INDEX

acceleration
angular, 240
average, 56
centripetal, 119-121
definition of, 56
instantaneous, 57
sign significance, 59-62
velocity vs. time graph, 58
angular acceleration
average, 240
instantaneous, 241
of massive pulley, 271
torque and Newton's Second Law, 269
angular displacement, 236
angular momentum
in general, 291-297
in orbital systems, 314
angular velocity
as function of translational velocity, 241-242
average, 236
instantaneous, 239
sign significance, 237-239
anti-derivative, 46
Atwood machine
energy considerations, 186
N.S.L. with massive pulley, 272
beats, 376-377
Brahe, Tycho, 307
center of mass
area mass-density fct., 202
for continuous masses, 199
for discrete masses, 198
frame of reference, 204, 225-230
in general, 197-203
volume mass-density fct., 200
centrifugal force, 124
centripetal acceleration
definition of, 116
derivation of, 119-122
centripetal force
deadman's curve, 114
hammer throw, 113
in general, 110-122
inclined curve, 116
M.O.B. maneuver, 110
planetary motion, 113
tires on a road, 112
chain rule, 31-33
coefficient of friction
kinetic, 90
static, 92
collisions
elastic, inelastic, and perfectly inelastic, 218
in general, 209-220
with energy conserved, 217-219
conservation of energy
derivation of modified version, 175185
in celestial systems, 323
in multi-body systems, 185-187
in rotational systems, 284-290
symmetry in celestial systems, 328329
conservation of momentum
derivation of modified version, 205209
in general, 205-220
conservative force
commentary, 164
example--gravity, 157-160
in general, 160
cross product
direction of, 16, 22
in polar notation, 15
in unit vector notation, 17
matrix evaluation, 18
physical significance, 20-21
right hand rule, 17
curl, 38-40
del operator
definition of, 34
used on potential energy fct's., 174175
derivatives
a geometric approach, 30
families of fcts., 29
formal definition, 27
Gauss's Law, 37
general rules, 30
notation, 26
partial derivatives
in theory, 33
slope of a tangent, 26
the chain rule, 31,33
the del operator
the curl, 38
the divergence, 36
the gradient, 35
the del operator, 34
vector fields, 36
differential displacement dx, 30
differential displacement vector
in polar notation, 146,148
in unit vector notation, 144, 150
differential time interval dt, 30
displacement from time-dependent
velocity function, 56
displacement from velocity vs. time graph, 55
divergence, 36-37
Doppler shift, 377-381
dot product
in polar notation, 12
in unit vector notation, 13
physical significance, 14
energy
a definition of, 153
gravitational potential energy (general fct.), 169, 321
gravitational potential energy (near-Earth fct.), 162
gravitational potential energy and rotating systems, 283
in center of mass frame of ref., 227
in collisions, 218
energy (con't.)
in orbital systems, 324-329
in rotational systems, 281-290
in the rotation of a pinned beam, 284
in vibrational system, 349
of a rolling ball
from center-of-mass perspective, 287
from pure-rotation perspective, 288
rotation and translation combined, 285-290
rotational kinetic energy, 249
spring potential energy, 172
translational kinetic energy, 153
equilibrium and rigid bodies, 266
fictitious forces
centrifugal force, 124-127
linear, 127-128
forces
centripetal, 110
derived from potential energy fct., 174-175
frictional
kinetic friction, 90
static friction, 92
gravitational, 87
normal, 88
push-me pull-you, 92
tension, 89
freefall with friction, 106-110

Gauss's Law
differential form, 37
gradient, 35
gravitation
energy considerations, 323-328
energy symmetry, 328-329
inside a massive object, 317
Newton's Law of, 309-312
potential energy
multibody systems, 322
potential energy fct. for, 321

Hooke's Law, 172, 336
ideal spring, 171
impulse
definition of, 195
the integral form, 224
impulse, the integral form
when work/energy won't do, 224-225
inertia, 122
integral
area under curve, 43
differential interval, 44
notation, 45
theoretical basis, 46
integrals
Examples, 47

Kepler's Laws
in general, 312-317
Law of Areas, 313
Law of Orbits, 312
Law of Periods, 315
Keppler, Johannes, 307
kinematics
equations derived, 64-69
graphical relationships, 67
projectile motion
horizontal displacement, 75
in general, 72-79
maximum height, 77
preliminaries, 73
time of flight, 75
touchdown velocity, 77
velocity at max. height, 76
simple examples, 69-72
statement of, 62-64
two-dimensional motion, 72-79
kinetic energy
derivation of, 151-153
rotational, 289
translational, 153
mass
area density fct., 202, 252
gravitational, 123
inertial, 122
linear density fct., 254
volume density fct., 200, 253
moment of inertia
area mass-density fct., 252
chart showing various forms, 257
moment of inertia (con't.)
for a continuous mass, 251-256
for discrete masses, 249-251
in general, 248-256
linear mass-density fct., 254
the parallel axis theorem, 251
volume mass-density fct., 253
momentum
conservation of, 205-219
definition of, 195
vector addition of, 196
momentum and energy
what when, 222-224
momentum and impulse, the integral form when work/energy won't do, 224-225

Newton's Laws
a statement of, 85-87
types of forces, 87-92
Newton's Second Law
angular acceleration, 269
approach to use,
approaches, 93
examples
Atwood Machine with massive pulley, 272-274
ball rolling down incline, 274
centripetal motion, 110-119
gravitational force inside massive object, 319
in a pendulum system, 351
incline plane with massless
pulley, 99-106
orbital motion, 312
rigid bodies, 266
translational motion only, 94-110
with Kepler's Third Law, 316
free body diagrams, 94
non-linear acceleration (freefall
with friction), 106-110
rolling objects
summary of approaches, 281
rotation and translation combined, 270-281
rotation viewed from center of mass
perspective, 274-276
rotation viewed from pure rotation perspective, 276-278
rotational analogue, 269-281
the formal approach, 94-98, 99-104

Newton's Second Law (con't.)
the seat-of-pants approach, 98, 104-
106
time dependent velocity, 128-131
torque and pure rotation, 269-270
Newton, Sir Isaac, 85, 307
parallel axis theorem, 251
potential energy
derivation for known conservative
force, 166-173
for an ideal spring, 172
gravitational
preamble, 160-163
in general, 160-174
Newton's general gravitational fct., 321
with work/energy theorem, 164-166
power
definition of, 187-188
units, 188
projectile motion, 72-79
radian measure, 235
resonance
in a string system, 362
in an air column, 373
in general wave motion, 361
sound in a steel bar, 369
standing waves
constraints test, 372
rigid bodies, 266-269
rolling
angular and translational motion
related, 241-242
rolling with sliding (skidding)
the bowling ball problem, 297-300
rotational kinematics, 242-246
rotational parameters
a plug for, 246-248
scalar
definition, 1
simple harmonic motion
mathematics of, 336-340, 352
slope of a secant, 25
speed
average, 51
instantaneous, 52
standing waves
in a column of air, 373-376
in a steel bar, 369-371
on a string system, 362-368
systems of units, 88
torque
direction of, 263
in general, 261-266
magnitude of, 262
rotational version of Newton's
Second Law, 269
to calculate
by definition, 263
by F perpendicular, 265
by r perpendicular, 263-265
vectors
direction of, 2
example of, 1
graphical manipulation, 3
graphical representation, 2
in polar notation, 5
in unit vector notation, 7
magnitude of, 2
multiplied by scalar, 4
polar to unit vector, 11
resultant, 3
unit vector to polar
in general, 9
quadrants problem, 10
velocity
angular, 236
definition of, 52
direction of, 53
instantaneous, 53
magnitude of, 53
position vs. time graph, 54
sign significance, 59
time dependent
frictional freefall, 106-110
general, 128-131
vibrational motion
amplitude of, 335
angular frequency of, 341
criteria for, 333
displacement, 335
force functions, 335
frequency of, 335
vibrational motion (con't.)
in an ideal spring, 333
period of, 335
periodic motion, 335
simple harmonic motion
angular frequency, 340-342
derivation of, 336-340
energy within, 349
phase shift, 342-349
summary, 349-350
simple harmonic motion, 335
simple pendulum, 350-352
waves
definition of, 355
Doppler shift
in astronomy, 380
frequency of, 359
longitudinal waves, 357
mathematical characterization of, 360
nodes and anti-nodes, 359
period of, 359
reflection of, 358
resonance
explanation of, 361-362
sonic boom, 379
standing waves
constraints test, 372
in a column of air, 373-376
in a steel bar, 369-371
on a string system, 362-368
superposition of, 359
transverse waves, 357
velocity of, 359
wave train
longitudinal, 356
transverse, 355
wave-length of, 359
work
definition, 139
differential displacement
in polar notation, 146,148
done by variable forces, 143-151
due to frictional forces, 140, 142
due to normal forces, 141
due to variable force
differential displacement in polar notation, 148
work (con't.)
due to variable force
differential displacement in unit vector notation, 144,150
sign significance, 143
work/energy theorem, 151-157

