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Chapter 10

GRAVITATION

A.)  Introduction--A Little History:

1.)  The study of gravitation is a particular favorite of elementary physics
texts because it embraces all of classical Newtonian physics in one giant, special
case.  As such, prepare to meet your old favorites: Newton's Second Law,
centripetal acceleration, conservation of energy, exotic potential energy functions,
conservation of angular momentum . . . all the goodies.

2.)  One special topic within this chapter of special topics is the work of
Johannes Kepler.  In 1601, Kepler essentially absconded with the celestial
observations of just-deceased Tycho Brahe (Brahe was the last great astronomer
to make observations without the use of a telescope).  It took years, but Kepler's
analysis of Brahe's data laid the mathematical foundation for what are now
known as Kepler's three laws of planetary motion.  We will spend a little time
examining these laws later.

3.)  The main event in this chapter will be centered on the work of Sir Isaac
Newton.  In 1665, Newton began to muse about the moon and its orbit around the
earth.  A brief summary of his preliminary thoughts on the famous apple is
presented below (you won't be tested on this summary):

a.)  The acceleration of a freefalling apple near the earth's surface is
9.8 m/s2, where the apple is approximately 4000 miles from the earth's
center.  The centripetal acceleration of the moon as it orbits the earth is
.002722 m/s2 (this he determined knowing the moon's period of revolution,
the distance from the earth to the moon, and the fact that the moon's
acceleration is centripetal), where the moon is approximately 240,000
miles from the earth's center.

b.)  Force is proportional to acceleration (this was to become his
second law), which means that:

Fapple α aapple
and Fmoon α amoon.
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c.)  Since gravitational force decreases as one gets farther away from
the earth, the relationship between gravitational force and the distance r
from the earth must be inversely proportional.  Assuming that r might be
raised to an exponent other than one, it must be true that:

Fapple α 1/(rapple)n

and Fmoon α 1/(rmoon)n.

d.)  Putting the observations in Parts b and c together, we conclude that:

aapple α 1/(rapple)n

and                                  amoon α 1/(rmoon)n.

e.)  Taking the ratio of the two expressions, then putting in numbers yields:
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f.)  The exponent n that allows this to be an equality is n = 2.

g.)  With that observation, Newton concluded that the gravitational
force exerted between any two objects (the earth and moon or the earth and
an apple or whatever) must be inversely proportional to the square of the
distance between the two objects (i.e., Fα 1/r2).

Note:  Newton originally abandoned this analysis for a number of years
because the then-accepted distance between the earth and moon was incorrect
and, hence, his calculation yielded an n value that was not a whole number.  It
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FIGURE 10.1a
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was not until a more accurate measurement was made that he went back to his
theory and, lo and behold, things worked out.

B.)  Newton's Gravitational Law (in general):

1.)  From the observations and analysis summarized in the previous
section, Newton concluded that any two masses will be attracted to one another
due to a force he called gravity.

Note:  He didn't like this idea very much.  Why?  Because he couldn't see any
good reason why two bodies, simply by virtue of the fact that they happen to be
massive, should be attracted to one another.  He put forth the idea only because
attraction seemed to exist and because he couldn't come up with a better
explanation for the phenomenon.  In fact, it wasn't until Einstein that an alternative
explanation for gravitational effects (eg., objects falling toward the earth when
released, the moon orbiting the earth, etc.) was presented to the world.

We use Newton's theory of gravity because it is a model that works.
Nevertheless, it is generally conceded that gravitational forces do not, in reality,
exist (gravitational effects exist but the force postulated by Newton . . . no!).  We'll
talk about Einstein's view later.

2.)  The magnitude of Newton's gravitational force is proportional to the
mass of the two attracting bodies and inversely proportional to the square of the
distance between the center of mass of each.

a.)  Newton's relationship in its most general form is:

      Fgrav = G
  

m1m2

r2 (-r),

where m1 and m2 are the masses involved, r is the distance between the
center of masses of the two bodies, and r is a unit vector directed along the
line between the two bodies (this is called a radial unit vector).

Note:  A radial unit vector is drawn from the field producing mass toward
the mass experiencing the field (see Figure 10.1a).  The
NEGATIVE SIGN in front of the radial unit vector in
Newton's expression means that the gravitational force is
opposite the direction of r.  That is, it is an attractive force.

People get confused with the negative sign when they
use the force function in conjunction with a Cartesian
coordinate system because a negative sign doesn't mean the
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FIGURE 10.1
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same thing in that system as it does in a polar spherical system (i.e., the system
in which radial vectors exist).

Bottom Line: When doing gravitational problems, use Newton's expression
to determine the force magnitude, then decide whether the force direction is
positive or negative relative to the coordinate
system being used.

Example: The earth is placed at the
origin of a Cartesian coordinate system and the
moon is placed on the x axis to the left of the
earth (see Figure 10.1b).  In that case, the
magnitude of the attractive gravitational force
on the moon is Gmemm/x2, and the direction of
the attractive force is positive.

b.)  The proportionality constant G,
called the Universal Gravitional
Constant, is equal to 6.67x10-11 nt.m2/kg2.

c.)  Gravitational forces are always attractive.

Note:  Newton correctly reasoned that if a
gravitational-type force did exist, the net force on
an apple would be the vector sum of all the individ-
ual gravitational forces exerted by all the individ-
ual pieces of matter that make up the earth (see
Figure 10.2).

Newton circumvented the problem of
vectorially adding billions of tiny force quantities
by assuming that the net gravitational effect from
all of the pieces was the same as if all the earth's
mass was centered at the earth's center of mass.  In
that case, all he had to worry about was the point-
mass apple and the point-mass earth.

Unfortunately, there existed no mathematics
at the time from which he could justify that
assumption.  His solution?  He took a few years off from his physics pursuits and
created Calculus.  That's right, folks, that mathematical discipline you have been
banging your head into for the last year or two--it didn't exist before Newton.  He
made it up so he could finish a gravitation problem on which he was working
(actually, Leibniz independently created his own version at about the same
time).
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3.)  To see how well this force function matches experimental observation,
consider the following:  What is the gravitational force between the earth and a
100 kg man standing on the earth's surface?

a.)  The mass of the earth is 5.97x1024 kg while its radius is 6.37x106

meters.  According to Newton's force function, the magnitude of the force
felt by the man is:

Fg =               G                         [ mman              me            /               r
2               ]

= (6.67x10-11 nt.m2/kg2)[(100 kg)(5.97x1024 kg)/(6.37x106 meters)2]
= 9.81x102 newtons.

b.)  As the radius of the earth is enormous, this force will be ap-
proximately the same whether the man is located on the earth's surface or
some small distance above the earth's surface (i.e., a few hundred meters).
That is why we say the gravitational force on a body near the earth's
surface is, for all intents and purposes, a constant.

c.)  Because the gravitational force on a body will be nearly constant
near the earth's surface, we can define a function that allows us to
determine that force more easily.  Specifically, as the gravitational force is
proportional to the mass mman, we can write:

           Fgrav = mmang,

where g is the proportionality constant required to make the proportion an
equality.

i.)  Let's determine g by using the force value calculated with
Newton's general gravitational function.  According to our calculation,
a 100 kg man will feel a force due to the earth's gravitational
attraction equal to 9.81x102 newtons (in my country, we call this the
man's weight).

ii.)  If that be the case, we can write:

           Fg           =   mman  g

                 ⇒     9.81x102 nt = (100 kg)g
         ⇒     g = 9.8 m/s2.
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iii.)  This constant is equal to the experimentally observed value for
the gravitational acceleration of an object located near the surface of
the earth.

4.)  An additional example:  How far from the earth's surface must an
astronaut in space be if she is to feel a gravitational acceleration that is half
what she would feel on the earth's surface?

a.)  This is a tricky question in one respect only.  The gravitational
expression defined by Newton had a distance term in it, but the distance was
defined as that between the center of masses of the two bodies.  Our question
asks for the distance r between the astronaut and the earth's surface, not
between the astronaut and the earth's center of mass (i.e., r + re, where re is the
radius of the earth).  Using the appropriate distance, we can write:

    ∑ Fc :

               GmM/(r+re)2 = ma1
r = (GM/a1)1/2 - re.

b.)  We know that a1 is one-half the gravitational acceleration here on

Earth, or 4.9 m/s2.  We know that the universal gravitational constant G =
6.67x10-11 nt.m2/kg2, the mass of the earth M = 5.97x1024 kg, and the radius
of the earth re = 6.37x106 meters.  Using all this information, we can write:

      r = [(6.67x10-11 nt.m2/kg2)(5.97x1024 kg)/(4.9 m/s2)]1/2 - (6.37x106 m)
         = 2.64x106 meters.

This is approximately four-tenths of the radius of the earth.

C.)  Kepler's Laws:

Note:  Kepler determined all of his laws from observational data.  The
mathematical justifications presented below were generated much later.

1.)  Kepler's First Law:  Planets move in elliptical orbits having the sun at
one focal point.

a.)  This is called the Law of Orbits.
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b.)  Justification:  Using the conservation of angular momentum and
the conservation of energy with a potential energy function appropriate to an
inverse-square force field, it is possible to derive an expression for r(θ )
(i.e., the distance between the sun and a planet as a function of angular
position within the orbit).  Although it is not a pleasant integral to
evaluate, doing so yields a position function r(θ ) that turns out to be the
equation of an ellipse.

2.)  Kepler's Second Law:  A line joining any planet to the sun sweeps out
equal areas in equal times (i.e., dA/dt = constant).

a.)  This is called the Law of Areas.

b.)  Proof (although you won't be expected to reproduce this, it is in-
structional to see how it is achieved):

i.)  The area of a tri-
angle is one-half its base
times its height.  The dif-
ferential area of the tri-
angle shown to the right in
Figure 10.3 is:

dA = (1/2)(height)(base)
      = (1/2)     r       [r(dθ )]
      =   .5 r2(dθ ).

ii.)  IF the area swept
out by a planet were to
increase at a constant rate (i.e., dA/dt is constant) no matter where the
planet was in its orbit, then in a specific time interval (say, 10
seconds) the area swept out would always be the same.

Put another way, if we can show that dA/dt is a constant, we will
have proved Kepler's Second Law.

To start:
dA/dt = d[.5 r2dθ ]/dt

      = .5(2r)(dr/dt)dθ  + .5r2(dθ /dt).
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iii.)  A derivative implies that ∆ t goes to zero.  When that happens,
dθ   goes to zero.  Noting that   dθ /dt = ω , our expression becomes:

dA/dt = .5(2r)(dr/dt)dθ  + .5r2(dθ /dt).
= .5(2r)(dr/dt)(0) + .5r2(ω )

     = .5r2(ω ).

iv.)  We know that both r and ω  are varying in time, but does their
product vary in time?  To see,
consider the planet's angular
momentum.

       L  =     rxp
= r (mv) sin θ .

v.)  The component of veloc-
ity perpendicular to r is v sin θ .
It is also equal to rω  (see Figure
10.4).  As such, we can write:

    L  = r [m(v sin θ )]
                    = r [m    (rω )   ]

                 = mr2ω .

vi.)  Angular momentum for planetary motion is constant.  How do
we know this?  The only force exerted on the planet is gravitational.
That means the force is directed radially along the line between it and
the sun (we are assuming there are no other large celestial objects--
planets included--exerting a gravitational force on the planet).  If F is
parallel to r, the angle between the line of the two vectors is zero and
the cross product rxF is zero.  In other words, there are no external
torques acting on the planet and, hence, its angular momentum must
be constant.

vii.)  The planet's rate of change of area is:

dA/dt = (.5)r2 ω ,

whereas its CONSTANT angular momentum is:

   L = (m)r2ω .
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That is, both are proportional to the same quantity   r
2ω .

viii.)  Conclusion: The angular momentum of a planet is propor-
tional to r2 ω  and is a CONSTANT.  As dA/dt is also proportional to
r2 ω , it must also be a CONSTANT.  Thus, Kepler's Second Law is
secure.

Note:  As was stated at the beginning, this proof is not something on which
you will be tested.

3.)  Kepler's Third Law:  The square of the period of any planet about the
sun is proportional to the cube of the planet's mean distance from the sun.

a.)  This is called the Law of Periods.

b.)  Theoretical justification (the ins-and-outs of the following ARE
IMPORTANT--you will see problems based on it on your next test):

i.)  Consider two celestial objects (a planet and its moon or two
stars in a binary star
system     . . . whatever) of
arbitrary mass M and m
moving in circular orbits.
Assume also that M > m
(see Figure 10.5).

ii.)  In such cases, the
two bodies will not orbit
one another but rather
will orbit around the
center of mass of the two-
body system (our moon
appears to be orbiting a
stationary Earth only
because the earth is so
massive that the center of
mass of the earth-moon
system is inside the earth
about two-thirds of the way from the earth's center).

The analysis we are about to do is general to all elliptical orbits
even though we have chosen a circular path for simplicity.
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iii.)  The only force accelerating mass m is the gravitational pull
provided by mass M.  Noting that that force is centripetal, we can use
N.S.L. to write:

    ∑ Fc :

                GmM/(r+R)2 = mac
        = m(v2/r).

Note:  There will be times when the distance term in the centripetal force
expression and the distance term in the gravitational force expression will, to a
very good approximation, be the same.  This will not always be the case, as the
above situation shows.

iv.)  We can determine m's velocity by noting that in the time
required to orbit once (i.e., in a time interval equal to the planet's
period T), the object moves a distance equal to the circumference of its
path, or 2r meters.  The ratio of distance traveled to time gives us the
desired velocity magnitude.  Doing so yields:

    v = (2r)/T.

v.)  Substituting this into our force equation yields:

GmM/(r+R)2 = m(v2/r)
  = m[(2r/T)2/r].

vi.)  Dividing out the m terms and rearranging yields:

    T2 = [42/GM] [r(r+R)2].

vii.)  The question?  What happens if M is much larger than m?  As
r>>R (">>" means much greater than), our equation becomes:

           T2 = [42/GM]r3.

viii.)  This is Kepler's Third Law:  When dealing with planets (i.e.,
relatively small celestial objects) orbiting the sun (i.e., a much larger
celestial object), the square of the period (T2) will be proportional to
the cube of the mean distance (r3) between the sun and the planet (in
the case of elliptical orbits, this distance r equals the length of the
semi-major axis).
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Note:  Kepler's Third Law is the only one of his laws that is not exact.  It is
predicated on the assumption that one object is large while the other is small in
comparison.  In our solar system, the only planet that is even remotely close to
the sun's mass is Jupiter . . . and it is only a few percent of the mass of the sun.

4.)  The APPROACH outlined above is very powerful in generating useful
equations when dealing with orbital motion.  Knowing that T2 α  r3 is nice, but
your goal should be to understand how the result was acquired.

a.)  The technique was simple:  Use N.S.L. and the fact that the
motion is centripetal to generate an expression for the velocity of the body
in its orbit.

b.)  Note that the period and velocity are related by v = (2r)/T.

D.)  Gravitation Inside a Massive Object:

1.)  A seeming paradox arises when one tries to use Newton's gravitational
force expression to determine the force on a mass m1 when inside the earth (i.e.,
for r < Re).  Specifically, if the magnitude of that force is:

    Fg = Gm1me/r2,

what happens when the mass is at the earth's center and r = 0?  Mathe-
matically, the above force expression explodes.

2.)  The problem is solved by observing a peculiarity about inverse square
functions.

a.)  Assume a tunnel has been drilled completely through the earth.
An object of mass m is placed in the tunnel a distance r from the earth's
center.  What is the gravitational force acting on the body?

b.)  Before attempting to do this problem, draw a horizontal line
through the object and rotate it to generate two sections, one below and
one above the body.  Once done, construct the sphere upon which the object
sits (call its radius r).  The set-up is shown in Figure 10.6 on the next page.
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FIGURE 10.6
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c.)  What can we
say about the gravi-
tational force acting
on the body due to the
mass above the line
(note that this mass
is all outside the inner
sphere)?

i.)  The
direction of the
net force will be
vertically upward.

ii.)  The
magnitude of the
force will be the
consequence of a
relatively small
amount of mass
that is located, on
average, relatively close to the object.

d.)  What can we say about the gravitational force acting on the body
due to the mass in the lower section and outside the sphere?

i.)  The magnitude of this force will be downward; and

ii.)  Its magnitude will be the consequence of a relatively large
amount of mass that is located, on average, relatively far from the
object.

e.)  Although it might not be obvious, the downward force due to the
mass in the lower section outside the sphere will be equal in magnitude to
the upward force due to the mass in the upper section outside the sphere.

f.)  How can this be?  It is a consequence of the inverse square law.
Assuming symmetry, the net gravitational force on an object will be
generated only by the mass found inside the sphere upon which the object
rests.  If the gravitational force function had not been of the form 1/r2, this
would not be true (for those with nothing better to do, you might find it
amusing to try to prove this).
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FIGURE 10.7
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Note:  This holds true even when the object is on the earth's surface.  In
that case, the mass inside the sphere upon which the object rests is the total mass
of the earth.

3.)  With this observation, all we have to do is determine the amount of
mass inside the sphere upon which the object rests, then use that mass in our
gravitational expression:

         Fgrav = G(minside sphere)mobj/r
2.

4.)  The easiest way to determine minside is to calculate the proportion of

mass inside the sphere (i.e., Vinside/Vtotal = (4/3)r3/(4/3)re
3), then multiply

that by the total mass of the earth me.  The solution is minside  = (r3/re
3)me.  The

problem with this approach, at least from an instructional perspective, is that it
only works for homogeneous bodies.  The approach presented below works for
any homogeneous or inhomogeneous body as long as there is both symmetry and
a known volume density function for the system.

a.)  Assume the earth is homogeneous with a constant volume density
function ρ  equal to:

         ρ  = me/Ve
 = me/[(4/3)re

3],

where me is the earth's mass, re is

the earth's radius, and (4/3)re
3 is

the earth's total volume.

b.)  Consider the spherical shell
of radius a and differential
thickness da (see Figure 10.7).  The
differential volume dV of the shell
equals the surface area of the shell
(4a2) times the shell's thickness
da.  Written mathematically, this
is:

       dV = (4a2)da.
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c.)  The differential mass dm in the differential volume dV equals:

            dm = ρdV.

Substituting ρ  and dV into the above expression yields:

        dm =  [me/[(4/3)re
3]] [(4a2)da]

          = (3me/re
3)a2da.

d.)  Summing all the dm's between a = 0 to a = r will give us the total
mass inside the sphere upon which the body sits.

5.)  Using all this in conjunction with Newton's universal gravitational
equation yields:
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6.)  In other words, though the force between any two bits of the system is
proportional to 1/rbit

2, where rbit is the distance between the two bits, the ex-
pression that characterizes the overall gravitational force on a body situated
somewhere inside a larger structure is a linear function of r, where r is the radius
of the sphere upon which the body sits.  Being linear, that function equals zero at
r = 0, just as we would expect.

7.)  This approach works even when a body is symmetric but
inhomogeneous (the earth, for instance, is not a uniformly solid object).  In such
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cases, the approach is exactly as presented above with the variable dm equaling
ρ dV.  The only alteration is in the fact that ρ  is not constant for such problems--
it must be defined as a function of r.

E.)  Potential Energy and Gravitational Fields:

1.)  Until now, our energy dealings with gravity have been solely from the
perspective of a body near the earth's surface.  That is, we have assumed a
constant gravitational force field and have defined an appropriate gravitational
potential energy function for the situation (i.e., a potential energy function that is
linear--mgy--and that has a floating zero potential energy level).

In actuality, the earth's gravitational force field varies, diminishing as we
get farther and farther away from the planet.  The field is still conservative, but a
linear potential energy function is no longer appropriate.  In short, a different
potential energy function must be derived.

2.)  To determine a force field's potential energy function, we need to
determine the amount of work the field does as a body moves from the zero
potential energy point to some arbitrary point in the field.  In the case of gravity,
the zero point must be at infinity (that is where the gravitational force due to the
field producing body is itself zero).

To make the calculation simple, assume that the field producing mass m1
is at the origin of our coordinate axis and that m2 moves in from infinity along
the x-axis to a position r units from m1 (this means that r in this equation is the
magnitude of the distance between m1's center of mass and m2's center of mass).
Mathematically, this operation looks like:
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3.)  The negative sign should not be upsetting if you remember that po-
tential energy functions make sense only when used in the context of WF = -∆UF.

That is, only changes of potential energy have any meaning.  As long as the
potential energy change between two points yields the net work done on a body by
the field as the body moves from the one point to the other point in the field, all is
well.  If there happens to be a negative sign in the expression that defines the
potential field, so be it.

Big Note:  The potential energy defined by this potential energy function is
not zero at the earth's surface--it is zero at infinity.  As such, a body resting on
the earth's surface has potential energy.  Don't forget this when using the
conservation of energy equation.

F.)  Potential Energy Wrapped up in a System of Bodies:

1.)  To determine the two-body, gravitational potential energy function in
the section above, we used the definition of potential energy to determine the
amount of work gravity did on a body that was brought in from infinity to some
arbitrarily chosen point r.

In its most general form, that calculation is denoted as:

 U(r) - U (∞) = -∫F.dr.

Using the above form, the scalar expression derived for gravity was:

   U(r) = -Gm1m2/r,

where r was effectively the distance between the centers of mass of the two bodies.

2.)  The question arises, "How much potential energy is wrapped up in a
system of masses?"  To answer this question, we must extend our thinking just a
bit.  Specifically:

a.)  Assume we want to assemble a three-mass system, the first mass
of which is m1.

b.)  We have already derived an expression for the amount of potential
energy the system will have after m2 moves from infinity to a position a
distance r1,2 units from m1.  That expression is:
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U1(r1,2) = -Gm1m2/r1,2.

c.)  Continuing in this vein, if a mass m3 is brought in from infinity to
a distance r1,3 from mass m1 and a distance r2,3 from mass m2, the
ADDITIONAL gravitational potential energy provided to the system due to
the presence of this new mass will be:

     U2(r1,3) + U3(r2,3) = (-Gm1m3/r1,3) + (-Gm2m3/r2,3).

d.)  The total potential energy of the system will therefore be:

Utot = -Gm1m2/r1,2 - Gm1m3/r1,3 - Gm2m3/r2,3.

Note 1:  It doesn't matter which mass is placed first or which is brought in
last, this expression will always be the same.

Note 2:  If there were a fourth mass brought in, the expression would have
six terms in it.

3.)  It is interesting to note that the potential energy of this system is
negative.  What significance has this?  Negative potential energy means the
system is bound.  Put another way, if you want to disassemble the system, you
will have to provide to the system energy in the amount of Gm1m2/r1,2 +

Gm1m3/r1,3 + Gm2m3/r2,3.
This is called the binding energy of the system.  It is defined as the amount

of energy required to disassemble the system so that the parts no longer interact
with one another.  In the case of gravitational systems, it is the amount of energy
required to push the masses infinitely far apart.

Note:  The idea of binding energy is especially important in nuclear physics
where there is an interest in the amount of energy required to spring a subatomic
particle loose from its atom.

G.)  Orbital Motion and Energy Considerations:

1.)  It is interesting to see how energy distributes itself  within an orbit-
related system.  Specifically, consider a small mass m (a satellite) orbiting in an
approximately circular path at a distance r1 units from the center of a much larger
mass M (a planet).  How much potential and kinetic energy is in the system,
assuming that M is stationary?
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FIGURE 10.8
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a.)  Mass m's potential energy is 
  
U(r) = −G

mM
r

.

Note:  The r term in the potential energy function is defined as the
distance from the center of the field-producing body (mass M in this case).

b.)  Mass m's kinetic energy is KEr = (1/2)mv2.

i.)  To finish this calculation, we need v.  Consider Newton's Second
Law and the fact that the motion is centripetal.  Taking the direction
of the gravitational force to be positive, we can write:

SFc:
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ii.)  Note that the r terms on either side of this expression are the
same.  Why?  The r term on the left side of N.S.L. is defined as the
distance between m's center of
mass and M's center of mass (if
the bodies are far apart and
considered point masses, this is
the distance between the two
bodies).  The r term on the right
side of N.S.L. is, according to the
definition of centripetal
acceleration, the radius of the
circle upon which m travels.
This is always measured from
the SYSTEM'S center of mass
(see Figure 10.8).  Because M is
so much more massive than m
in this case, the distance
between m and the system's
center of mass is essentially the same as the distance between the
two bodies, and the r's are equal.
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iii.)  Solving for v, we get:
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iv.)  Finishing off the kinetic energy expression yields:

KEr = (1/2)mv2
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c.)  Putting it all together, we get the total energy (often referred to as
the mechanical energy) Etot of the system as:

    Etot =       KE        +         U
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2.)  How much energy is required to move a satellite from a circular orbit of
radius r1 to a circular orbit of radius r2, assuming the change occurs slowly (i.e.,
the satellite moves in a slowly changing series of circular paths).

a.)  The temptation is to use the modified conservation of energy
equation and write:
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Note that this expression needs both the radii and the velocities required
for the satellite to sustain each orbit.

b.)  BUT, because the sum of the potential and kinetic energy for a

body moving in a CIRCULAR ORBIT is 
  
−G

mM
2r

, we can instead write:
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FIGURE 10.9
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c.)  What's nice about this relationship is that you don't have to
determine the velocity of the satellite in the final orbit.

Note:  This amount of energy is not the same as the amount of energy
required to take a satellite sitting on the earth and put it into orbit.  In that case,
you need to determine the required kinetic energy, given the orbit's radius, and
add that to the potential energy difference (i.e., ∆U = (-Gmsme/rs) - (-Gmsme/re))
between the initial and final positions of the satellite.  How so?  -∆U equals the
amount of work gravity does on the body as it ascends; minus that amount (i.e.,
+∆U) equals the amount of work you must do to overcome gravity.

3.)  In some cases, a more interesting way to look at energy considerations
in the context of circular orbital motion is to see how the kinetic energy, potential
energy, and total energy play off one another.

a.)  To begin with, notice that for a particular circular orbit of radius
r1, there must be a given amount of potential energy (-GmM/r1), kinetic
energy (GmM/2r1), and total energy (-GmM/2r1) in the system if a body is
to stay in that orbit.

Put another way, there is only one kinetic energy/ potential energy/ total
energy combination, given
m and M, that will allow a
body to hold a particular
orbit.

 
b.)  To see how these

energy quantities relate,
consider the Energy versus
Orbital Radius graph
shown in Figure 10.9 to the
right.

c.)  Notice that as the
radius of the motion gets
larger (i.e., the bodies get
further apart), the orbiting
body's kinetic energy must
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decrease (i.e., it slows down) and its potential energy must increase (i.e.,
becomes less negative).

d.)  This means the binding energy, as measured by the potential
energy in the system, is decreasing (getting closer to zero).  Put another
way, as a satellite gets farther away from its orbital center, it takes less
energy to release it from its orbital bonds.

4.)  One last observation:  If we have a satellite moving in a circular orbit
around the earth, and we want to put it into a higher velocity orbit, how can we
use the satellite's thrusters to make the adjustment?

a.)  The temptation is to shoot the thrusters backwards, thus applying
a forward force on the satellite.  The problem here is that in doing so, we
will force the satellite into elliptical motion--something we do not want to
do.  But even if we apply the thrusters slowly and gently, we won't get the
result we want.  Doing so will result in forcing the satellite into an orbit
that is farther away from the earth.  With less gravitational force being
applied to the satellite (i.e., less centripetal force acting on the satellite),
the satellite's motion will require a lower velocity to hold its orbit.  In
short, the satellite will ultimately have to slow down to hold orbit.

From a little different perspective, firing the thrusters backwards will do
positive work on the system. Putting energy into the system makes the total
energy move closer to zero (remember, the total energy of an orbiting system is
negative--adding energy moves the total energy from a large negative number to
a smaller negative number).  Looking at our graph, we see that when the total
energy moves toward zero, the orbital radius increases (that is what we
concluded above) and the kinetic energy (hence velocity) decreases.

b.)  We know that higher velocity is associated with higher kinetic
energy.  That means we need to do whatever is required to increase the
body's kinetic energy.  Looking at our energy versus orbital radius graph
(Figure 10.9), we see that putting the satellite into a smaller radius orbit
will increase the satellite's kinetic energy and associated velocity.

c.)  The trick, therefore, is to shoot the thrusters very gently in the
forward direction, thereby doing negative work.  As the satellite slows,
gravity will pull the satellite in closer to the earth, but it will do it
uniformly throughout the satellite's motion and as a consequence, the
satellite will continue in nearly circular motion.

Following on, the satellite's gravitational potential energy will decrease
(i.e., increase negatively) as the satellite gets closer to the earth.  Although part
of that potential energy loss will be caused by the satellite's absorption of
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energy due to the negative work done by the thrusters, part of the potential en-
ergy loss will be due to a conversion of potential energy into kinetic energy.
That is, the kinetic energy of the satellite will increase (and so will its velocity).

The observed increase of kinetic energy will not throw the satellite into
a bigger orbit as would have been the case if we had fired the thrusters
backwards.  Why?  Because firing backwards would have increased the
total energy of the system whereas firing the thrusters forward decreases
the total energy of the system.  The increase of velocity with diminished
orbital radius is due to potential energy converting itself into kinetic energy.
It is not due to extra energy being put into the system.

From an energy perspective, firing the thruster forwards does negative
work on the system.  When added to the negative total energy, this
increases the system's negative total energy.  Looking at our graph to see
what happens when the total energy becomes more negative, we find the
orbital radius decreasing and the kinetic energy (and velocity) increasing.

H.)  Energy Symmetry:

1.)  In the section above, we observed a kind of symmetry between a body's
orbital kinetic and potential energy due to the fact that the total energy of the motion
had to be conserved.  This idea of energy symmetry can be very useful in other ways.

2.)  As an example, consider a stationary body poised a distance ro units
above the earth's center.  Release the body and it begins to freefall (this is
obviously not an orbital problem--the body is freefalling vertically).  What does
its Kinetic Energy vs. Position graph look like?

a.)  We don't have a function for the kinetic energy of a freefalling body
as its position changes, but we do have an expression for a body's potential
energy as a function of position.  That function was used to obtain the
graph presented in Figure 10.10.  This graph is not a function of time.  It is
designed to show how energy is distributed when the body is at various
positions above the earth's surface.  Do not be put off by the fact that the
beginning position ro (the word beginning being a time-related description)
is found to the right of the so-called final position re.

b.)  As there is no initial kinetic energy, the total energy must equal the
initial potential energy in the system.  That is, Etot = Uo = -GmM/ro.
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FIGURE 10.11
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c.)  This is where
the symmetry comes
in.  We have a potential
energy versus position
graph, and we know
that the system's
potential energy and
kinetic energy must
always add to the
same number--the con-
stant total energy.
From symmetry, then,
the kinetic energy versus
position graph must be
constructed so that for
every potential energy
decrease, a corre-
sponding kinetic energy increase exists.

In other words, the general outline of our desired kinetic energy graph
must be a mirror image of our potential energy graph.

d.)  In summary, even though kinetic energy is a function of v2 and the
potential energy is a function of 1/r, the two functions are symmetric as
plotted.  Why?  Because the sum of the two evaluated at a particular point
must be a constant.

e.)  A graph of
the desired function
is shown in Figure
10.11.

f.)  Having said
all that, what would
the body's Potential
Energy vs. Velocity
graph look like?
Think about it if you
have the time!
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QUESTIONS

10.1)  You and a friend sit 5 meters apart on an ice pond assumed to be a
frictionless surface.  Your mass is 80 kg and your friend's mass is 60 kg.  If
Newton was correct, you will exert a gravitational force on your friend, and vice
versa (that's right, he maintained that gravitational forces act between all
massive bodies, even little bodies like you and me).  For the situation outlined
above, determine:

a.)  The gravitational force you exert on your friend; and
b.)  The resulting acceleration of your friend.

10.2)  Three bodies, each of mass m, orbit in such
a way as to create an equilateral triangle (see Figure I
to the right).  If the distance between each body is d,
determine the magnitude of the velocity of each body.

10.3)  The moon (mass 7.36x1022 kg and radius
1.74x106 meters) is approximately 3.82x108 meters
from the earth (mass 5.98x1024 kg and radius of
6.37x106 meters).  If we could fix the earth, stop the
moon, then allow the moon to freefall toward the
earth:

a.)  What would its initial acceleration be?
b.)  What would its acceleration be just before striking the earth?
c.)  How fast would it be moving when it reached the earth, assuming

the earth remained stationary during the freefall?
d.)  How would the problem have changed if the earth had not been

assumed to be stationary?

10.4)  A planet has a volume density distribution of ρ  = (mp/rp
4)r, where rp

and mp are respectively the radius and mass of the planet and r is the distance
from the planet's center to a point of interest.  Assume a tunnel is dug through
the planet.

a.)  Derive an expression for the gravitational force applied to a mass
m1 when at a distance r units from the planet's center (remember, r < rp).

b.)  Derive a potential energy function for the force determined in Part a.
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10.5)  A satellite travels in a circular orbit a distance 1.3x106 meters above
the earth's surface (me = 5.98x1024 kg and re = 6.3x106 m).  If the satellite's mass
is 400 kg;

a.)  How fast is it moving?
b.)  What is its period?
c.)  How much energy was required to put the satellite in orbit,

assuming it started from rest at the earth's surface (that is, assuming we
can ignore the earth's rotational speed).

d.)  How would the calculation in Part c have changed if we hadn't
ignored the earth's rotation?

e.)  For whatever reason, the satellite loses energy at a rate of 2x105

joules per complete orbit.  Assuming its radius of motion diminishes
slowly, how far from the surface will it be after 1800 revolutions?

f.)  For the situation outlined in Part e above, what is the magnitude of
the average retarding force acting during the 1800 orbits?

g.)  For the situation outlined in Part e, angular momentum is not
conserved as there is an external torque acting on the system (it is due to
the drag force acting on the satellite).  Modify the conservation of angular
momentum equation to determine the amount of time required for the
1800 revolutions (think about how the conservation of linear momentum
equation was modified to accommodate external forces acting over a time
interval ∆ t).

10.6)   A planet moving in an elliptical orbit has 2.5x1033 joules of kinetic energy
when at its closest point in its path around its star (this is approximately the kinetic
energy of the earth as it orbits the sun).  If we call this closest point rmin:

a.)  What quantities are conserved for the planet's motion?
b.)  The planet has a certain amount of potential energy due to its prox-

imity to the star.  Figure II on the next page shows the graph of the planet's
Potential Energy versus Distance from the star.  On the same axis, graph
both the planet's Total and Kinetic Energy versus Distance functions.
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FIGURE II
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