TABLE OF CONTENTS

NOTES TO THE STUDENT

Chapter 13
STATIC ELECTRIC FIELDS
and FORCES

Coulomb's Law.. 1
Electric Fields.. 9
The Electric Field Generated by a Point-Charge... 11
Electric Field Lines.. 18
Electric Fields and Extended Charge Configurations... 21
Shielding.. 30
Electric Dipole Moment... 31
Addendum (charge, bonding, insulators and conductors)....................................... 33
QUESTIONS.. 38

Chapter 14
GAUSS'S LAW

Electric Flux ... 43
Gauss's Law in General ... 45
Gauss's Law in Practice--Spherical Symmetry... 46
More Fun With Spherical Symmetry... 49
One More Twist--Surface Charge Density... 53
Chapter 15
ELECTRICAL POTENTIALS and ENERGY CONSIDERATIONS

Energy Considerations and the Absolute Electrical Potential 73
Mathematics of Absolute Electrical Potential 74
Work and Voltage Differences .. 76
Electrical Potential and Constant Electric Fields 77
Electrical Potential of a Point Charge.. 80
Electrical Potential--System of Point Charges 83
Electrical Potential Derivation--Differential Charge Approach 84
Extended, Charged Objects ... 87
Deriving Absolute Electrical Potential in Spherical Symmetry 89
Deriving Absolute Electrical Potential in Cylindrical Symmetry 94
Deriving E-Field Fct. from Absolute Electrical Potential Fct 97
QUESTIONS .. 104

Chapter 16
D.C. CIRCUITS

Preamble .. 109
Electrical Circuit Elements--Definitions and General Information ... 111
Chapter 17
CAPACITORS

Capacitors in General ... 159
Definition of Capacitance... 162
Equivalent Capacitance of Parallel and Series Combinations 163
Current Characteristics of a Charging Capacitor 165
RC Circuit Time Constant .. 168
Derivation--Capacitance of Parallel Plates 169
Dielectrics ... 172
Chapter 18
MAGNETIC FIELDS

A Small Matter of Special Relativity .. 187
Relativistic Length Contraction and Charges in Motion 188
Some Early Observations ... 189
Magnetic Ore ... 189
Magnetic Field Lines .. 190
Magnetic Field Vector B ... 190
Apparent Cause of Magnetic Fields--Charge in Motion 191
Direction of Magnetic Field Produced by Current-Carrying Wire 191
The Bar Magnetic--Electron Spin and Domains 193
The Earth's Magnetic Field .. 194
Solar Winds .. 195
Ampere's Law--In General .. 196
Ampere's Law and a Long, Straight, Current-Carrying Wire 197
Note About Vector Nature of Magnetic Fields 199
Ampere's Law and a Long, Straight, Current-Carrying Coil 201
The Law of Biot Savart ... 204
Biot Savart--Examples ... 206
Force on Moving Charge in Magnetic Field 210
Force on a Current-Carrying Wire in a Magnetic Field 212
Magnetic Fields and Current-Measuring Meters 216
The Galvanometer .. 219
The Ammeter .. 219
The Voltmeter ... 220
QUESTIONS.. 222
A Lone Resistor in an AC Circuit .. 272
Inductor and Resistor in an AC Circuit.. 273
Frequency-Dependent Resistive Nature .. 273
Inductive Reactance .. 274
Low Pass Filter ... 276
Phase Relationship .. 276
Capacitor and Resistor in an AC Circuit .. 277
Frequency-Dependent Resistive Nature .. 277
Capacitive Reactance ... 278
High Pass Filter ... 280
Phase Relationship .. 280
Capacitor, Inductor, and Resistor in an AC Circuit 281
Phasor diagrams .. 281
Impedance--the Concept ... 283
Impedance Magnitude.. 283
Phase Shift .. 283
Resonance Frequency of an RLC Circuit .. 284
Summary of Circuit Elements in AC Circuits 286
Impedance Matching and Transformers .. 286
QUESTIONS ... 290

Chapter 21
SEMI-CONDUCTORS and RADIOS

Semi-conductors--"p-types" and "n-types" ... 293
Diodes and the Production of AC .. 295
The Diode Bridge--the Full Wave Rectifier .. 297
Radio Circuits--Sending Stations ... 300
Production of Electromagnetic Radio Waves 300
Flip-off. .. 300
Radio Circuits--the Receiving End ... 302
The Receiving Antenna .. 302
Tuner Circuit	... 303
Amplitude Modulation	.. 304
Frequency Modulation	.. 305
Speakers:--How They Work	.. 305
The Speaker Circuit	.. 306
Radio Circuit--Summary/Nutshell	.. 307
Amplification	.. 307
The Transistor	.. 308
Transistor in Circuit as Amplifier	.. 310
Transistor Types: n-p-n and p-n-p	.. 311
Radio Circuit With Amplification	.. 311
QUESTIONS	.. 313

Chapter 22
RELATIVITY

Newtonian Physics and Inertial Frames .. 315
Light as a Wave Traveling Through Vacuum of Space 315
Ether ... 316
The Infamous Michelson-Morley Experiment ... 316
Einstein's Special Theory of Relativity.. 319
Einstein's Three Assumptions .. 319
Consequences of Constant Speed of Light ... 322
Time Part of Fabric of Space ... 323
Minkowskian Geometry and Riemann space... 324
Synchronized Clocks and Lattices of Meter Sticks.................................... 324
Time Dilation .. 325
Relative Motion--The Chimp and the Scientist ... 327
Space-Time ... 329
Explanation of Time Dilation .. 330
Length Contraction .. 330
Space-Time Diagrams .. 331
World Lines and Events ... 332
Simultaneity and Length Contraction--the Pole and the Barn Paradox ... 332
Simultaneity: Lightening Flashes and the Train 334
Einstein's General Theory of Relativity .. 337
Warped Space, Flat Space .. 337
Acceleration Fields--Newton's Theory ... 338
Acceleration Fields--Einstein's Theory ... 339
An Astronomical Verification ... 340
The Twins Paradox and Special Relativity 341
The Twins Paradox and General Relativity 342
Solar Evolution, Black Holes, and Warped Space-Time 343
The Ultimate Thrill: A Jump into a Black Hole 346
QUESTIONS .. ---

CHAPTER REVIEWS

Review Prologue ... 349
Chapter 13--STATIC ELECTRIC FIELDS AND FORCES 351
Chapter 14--GAUSS'S LAW .. 354
Chapter 15--ELECTRICAL POTENTIALS 357
Chapter 16--DC CIRCUITS ... 360
Chapter 17--CAPACITORS .. 363
Chapter 18--MAGNETIC FIELDS ... 366
Chapter 19--FARADAY'S LAW .. 370
Chapter 20--AC CIRCUITS .. 374

A.P. Preparation
MULTIPLE CHOICE TESTS

Multiple Choice Tests Prologue .. 379
Multiple Choice Test I .. 381
Notes to the Student

ABOUT THE TEXT BOOK:

1.) This is the second volume of a two volume set. The material presented is electricity, magnetism, and a for-fun, off-the-wall chapter on relativity.

2.) Just as was the case at the end of the first volume, there are multiple choice tests at the end of this book designed to allow you to study for a year-end exam or A.P. test. The questions on those multiple choice tests are not strictly Advanced Placement-type questions. In fact, some of them have been included strictly for the sake of reminding you about the material you have covered during the semester. Read the instructions and suggestions for use when the time comes.

ABOUT THE CLASS:

1.) It is now second semester. From where I am sitting, nothing has changed. You may well think, "Ahh, the transcripts have been sent out to colleges and I don't have to worry about grades any more." Folks, I have never worried about your grades. My intention from the beginning has been to educate you in the ways of physics. That is exactly what I will continue to do... with a warning. The second semester material (electricity and magnetism) is interesting, it has great demonstrations, and due to its sometimes abstract nature, will be the most difficult material you will run into in this class. That is not to say you can't handle it. That is not to say I won't try to keep things light and fun. It is to say that this is material you cannot neglect. If you get lackadaisical and fall behind, you might as well kiss your fanny good-bye (no joke). And believe me, there is nothing that can ruin the second semester of your senior year faster than having this particular monkey on your back. In short, this stuff doesn't have to ruin your life, but it will if you don't keep awake and continue plugging.

2.) Assignment deadlines: Nothing has changed from the first semester.

3.) Cheating: Cheating is never acceptable. Cheating in the second semester of your senior year is not only unacceptable, it's STUPID. Your transcripts have been sent off to your colleges. The school has also assured those colleges that you are not morally or ethically challenged (how's that for p.c.). Don't do anything that will necessitate the school having to retract that state-
ment. Believe me, getting a 20 on a test is infinitely better than cheating, getting caught, and having your miserable arse thrown out of school a month before you're suppose to graduate.

4.) Final exam: Look forward to it.

5.) Dropping the class: Not likely at this late date. Once past Christmas, you're all mine.

Parting Shot:

Some of the most interesting, mind boggling material and demonstrations of the year are dealt with during the second semester. Some of the hardest material is also covered during that time. I wouldn't want to be accused of overstating the fact, but my advice to you comes in the form of a Zen quote that never was: Treat your studies in this class with the attention of a person facing death. And with that happy note, charge on!