii.)  Coupling the two expressions for λ, we can write:

      dq = (Q/a)dy.

g.)  Due to symmetry, doubling the net y component of the field
produced by the positive charge on the upper half of the rod will yield
the magnitude of the total electric field.  Doing so:

    

E dE

y
y b

dq

y
y b

Q
a

dy

Q
a

y
y b

dy

Q
a y b

y

o
y

a

o
y

a

o
y

a

o y

=

=
π +

=
π +







=
π +

=
π

−
+







∫

∫

∫

∫

=

=

=

=

2

2
1

4

1
2

2

2
1

2 2 3 20

2 2 3 20

2 2 3 20

2 2 1 2

   

   

   

   

( )
( )

( )

( )

( )

/

/

/

/

ε

ε

ε

ε 00

2 2 1 2 2 1 2

2 2 1 2

2
1 1

2
1 1

a

o

o

Q
a a b b

Q
a b a b

   

   

=
π

−
+







− −













=
π

−
+















ε

ε

( ) ( )

( )
.

/ /

/



30

FIGURE 13.17

an electron on the top-side of the 
 plate will affect other electrons 
  

e e

FIGURE 13.18

an electron on one side of the plate
   will NOT appreciably affect an 
electron on other side of the plate

shielding

e e

F.)   Shielding:

1.)  Consider a flat, conducting plate that is
attached to a generator designed to force negative
charge (electrons) onto the plate (see Figure 13.17).

a.)  When operating, the generator
continues to force negative charge onto the
plate until electrostatic repulsion finally stops
the charge flow.

b.)  Because the plate is flat, every charge
on the plate will repulse every other charge on
the plate.

c.)  When fully charged, the plate will have a relatively uniform
charge density   σ1 on its surface.

2.)  Consider that same flat conducting plate
mentioned above, but assume it is uniformly curved
(see Figure 13.18).  Again, the electron generator is
attached.

a.)  When operating, the generator again
forces negative charge onto the plate until
electrostatic repulsion finally stops the charge
flow.

b.)  Because the plate is curved, every
charge on the plate will not repulse every other
charge on the plate.  Why?  Because there is

FIGURE 13.19

  along ridges or at points, the 
 charge density is enormous as 
are the electric fields generated
                  by them

points and ridges

material separating the charges.  This effect is called shielding.

c.)  When fully charged, the plate will have
a relatively uniform charge density   σ 2  on its
surface.  But because the electrons on the right
side of the plate do not affect the electrons on the
left side, more electrons can be forced onto the
curved plate than onto the flat plate.  As such,
the curved plate's surface charge density   σ 2

turns out to be greater than   σ1.

3.)  Things get interesting when dealing with
pointed conductors (see Figure 13.19) . . . (note that the
following is also true of ridged conductors).  When
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FIGURE 13.20
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charged, shielding at the point's radically curved end produces an enormous
charge density at the point.  That, in turn, produces an enormous electric
field in the vicinity of the point.  This is the basis for lightning rods.

G.)  Electric Dipole Moment:

Note:  You will not be tested on the dipole moment material below.
Nevertheless, it is presented here because an analogous situation will be observed
when we talk about magnetic fields, and because it is customary to do so.

1.)  There are many situations in nature when the charge on a body
separates to produce what is called an electric dipole.  Examples:

a.)  Water (H2O), due to the way the hydrogens and oxygen bond,
produces a situation in which the oxygen-side of the molecule is
electrically negative while the hydrogen-side is electrically positive.

b.)  The two ends of a radio antenna act like a positive/negative
charge combination that oscillates back and forth as electromagnetic
radiation impinges upon the antenna.

2.)  To better understand the
concept of the electric dipole, con-
sider two equal but opposite charges
of magnitude q separated rigidly a
distance 2a units apart.  If that
charge is positioned in an external
electric field (see Figure 13.20), they
will each feel a torque and attempt
to align themselves with the field.
How large is that torque, assuming
the structure is at an angle θ with
the field (again, see Figure 13.20)?

a.)  The force on each
charge is qE (this is simply a
manipulation of the definition of an electric field).  The torques on the
charges will be equal and in the same direction (define r for both and
use your right-hand rule--the torques are in the same direction).  That
means the net torque will be twice the torque due to one force.
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FIGURE 13.21
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b.)  In this case, the magnitude of the vector r is a, the magnitude
of the force F is qE, and the angle between r and F is θ.  With all this,
we can write the magnitude of our torque calculation as:

      Γ = 2rxF
      Γ = 2(a)(qE) sin θ
          = (2aq)E sin θ.

c.)  This looks a lot like the magnitude of a cross product executed
between a vector whose magnitude is 2aq and the electric field vector E
(note that the angle between the
vector and E is θ).

d.)  Being clever, let's define a
vector whose direction is along the
line between the negative and
positive charges (see Figure 13.21)
and whose magnitude is 2aq.  If we
called this vector the dipole moment
p, the torque on the electric dipole
when in an electric field becomes:

ΓΓΓΓ=pxE.

3.)  In addition, in linear systems, potential energy functions are
useful whenever we want to calculate the amount of work a force field does as
a body moves from one point to another in the field.  We can do a similar
calculation with one-dimensional, rotational systems by substituting:

   U(r2) - U(r1) = -∫F.dr
by

  U(θ2) - U(θ1) = -∫ΓΓΓΓ.dθθθθ.

To do so, consider the following:

a.)  Assume an electric dipole is made by some outside force to
rotate from an angular position θ1 to an angular position θ2, where θ2
> θ1.  How much work does the electric field do during the motion?

b.)  The magnitude of the torque applied to the dipole by the electric
field when at an arbitrary angle θ is pE sin θ, but the direction of the
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torque in this case (i.e., the situation sketched in Figures 13.20 and
13.21) is negative.  How can we tell?  Because it attempts to force the
dipole clockwise--the direction we have defined as negative in the
context of rotational motion.  As the rotation itself is counterclockwise,
dθ is positive.

What does this mean?  When we do the cross product, the torque
and the angular displacement will be in opposite directions, which
means the sign of the cross product will be NEGATIVE.  Using this
information, we can write:

       

    

U U pE d

pE

pE

( ) ( ) ( sin )

cos

(cos cos ).

θ θ θ θ

θ

θ θ

θ

θ

θ
θ

2 1

2 1

1

2

1

2

− = − −[ ]
= −[ ]
= − −

∫
                    

                    

c.)  This equation implies that the potential energy provided to the
dipole by the electric field when the dipole is at an angle θ with the field
will be:

        U(θ) = -(p)(E) cos θ.

d.)  This expression is that of a dot product.

e.)  Bottom Line:  The potential energy wrapped up in an electric
dipole situated in an external electric field equals: 

             U(θ) = -p.E.

H.)   Addendum--Charges, Bonding, Insulators and Conductors:

1.)  Like energy, the concept of charge is a very strange duck.  That is,
we know when charge is present, we know how to generate free charge, we
can store charge, and we know how to use charge.  What we don't really
know is exactly what charge is. In short, when discussing the concept of
charge, we are limited to discussing characteristics.  The characteristics we
will be dealing with are summarized below:

a.)  Electrons exhibit the electrical property we associate with
negative charge.  Electrons are found in the orbital energy shells
surrounding the nucleus of atoms.  Electrons can exist by themselves
outside the atom (in that state, they are called free electrons).
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b.)  The charge on an electron is called the elementary charge unit.
It is equal to 1.6x10-19 coulombs in the MKS system, and 1 atomic
charge unit in the CGS system.

c.)  Protons exhibit the electrical properties we associate with
positive charge.  Although protons can exist outside atoms, they are
generally fixed in an atom's nucleus.

d.)  There is the same amount of positive charge on a proton as
there is negative charge on an electron.

e.)  An object is labeled positively charged if it has more protons in
its structure than electrons.  As protons are rigidly fixed at the centers
of a structure's atoms, this circumstance is achieved by somehow
removing electrons from the object leaving a surplus of protons.

f.)  An object is labeled negatively charged if it has more electrons
in its structure than protons.  This circumstance is achieved when
electrons are somehow placed on the structure creating a surplus of
electrons.

g.)  Positive charges attract negative charges.  Positive charges
repulse positive charges.  Negative charges attract positive charges.
Negative charges repulse negative charges.  In short, likes repulse
while opposites attract.

2.)  Bonding:

a.)  An atom's electrons distribute themselves in well defined
energy levels that surround the nucleus.  Electrons fill these levels,
more or less, from the inside out (that is, from close in to the nucleus to
farther out away from the nucleus).

b.)  In many cases, an atom will deal with the absorption of energy
by boosting one of its electrons into a higher energy level.  Assuming
that is NOT the case (i.e., assuming the atom is unexcited), the
outermost energy level in which electrons are found is called the
valence level.

c.)  In covalent bonding, an atom whose valence shell is not
completely full of electrons will group together with one or a number of
other atoms to share valence electrons in an effort to fill its valence
shell. This bonding through the sharing of valence electrons is
characteristic of insulators.
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charged rod
   (insulator)

Notice how the fixed protons stay
  uniformly distributed throughout 
  the sphere whereas the mobile electrons 
  migrate toward the rod's positive charge.

FIGURE 13.23

pith ball
   (conductor)
        attracted
           to rod
     (not to scale)

string

d.)  In ionic bonding, an ion (i.e., an atom that has either lost or
gained extra electrons producing a net positive or negative charge on
the atom) is attracted to an oppositely charged ion.  The most common
example of this kind of bonding is table salt--the combination of a
positive sodium ion (Na+) with a negative chlorine ion Cl-).  Ionic
bonding is not something we will deal with much.  It has been
included here for the sake of completeness.

e.)  Metallic bonding is similar to covalent bonding in the sense
that there is a sharing of electrons, but whereas valence electrons in
covalent bonding are shared by neighboring atoms only, valence
electrons in metallic bonding are shared by ALL of the atoms in the
structure.  That is, valence electrons are not constrained to stay
around their original atom--they have the freedom to wander
throughout the structure.  Conductors (metals) are metallically
bonded.  Electron mobility is the reason conducting materials heat so
easily, and why they can conduct electrical currents.

3.)  Electrostatic characteristics of conductors:  Rub a rubber rod (this
is an insulator) with a wool cloth and the rod will charge.  Bring the rod near
a small, metallically coated, styrofoam ball (such a ball, metallically coated
or not, is called a pith ball) suspended by a string.  What happens?

a.)  Initially, the ball will be attracted to the rod.  Why?

i.)  Let's assume the rod's charge is positive (i.e., electrons are
rubbed off the rod leaving a
preponderance of positive
charge).  The positively
charged rod will attract free to
wander valence electrons in
the metallically bonded pith
ball motivating them to accu-
mulate on the side of the pith
ball nearest the rod (see Figure
13.23).  As protons are fixed in
their respective nuclei, they
will not move remaining fixed
on the ball.

ii.)  With fixed protons on
the far side of the pith ball and
displaced electrons on the near
side, we will have induced an artificial charge polarization.
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iii.)  Because, on average, the pith ball's electrons will be closer
to the rod than are its protons, the attraction between the pith ball's
electrons and the rod's protons will be greater than the repulsion
between the pith ball's protons and the rod's protons.  The net effect
will be an attraction of the pith ball to the rod.

b.)  After the pith ball touches the rod, the pith ball will swing away
due to repulsion.  Why?

i.)  Electrons will be transferred from the pith ball to the rod
when the two touch.  Because the rod is covalently bonded, the
transferred electrons will stay exactly where the rod and pith ball
contacted.  That means that the rod's net charge will remain
positive (the contact point will be small), but now there will be
fewer electrons on the originally neutral pith ball making it also
electrically positive.  This net positive charge causes repulsion
between the pith ball and the positively charged rod, and the pith
ball responds by swinging away.

4.)  Electrostatic characteristics of insulators:  Rub a rubber rod with a
wool cloth and the rod will charge.  Bring the rod near a pith ball that is not
metallically coated (in this case, the uncoated, covalently bonded pith ball will
act like the insulator it is).  What happens?

a.)  As surprising as it may be, the ball will be attracted to the rod
just as it was when the pith ball was metallically coated.  What is
going on here?

i.)  The covalently bonded pith ball does not have the kind of
electron mobility that would have been the case if it had been a
metallically bonded conductor, but it does have electrons that move
about in their orbits.

ii.)  Using the terribly inaccurate Bohr model of the atom (i.e.,
electrons moving in perfect circles about a fixed nucleus) to get a
visual feel for the situation, the average (mean) position of an
orbiting electron is normally at the center of the nucleus.  That is,
the electron will occupy one side of its orbit as much as it does the
other side (remember, electrons move at speeds upwards of 100,000
miles per second), so its average position over time is at the atom's
center.  This position is on top, so to speak, of the atom's protons,
which is why atoms generally appear to be electrically neutral.

iii.)  When the positive rod comes close, the pith ball's electrons
are attracted and end up spending more time in their orbital mo-
tion on the rod's side of the atom.  In other words, there is a polar-
ization that occurs inside the atom (see Figure 13.24).  Although
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atom

this polariza-
tion is small
(the offset
distance
must be less
than the ra-
dius of an
atom--ap-
proximately
a half
angstrom, or
.5x10-10 me-
ters), the at-
traction of
the pith bal-
l's closer
electrons is
greater than
the repulsion of its farther away protons, and the net effect is that
the pith ball moves toward the rod.

iv.)  This attraction will be strong enough to pull the pith ball to
the rod, but it might not be strong enough to rip electrons off the
pith ball and onto the rod.  If that be the case, the pith ball will hold
onto the rod, acting as though there was a slight bond between the
two.  That bond is called a Van der Waal force.  An excellent ex-
ample of this effect is found when a balloon is rubbed on hair, then
placed against the wall.  In such an instance, the balloon will stay
on the wall until ions in the air can pluck the free charges off the
balloon, allowing it to release from the wall and fall to the ground.

v.)  If there happens to be enough free charge on the rod,
electron transfer will occur just as it did with the metallically
coated pith ball.  After touching, the ball will repulse and will move
away from the rod.

5.)  A path that allows electrons to freely flow onto an object or off of an
object is called a GROUND SOURCE.  Motors and other electrical devices can
have static electricity build up on their chassises.  A device that has this
problem has a third prong on its power cord.  That prong is attached to a wire
that is, itself, connected to the chassis of the device.  In a wall socket, the hole
into which this prong fits (the bottom hole) is connected, quite literally, to a
pipe that goes into the ground (often it is a plumbing pipe).  This is called a
ground connection.  If the chassis charges up positively, electrons will be
drawn from ground to neutralize the build-up.  If the chassis charges
negative, that negative charge will drain off via the ground connection.  So
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knowing all of this, is there some clever way that you can act like a ground to
charge a metallic object?  The answer is yes.

a.)  Bring a charged rod close to the metallic surface you want
charged.

b.)  Electrons on the metallic surface will rearrange themselves,
depending upon whether your rod is positively or negatively charged.

c.)  Once the polarization has occurred (this will be instantaneous),
touch the side of the metal object that you wish to affect.  If you touch the
side on which positive charge predominates, you will act as a ground and
electrons will flow from you onto the surface.  With what is now a
preponderance of negative charge, the surface will be negatively charged
when the rod is removed.  Touch the other side of the surface and
electrons will flow off the surface leaving it electrically positive.  The kind
of charge that is left on the object all depends upon where you touch and
ground the object.

QUESTIONS

13.1)  Consider the three charges
shown in Figure I (see sketch for
dimensions).

a.)  What is the net electrostatic
force on the -500 µC charge?

b.)  Where would we have to put
the -500 µC charge (assuming it was
mobile) if we wanted the net
electrical force acting on it to be zero?

c.)  Remove all three charges.  Place -q1 at x = 0 and +q2 at x = 3
meters.  Assuming the magnitudes of the two charges are the same
(I've labeled them differently to delineate between the two), draw a
sketch of the electric field versus position graph for the set-up.  That is,
what will the electric field function look like (in graphical form) for
both positive and negative values of x?



Ch. 13--Static Electric Forces and Fields

39

point at (-a,-b)

FIGURE II
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13.2)  A -5x10-8 coulomb charge is placed on a particle of mass 2x10-4 kg
that resides in outer space (i.e., ignore gravity).  When the particle is placed
in an electric field, a net force of 3x10-3i newtons is felt by the particle.

a.)  What is the magnitude of the electric field?
b.)  What is the direction of the electric field?

13.3)  Figure II shows two charges q1 and
q2 as they are positioned relative to a
coordinate axis.

a.)  Using the variables provided,
derive an expression for the net electric
field as it exists at point (-a, -b).

b.)  Assume a = .4 meters, b = .3
meters, q1 = 7 µC, and the magnitude of

the second charge q2 = 5 µC.  Determine a numerical solution for the
net electric field at the point (-.4, -.3).

c.)  A -.012 µC charge is placed at position (-.4, -.3).  What is the net
electrostatic force experienced by the charge?

13.4)  A sphere charged to -.04 coulombs is found to levitate when placed
in an 800 volts/meter electric field (note that a volt/meter is the same as a
newton/coulomb).

a.)  In what direction is the electric field?
b.)  What is the mass of the sphere?

13.5)  The diameter of a typical hydrogen atom is approximately 10-10

meters across.  The charge on an electron is the same as the charge on a
proton (one elementary charge unit is e = 1.6x10-19 coulombs) and the mass of
an electron is 9.1x10-31 kilograms.  If we assume that the electron follows a
circular path around the proton:

a.)  What is the electron's velocity magnitude as it "orbits" around
the proton (think about the KIND of motion the electron is executing)?

b.)  Determine both the electric force on the electron when in the
atom and the gravitational force on an electron when near the earth's
surface.  Take a ratio of the two and comment.

13.6)  Two unequal masses (assume m1 = 2m and m2 = m) have the same
charge q on them.  They are suspended by unequal lengths of massless
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thread (lengths L1 and L2 respectively) from a
common point such that when in equilibrium,
they share a common horizontal line (i.e.,
they are on the same level--see Figure III to
the right).  If mass m1 makes an angle with

the vertical of θ1 = 35o while mass m2 makes

an angle of θ2:

a.)  Determine θ2 (try N.S.L. on both masses and see what you can
cancel out).

b.)  Assuming mass m = .03 kg and q = 5.5x10-10 coulombs, what is
the distance R between the two masses?

13.7)  A cross-section of three long, parallel
lines of negative charge is shown in Figure IV to
the right.  If the linear charge density is the
same for all three lines, what do the electric field
lines for the system look like?

13.8)  A constant electric field can be pro-
duced by putting equal and opposite charges on

possible
    paths

FIGURE V
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charged parallel plates (cut-away)
        with electron entering

parallel plates.  When done, the electric field in the region between the plates
will be constant.  Two parallel plates are charged as shown in Figure V to the
right (the sketch shows a cross-section of the plates).    An electron (mass m =
9.1x10-31 kg and charge
magnitude q = 1.6x10-19

coulombs), having been
accelerated to a velocity of
4x104 m/s, enters the constant
electric field as shown in the
sketch.

a.)  On the sketch,
what direction is the
direction of the electric
field?

b.)  On the sketch,
in what direction will
the electron follow
(i.e., which path)?

c.)  If the electric field is too strong, the force on the electron will
send it crashing into one of the plates (which plate depends upon
which way the field is pointed).  Using the lengths shown in the



Ch. 13--Static Electric Forces and Fields

41

FIGURE VI
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sketch, what is the largest electric field the system can handle without
having it hit the walls?

13.9)  A thin, semi-circular rod has a linear charge
density of -kθ on its upper half and is mirrored on its lower
half (see sketch).  Assume k is a constant with appropriate
units.

a.)  What are the units for k?
b.)  Derive an expression for the electric field at the

semi-circle's center.

13.10)  A rod of length L has a uniform charge
density of -Q/L on it.  Assuming the coordinate
axes passes through the center of the rod (see
figure VII), determine the electric field at (L,L).  If
you can't do the appropriate integrals, at least set
up the problem.

13.11)  A proton is placed at x = b on the central
axis of a charged hoop (total charge -Q).  If the proton is released, it will
accelerate toward the hoop, pass through to the other side, slow, reverse
direction, then accelerate again back toward the hoop's center, etc.  In other
words, it will oscillate back and forth down the axis.  Is this motion simple
harmonic in nature and, if it is, what is the frequency of the oscillatory
motion?
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