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Chapter 7

M O M E N T U M

A.)  Momentum and Impulse:

1.)  What parameters are important if you want to determine how relatively
large an applied force must be to stop a moving body in a given amount of time?

Answer?  The body's resistance to motion-change (i.e., its inertia . . . or mass)
and how fast it's moving (i.e., its velocity).

When Newton developed his Second Law, these insights motivated him to
multiply mass m and velocity v together to create a new vector.  He called it
momentum, he labeled it p (because he couldn't spell--he thought it was
pmomentum . . . just kidding), and he defined it as:

p = mv.

He then observed that the net force Fnet applied to a mass vectorially equals the
rate at which the momentum changes with time, or:

  Fnet = dp/dt                        (Equation A)
= d(mv)/dt
= m[dv/dt] + [dm/dt]v.

Setting dv/dt = a, and assuming the mass does not change in the system (i.e.,
dm/dt = 0), this equation becomes Fnet = ma--the form of Newton's Second Law

you have come to know and love.

2.)  Taking Equation A and multiplying both sides by dt yields:

         Fnetdt = dp.

The quantity Fnetdt is called the impulse and is equal to the differential
change of a body's momentum dp during the differential time period dt.  Over a long
period of time, assuming Fnet is constant, this equation becomes Fnet ∆ t = ∆ p.

3.)  Example:  A 2 kg sliding puck whose initial velocity-magnitude is v1 =

10 m/s strikes a wall at a 30o angle and bounces off (see Figure 7.1a).  If it
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leaves the wall with velocity-magnitude v2 = 10

m/s (that's right, we are assuming no
mechanical energy is lost during the collision),
and if the collision takes a total of .02 seconds
to complete, what is the average force applied to
the puck by the wall?

Note:  This is clearly an impulse problem.
The puck's change of momentum can be
determined, and the time over which the change
occurred is known.  All that isn't known is the
variable we are interested in--Fnet.

a.)  Momentum is a
VECTOR.  Whenever it is used
in a problem, you have to treat
it like a vector.  Figure 7.1b
shows the components of the
before-bounce momentum p1
and the after-bounce
momentum p2.

b.)  In the x direction, the
incoming momentum p1,x is:

p1 = mv1 cos θ .

Remembering that positive x velocities are directed toward the right while
negative velocities are directed toward the left, the x component  of the
outgoing momentum p2,x is:

p2 = - mv2 cos θ .

c.)  The velocity-magnitudes v1 and v2 are equal in this problem.
Calling both v for simplicity, the change of momentum in the x direction
(hence, the impulse in the x direction) is:
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          ∆ (px) =       p2,x       -      p1,x
        = (-mvcos θ ) - (mvcos θ )

         = -2 (mv cos θ )

    =  -2 (2 kg) (10 m/s) cos 30o

    = (-34.6 kg m/s)

⇒     Fnet,x = ∆ px / ∆ t
                   = (-34.6 kg m/s) / (.02 sec)

                                                                   = (-1730 nts).

d.)  Following a similar process in the y direction yields Fnet,y = 0  (try it).

Note:  The temptation for many students when first confronted with a
problem like this is to reason as follows: "The initial momentum is mv1 = 20

kg.m/s.  The final momentum is mv2 = 20 kg.m/s.  The difference between the two
must, therefore, be zero.  If that is true, the net force must be zero!"

This obviously doesn't make much sense--there has to be a force if the ball
is to change its direction.  The problem is that beginners often treat momentum
quantities as though they are scalars.  Don't be led astray.  Momentum must be
treated as a vector.  SIGNS COUNT!

B.)  Calculating the Center of Mass for a System of Discrete Masses:

1.)   Until now, we have analyzed situations in which moving objects have
been approximated as point masses (i.e., as structures that neither spin nor have
pieces moving internally with different speeds).  Even big objects like cars have
been treated like point masses (if you know the speed of the car's radio, you know
the speed of the car's transmission).  The question arises, "What about systems of
objects in which each part has its own velocity--two billiard balls colliding with
one another, or a rocket that blows into a known number of pieces while in
flight?"

In such cases, we need an approach that is not tied to the motion of a
specific body but that deals with the entire system.  What follows is the theoretical
basis for doing just that.

2.)  A qualitative description of the center of mass of a single object is "the
average position of the mass in the body."

a.)  A basketball, for instance, has its center of mass at the geometric
center of the ball.  No physical mass exists at that point--the basketball
is, after all, hollow--but the average position of the mass making up the
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ball is at the ball's geometric center (we are assuming the ball is
homogeneous--that it doesn't have a valve or any anomalies).

b.)  The center of mass of an object does not have to be at the geometric
center of the object.  Anyone who has ever tried lawn bowling knows that
when a lawn bowling ball rolls, it does not go straight.

The reason?  The center of
mass of the ball is off-set
from the geometric center of
the ball.

c.)  Examples of a few
other center of mass situa-
tions are shown in Figure 7.2.

d.)  An additional
characteristic of a body's
center of mass:  when an object
is thrown, its center of mass
will follow the parabolic arc
normally associated with a
free-falling object.  Other
points on the object will not follow such an arc.

i.)  Example:
Throw a toma-
hawk end-over-
end.  The tip of
the handle will
follow a convo-
luted path; the
center of mass
will follow a
parabolic arc.
Both paths are
simulated in
Figure 7.3.

3.)  A group of objects
also has a center of mass.
The x coordinate of a group's
center of mass is determined
by using the following equation:
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xcm = ∑  (mixi) / ∑  (mi)
                  = ∑  (mixi) / M,

where ∑  (mixi) is the sum of the product of each mass and its x coordinate (i.e.,
m1x1 + m2x2 + . . .  etc.) and ∑  (mi) is the sum of all the mass in the system (i.e.,
the total mass M).

Similar equations define the y and z coordinates of a body's center of mass,
relative to the coordinate axis used to define the body's position.

4.)  The best way to see how this works is
to do an example:

a.)  Consider the equal masses shown
in Figure 7.4a.  From the symmetry of the
situation, it should be obvious that the x
coordinate of the system's center of mass is
at x = 2 meters.  Checking this with our
math, we get:

xcm = ∑  (mixi) / ∑  (mi)
        = (m1x1 + m2x2 + m3x3)/(m1 + m2 + m3)

        = [(-1)(m) + (2)(m) + (5)(m)]/3m
           = 2 meters.

b.)  If the bodies had differing y coordinates, a similar operation would
have been used for the y direction and our final center of mass would have
been some ordered pair (xcm, ycm).

C.)  Calculating the Center of Mass for a Continuous Mass:

1.)  The center of mass is defined by a set of coordinates that identifies the
location of the average position of all the mass in a structure.

2.)  For a discrete set of masses, the x coordinate of the center of mass is xcm
= ∑  (mixi)/M, where M is the total mass in the system.

3.)  How do we deal with a situation in which the mass is not in lumps but,
rather, is continuously distributed throughout the structure?  To determine the x
coordinate of the center of mass for such a case, we must identify all of the
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differential mass (dm) having the same x coordinate, multiply that x by dm, sum
over all possible x's through integration, then divide by M.  In other words, when
dealing with an extended object:

      xcm = (1/M)∫xdm.

A similar expression holds for the y center of mass coordinate.

4.)  An example will help.  Determine the x
coordinate of the center of mass for a rectangular solid
of width a, height b, thickness t, and whose mass is M
(see Figure 7.4b).

a.)  Consider Figure 7.4c.  In that sketch, a
slab of differential width dx and differential
mass dm is drawn a distance x units from the y
axis (note that dm is all the mass x units out!).

b.)  To determine the x center of mass, we
must multiply x by dm, then integrate.  The

b
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y

FIGURE 7.4c

x

dm =   dV

dx

dV = bt(dx)problem?  We need some way of relating dm to its x
position.

c.)  The trick here is to define a volume-density
function ρ .  Because the mass of the structure is
homogenous (i.e., uniformly distributed throughout
the structure), the definition of ρ  allows us to write:

  ρ  = (mass)/(volume).

This density function can be expressed in two ways:

i.)  Looking at the entire structure macroscopically (i.e., as a
whole), the volume density can be written as:

          ρ  = M/abt,

where M is the solid's total mass and abt is its total volume.

ii.)  Looking microscopically, the volume density can be written as:

       ρ  = dm/dV,
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where dm is the differential mass wrapped up in the differential slab
and dV is the differential volume of the slab.

iii.)  The differential volume is:

 dV = (height)(thickness)(differential width)
       =      (b)            (t)                     (dx).

This means that:

ρ  = (dm)/(dV)
    =  (dm)/[bt(dx)] .

iv.)  Taking this last expression and solving for dm, we get:

dm = ρdV                        (Equation A)
        = ρ[bt(dx)].

This is the expression we will use to replace dm in the integral.

Note:  The relationship presented in Equation A is ALWAYS true.

d.)  We are now in a position to do the problem:
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e.)  Huzzah!  This is exactly what we would have expected for the x
coordinate of the center of mass of a rectangular solid.

Note:  As the thickness variable t canceled out in the problem, we did not
necessarily need to use a volume density function.  Noting that the differential
volume dV of our strip was equal to the differential surface-area dA (this equaled
bdx) times the body's thickness t (i.e., dV = b(dx)t), we could have ignored the
thickness term and instead defined an area density function σ  (i.e., the mass per
unit area ).  Using this approach:

    dm = σdA,

where dA is the differential face-area associated with the mass dm.  This ap-
proach will be used in the next example.

5.)  Next example:  Determine the y coordinate of the center of mass of a
solid, flat, thin, semi-circular plate of mass M and radius R.

a.)  How much mass is y units
up?  Figure 7.4d shows a strip of
differential mass dm with
differential thickness dy drawn a
distance y units from the x axis.

b.)  We can define σ  in two
ways: macroscopically and mi-
croscopically.

i.)  Macroscopically:

          σ  =
M/[(R2/2)]

= 2M/(R2),

where R2/2 is the area of the half-disk and M is its mass.

ii.)  Microscopically:

σ  = dm/dA,

where dm is the differential mass associated with the differential
surface-area dA.  This implies that:
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        dm = σdA.

iii.)  Using the variables provided in the sketch, we can write:

dA = (width)(height)
       =    (2x)       dy.

We need to relate x to y.  To do so, notice that x2 + y2 = R2.
Manipulating, we can write:

dA = [2(R2 - y2)1/2dy]
and

           dm = σdA
       = σ[2(R2 - y2)1/2dy].

c.)  We are now ready to integrate:
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D.)  Systems of Bodies and Their Collective Motion:

1.)  Although you won't be required to use the following material to solve
problems, there are some interesting consequences that come from the definition
of the center of mass.  Specifically, if discrete bodies in a system are moving, the
center of mass will also move.  For a one-dimensional situation:

xcm = ∑  (mixi) / M
     ⇒    Mxcm = ∑  (mixi)
         ⇒     M ( ∆ xcm/ ∆ t) = ∑  [mi ( ∆ xi/ ∆ t)]
              ⇒     M (vcm) = ∑  [mi(vi)]

     ⇒   Mvcm = m1v1 + m2v2 + m3v3 +. . .

In other words, the sum of the momenta of all the pieces within the system
will be equal to the momentum of a single particle whose mass M is the total
mass of the system and whose velocity is the velocity of the system's center of
mass.  Similar expressions can be determined for y and z momenta.

2.)  Taking this one step further, if the velocities of each of the various
pieces of a system change due to forces acting on them, the rate of change of the ve-
locities will be:

M ( ∆ vcm/ ∆ t) = ∑  [mi ( ∆ vi/ ∆ t)]
      ⇒  M (acm) = ∑  [mi(ai)]

     ⇒  Macm = m1a1 + m2a2 + m3a3 +. . .

The net force F1 on particle #1 (i.e., m1a1) added to the net force F2 on particle #2,
etc., will vectorially equal the total mass M of the system times the acceleration
of the system's center of mass.

3.)  The conclusion and importance of this section is simple: the motion of
any rigid, "extended" object (a car, a cannonball, whatever) can be legitimately
analyzed by treating it as though all of its mass were lumped together and
positioned at the body's center of mass.  This is the theoretical basis from which
we have been allowed to treat, say, a car as though it were a point mass.
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E.)  The Modified Conservation of Momentum Equation:

Note:   With the exception of the "bottom line," you will not be held re-
sponsible for duplicating any of the material you are about to read.  BUT, if you
don't understand what has been done in getting to the "bottom line," the end
result won't mean much and your ability to use it won't be worth a tinker's dam.

My suggestion: read the next section, not for memorization but for content.
Follow each step as it comes without projecting ahead.  When you finally get to
the end result, take the time to reread the section to be sure you know the general
trend and principles involved in the derivation.

1.)  Begin by considering a collision between two free (unconstrained)
masses.  Mass m1 moves in the x direction on a frictionless table.  It strikes a
second mass m2 that is moving in the -x direction and that additionally has a
rocket on its back that is constantly applying a force Fext to it.  Figures 7.5a and
7.5b directly below show the before and after set-up.

All the motion is in the x direction so we need not worry about subscripting the
momentum magnitudes with an x (we don't have to worry about confusing the
momentum in the x direction for that in the y direction--there is none in the y
direction).  With that simplification, we can write the momenta of masses m1 and
m2  just before and just after the collision as:

before:
p1,before = p1,bef i
p2,before = p2,bef i

after:
p1,after = p1,aft i
p2,after = P2,aft i.
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where p1,bef  stands for "the magnitude of the momentum of mass m1 before the

collision," etc.

2.)  Consider just the motion of m1 through the collision:

a.)  The net force acting on m1 in the x direction comes solely from the
strike it takes from m2 as the two collide (an
f.b.d. on m1 is shown in Figure 7.6).  As the
magnitude of the force varies (it starts out
very small at the beginning of the hit, gets
larger as the collision proceeds, then dimin-
ishes at the end), we will assume an average
collision force Fi and go from there.

Note:  Because the force Fi is generated from
the interaction of m1 with "other members of the

system" (in this case, the only other member in the
system--m2), this kind of force is called an "internal

force."  To highlight this, the subscript "i" has been
used to denote internal.

b.)  Assuming the collision takes time ∆ t to be complete, the impulse
equation (F ∆ t = ∆ p) written for m1 during the time ∆ t yields:

  -Fi ∆ t = (p1,aft- p1,bef)        (Equation A).

Note:  The force on m1 due to its collision with m2 is in the negative di-
rection, hence the unembedded negative sign in
front of Fi in the impulse equation.  (Notice I
haven't unembedded the momenta signs.)

3.)  Consider just the motion of m2
through the collision:

a.)  The net force acting on m2 in the
x direction comes from two sources (see
the f.b.d. shown in Figure 7.7):
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i.)  The force Fext,2 generated by the jet attached to m2 (the force is
subscripted "external" because it is provided by a source that is not
internal to the two-body system); and

ii.)  The internal force magnitude Fi  generated by m2's collision
with m1.

Note:  The internal force on m2 is the Newton's Third Law counterpart to
the internal force acting on m1 (for every force there is an equal and opposite

reaction force, etc.).  That means we can use the same symbol for that force as
was used in Equation A, with the exception that the unembedded sign must be
positive.

b.)  As was the case with mass m1, the collision takes time ∆ t to
complete.  The impulse equation F ∆ t = ∆ p written for m2 during the time
∆ t yields:

  Fi ∆ t - Fext,2 ∆ t = (p2,aft- p2,bef)        (Equation B).

  4.)  We would now like to vectorially add up all the impulse quantities
acting on all the bodies within the system to get the system's net impulse.  In this
case, that is tantamount to adding the left-hand side of Equation A to the left-
hand side of Equation B, etc.

a.)  Doing the addition yields:

(- Fi ∆ t) + (Fi ∆ t - Fext,2 ∆ t) = (p1,aft- p1,bef) + (p2,aft- p2,bef).

b.)  Noting that all the impulses provided by internal forces add to
zero, the final equation can be rearranged to look like:

       - Fext,2 ∆ t = (p1,aft - p1,bef) + (p2,aft - p2,bef).

c.)  Putting all the before momenta on the left-hand side of the
equation while leaving all the after momenta on the right-hand side, we
get:

 p1,bef + p2,bef - Fext,2 ∆ t = p1,aft + p2,aft.
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d.)  Written in a more general way:

                   ∑  pbef + ∑  (Fext ∆ t) = ∑  paft.

e.)  The general equation shown above is called the MODIFIED
CONSERVATION OF MOMENTUM equation. It maintains that the sum
of the momentum of all the parts of a system before a collision will equal
the sum of the momentum of all the parts after a collision UNLESS there
are impulses ( ∆ Fext ∆ t) due to external forces acting on the system during
the time interval ∆ t.

Note 1:  Everything done above has been for motion in the x direction.  A
similar equation holds true for both y motion and z motion.  In other words, the
most general form of this equation is:

     ∑  pbef + ∑  (Fext ∆ t) = ∑  paft.

which, in turn, can be expressed as:

∑  pbef,x + ∑  (Fext,x ∆ t) = ∑  paft,x,
∑  pbef,y + ∑  (Fext,y ∆ t) = ∑  paft,y,
∑  pbef,z + ∑  (Fext,z ∆ t) = ∑  paft,z.

Note 2:  Even though these equations were derived from a special situa-
tion--a collision--they are true in general.  The net momentum of a system in a
particular direction will remain the same throughout time--it will be
CONSERVED--if there are no external forces acting in that direction.

That is not to say there cannot be change within the system.  In fact, there
may be changes in the momentum of individual parts of the system due to
interaction-forces between those members, but the net momentum (as a vector) of
the system will not change with time if there are no external forces acting on the
system in the appointed direction.

5.)  The BOTTOM LINE and a few conclusions:

a.)  If there are no external forces acting in a particular direction, Fext ∆ t

= 0 and ∑ pbef = ∑ paft in that direction.

b.)  Even if there are relatively small external impulses (the impulse
gravity exerts, for instance), collisions and explosions characteristically
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take so little time that ∆ t is minuscule and   F∆t   is tiny and the total
momentum of the system in a particular direction just before the collision
will equal the total momentum of the system in that direction just after the
collision.  In such cases, momentum is said to be conserved through the
collision (even though this is technically a misuse of the word conserved).

Note that THIS IS TRUE ONLY if all pieces of the system are allowed
to respond to collisions freely.  If you take a ball and a wall as the system,
the ball hitting the wall will not see momentum conserved because the
wall is constrained--it is not free to respond to the impulse applied to it
(on the other hand, if the system is just the ball, it will not see momentum
conserved either--the wall will exert a very large external force to change
the ball's momentum over a very small period of time).

Bottom line:  Assuming external forces are small in a free mass
system, you can assume that the net momentum of a system is conserved
through the collision.

c.)  Because the x, y, and z directions are independent, it is possible for
momenta to be conserved in one direction and not in another.  An example:
a projectile in air.  The momentum in the y direction will change over time
because there is an external force acting in that direction (the force of
gravity).  If we ignore air friction, there are no external forces acting in the x
direction so momentum in that direction is conserved.

F.)  Collision Examples:

1.)  A one dimensional situation:  A puck of
mass m1 moving with velocity magnitude v1  strikes a
second puck of mass m2 moving in the opposite
direction with velocity 2v1  head on (see Figure 7.8).

a.)  What determines the direction each
mass goes after the collision?

b.)  What must the puck's mass ratio m1/m2 be if the two pucks are to
leave the collision in opposite directions with the same velocity magnitude
v?
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c.)  And, if a hard shelled bug happens to get squashed between the
blocks during the collision, how will this change the final velocities relative
to what would have happened if no bug were present during the collision
(obscure?  Yes . . . but informative . . . ).

2.)  And the answers are . . .

a.)  The first query is more of a conceptual question than anything else.
It asks, what determines what will happen after the collision?  The answer to
that depends upon the size of m1 and m2.

i.)  If m1 is a lot larger than m2, its momentum will carry through
the collision and the two will both proceed to the right with different
velocities.  In fact, if m1 is a whole lot larger than m2, its velocity will
change very little.  A determination of m2's velocity in that case is a
little tricky.  That kind of calculation will be treated at the end of the
chapter.

ii.)  If m2 is a lot larger than m1, its momentum will carry through the
collision and the two will both proceed to the left with different velocities.
Again, if m2 is a whole lot larger than m1, it's velocity will change very
little as it proceeds toward the left.

iii.)  If the two masses are comparable in size, they will reverse
themselves at collision and leave with velocities that conserved the total
momentum of the two-body system.

b.)  This second query assumes that the collision occurs and the two
masses respond by moving off in opposite directions but with the same
velocity magnitude v.  To determine the mass ratio that will motivate this
to happen, we need equations.

i.)  As both masses are free to respond to the impulse supplied by
the other during the collision, and as there are no enormous external
forces acting in the x direction during the collision, momentum will be
conserved through the collision.  Unembedding negative signs and
writing out the conservation of momentum expression, we get:
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                ∑ pbefore = ∑ pafter

            m1v1 - m2(2v1)  = -m1v + m2v          (Equation A).

ii.)  This gives us one relationship with four unknowns: m1, m2, v1,
and v.  We clearly need more equations.  At this juncture, all you can
do is hope that some information is given about the energy content of
the system.

iii.)  Although it is highly unlikely that such a collision will ever occur,
let's assume that the collision is elastic (mechanical energy conserved)
and see where that leads.  Observing that there are no potential energy
changes anywhere in the system, we can write the conservation of energy
expression as:

 
  

1

2
m1v1

2 +
1
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m2 (2v1 )2 =

1
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m1v

2 +
1

2
m2v2          (Equation B).

iv.)  After canceling out the 1/2 terms in the energy expression and
expanding, it is tempting to rewrite Equations A and B as:

         (m1 - 2m2)v1 = (-m1+ m2)v            (Equation A modified)

and (m1 + 4m2)v1
2 = (m1+ m2)v2  (Equation B modified),

then try to solve by writing v1 in terms of v from the momentum equation
and substituting that back into the energy equation.  The problem is that
this leaves us with the very unpleasant expression:

     
  
m1 + 4m2( ) −m1 + m2

m1 − 2m2











2

v2 = m1 + m2( )v2 .

v.)  Although this expression will allow us to solve for the mass
ratio, it is kinda ungodly.  Even more to the point, if we had been
interested in solving for, say, unequal final velocities (should that have
been the case), using that approach would have been even uglier.
Fortunately, there is a clever way to shuffle the variables so as to
create a third independent equation that is considerably easier to
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solve in conjunction with the momentum expression than was the
original pair.  That technique follows.

vi.)  ESPECIALLY TRICKY APPROACH (ETA):  For both conservation
equations, group the m1 terms on one side of the equal sign and the m2
terms on the other side of the equal sign so that:

m1v1 - m2(2v1)  = -m1v + m2v     (Equation A)

becomes

     m1(v1 + v)  = m2(v + 2v1) (Equation C)
and

  
  

1

2
m1v1

2 +
1

2
m2 (2v1 )2 =

1

2
m1v

2 +
1

2
m2v2          (Equation B)

becomes

        (1/2)m1(v1
2 - v2) = (1/2)m2(v2 - 4v1

2) (Equation D).

vii.)  The 1/2's cancel.  Notice that (v1
2 - v2) in the energy equation can be

factored and equals (v1 + v)(v1 - v), and that we can factor both sides of
Equation D.  We can also divide the left side of the factored version of
Equation D by the left side of Equation C, and the right side by the right
side, yielding:

     
  

m1 (v1 + v)(v1 − v)

m1 (v1 + v)
=

m2 (v + 2v1 )(v − 2v1 )

m2 (v + 2v1 )
.

Both mass terms and one of the factors on each side will cancel leaving:

     v1 - v = v - 2v1,
     ⇒           v = 3v1/2.

Putting this into the original momentum equation (Equ. A) yields:

       m1v1 - m2(2v1)  = -m1(3v1/2) + m2(3v1/2)
         ⇒     m1/m2 = 7/5.
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viii.)  In other words, this technique requires you to group velocities
associated with each mass, factor the energy equation, divide one
equation into the other, then use the resulting equation in conjunction
with the conservation of momentum expression to solve for the required
unknowns.  It sounds complicated, but it's a lot easier than trying to
deal with the squares in the original conservation of energy equation.

c.)  So what's the deal with the squashed bug?

i.)  To begin with, a problem similar to this was originally presented
as a conceptual question on a quiz given to the freshman physics class
at Caltech in 1999.  I've included it because students who are learning
physics for the first time don't generally have the time, experience, or in
many instances, inclination, to think creatively and deeply about exotic
problems.  This problem could be done mathematically by power-
grunting through it, or it could be taken apart conceptually by simply
using your head.  What you are about to read approaches the problem
from that latter perspective.  That is, the analysis you are about to read
will not highlight an approach that will always work for you whenever
you run into something exotic.  What you are about to read is more seat
of the pants thinking (versus algorithmic thinking).  In short, you aren't
going to be tested on this stuff, but do read it.  If I put you on a desert
island, gave you this problem, told you I'd be back in 24 hours with a
machine gun . . . and that you'd better have the correct answer for me, I
can guarantee you would sooner or later get past your belief that you
couldn't possibly figure out what was going on, would get into the
problem, and would begin to follow lines of thought that would be
similar to the ones you are about to read.  For you, for now, I'm doing the
think-work gratis.  Enjoy the luxury.

ii.)  The first thing to notice is that work has to be done to squash
the bug, so mechanical energy is no longer conserved (i.e., we are now
dealing with an inelastic collision).  That being the case, what do the
velocities do?  Well, at least one velocity must go down so that the total
final mechanical energy will be less than it was for the conserved
situation.  But if one must go down, the other must go down also.  Why?
Because momentum must still be conserved.

Think about it.  Let's assume that the total momentum of the
system before the energy-conserved collision occurs is 2 kg.m/s, and let's
say m1's after-collision momentum in that case is p1 = 6 kg.m/s and m2's

is p2 = - 4 kg.m/s (note that the total after-collision momentum is still 2
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kg.m/s . . . p1 + p2 = (6 kg.m/s) + (-4 kg.m/s) = 2 kg.m/s).  Now let's assume
that the collision is not conserved so that at least one of the after-
collision velocities, say that of m1, decreases.  That means the
magnitude of its after-collision momentum will also decrease to, say, 5.8
kg.m/s.  The only way the sum of the momentum after the collision will
equal the total momentum before the collision (remember, it was 2
kg.m/s) is if m2's momentum magnitude also drops (in this case, to -3.8

kg.m/s . . . now p1,new + p2,new = 5.8 kg.m/s + (-3.8) kg.m/s = 2 kg.m/s).  In
other words, if one momentum magnitude decreases, so must the other.
That means that both velocities must decrease.

iii.)  But by how much?  Though you probably wouldn't think to do so
on your own, at least not without a fair amount of cogitating, the easiest
way to determine this is to assign new final velocities (v2 for m2 and v3
for m1) and play with the momentum expression.  Noting that the initial
momentum is a constant (we'll call it c), and remembering that the
mass ratio implies that m1 = (7/5)m2, we can write the conservation of

momentum as:

initial total momentum = - m1v3 + m2v2
      ⇒     c = - (7m2/5) v3 + m2v2.

Dividing by v3 yields:

c/v3 = - (7m2/5)  + m2(v2/v3).

iv.)  Look at this expression and think.  If v3 decreases (relative to
its earlier value), as we've decided it must, then the left side of the
equation increases.  The first term on the right is a constant, so that
means that the second term on the right must go UP if the equal sign
is to continue to hold.  To do that, the denominator of that piece must
be smaller than the numerator, which means that v2 (the velocity
associated with m2) must be larger than v3.  In other words, both
velocities will change, and the velocity associated with m2 will change
the least (if it's bigger than v3, it's closer to the original v which means
it hasn't changed as much as has v3).

UNDERSTAND, this is all a consequence of the need for the
system's momentum to be conserved coupled with the relationship the
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velocities have to satisfy with respect to energy.  For a given situation,
there is only one set of velocities that will do the trick.  That's just the
way nature works.

3.)  Two dimensional situation:
Looking down on a frictionless table, a
puck of mass m1 = 4 kg moves in the x
direction with a velocity-magnitude of vo =

12 m/s.  It strikes a second mass m2 = 6

kg initially at rest (see Figure 7.8a).
After the collision, the two move off at an-
gles 25o and 40o respectively (see Figure
7.8b).  What are the magnitudes of the
after-collision velocities v1 and v2?

Note:  This problem will be solved
in Parts a through e, complete with
generalized algebra for ease of reading
and explanation.  In Part f, the problem is
done again as it would be done on a test--
that is, with math but without mountains
of explanatory verbiage.

a.)  The only forces acting in
either the x or y directions during
the collision are internal forces: the

x

y

m
1
v

1

2

02

01

01

2

m
2
v

2

m  v  sin 0
2 2

m  v  cos 0
2 2 2

1
m  v  sin 0

1 1

0

1
m  v  cos 0

1 1

FIGURE 7.8c

force m2 applies to m1 and the force m1 applies to m2.  As such, momen-
tum is conserved in
both the x and y di-
rections through the
collision.

b.)  The
momenta are
broken into their
component parts in
Figure 7.8c.

c.)  Using the
conservation of
momentum
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equation for motion in the x direction yields:

    pbef ,x∑ = paft,x∑ :

            ⇒     m1vo + m2(0) = m1v1 cos θ1 + m2v2 cos θ2

   ⇒      v1 = (m1vo - m2v2 cos θ2)/(m1 cos θ1)       (Equ. A).

d.)  For the motion in the y direction, we get:

    pbef ,y∑ = paft,y∑ :

           ⇒     m1(0) + m2(0) = -m1v1 sin θ1 + m2v2 sin θ2      (Equ. B).

Note:  I've unembedded the sign of the after-collision velocity of m1,
leaving the v1 term a magnitude.

e.)  Plugging Equation A into Equation B yields:

0 = [-m1 [(m1vo - m2v2 cos θ2)/m1 cos θ1] sin θ1] + m2v2 sin θ2

  ⇒       v2 = [m1vo sin θ1/cos θ1]/[m2 sin θ2 + (m2 cos θ2/cos θ1) sin θ1].

With some manipulation, this becomes:

 v2 = [(m1vo / m2)] (tan θ1)/(sin θ2 + cos θ2 tan θ1)

          = [(4 kg) (12 m/s)/(6 kg)] (tan 25o)/(sin 40o
 + cos 40o tan 25o)

     = [(4 kg) (12 m/s)/(6 kg)] (.47)/(.64 + .36)
     = 3.76 m/s.

Plugging back into Equation A:

          v1 = (m1vo - m2v2 cos θ2)/(m1 cos θ1)

          = [(4 kg)(12 m/s) - (6 kg)(3.76 m/s)(cos 40o)]/(4 kg)(cos 25o)
          =  8.47 m/s.

f.)  The problem solved without verbiage:
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Write:

  pbef ,x∑ = paft,x∑ :

              ⇒    m1vo = m1v1 cos θ1 + m2v2 cos θ2

 ⇒    (4 kg)(12 m/s) = (4 kg)v1 cos (25o)  +  (6 kg)v2 cos (40o)
 ⇒     v1 = [48 - (4.6) v2 ]/3.63
⇒      v1 = 13.24 - 1.27v2  (Equ. A).

  pbef ,y∑ = paft,y∑ :

        ⇒     0 = -m1v1 sin θ1 + m2v2 sin θ2     

   ⇒     0 = -(4 kg)v1 sin (25o) + (6 kg)v2 sin (40o)
⇒     0 = -1.69 v1+ 3.86 v2 (Equ. B).

Substituting v1 from Equation A into Equation B yields:

         0 = -1.69 (13.24 - 1.27v2) + 3.86 v2
     ⇒   v2 = 3.73 m/s.

Plugging back into Equation A will yield:

  v1 = 13.24 - 1.27 (3.73 m/s)
      = 8.5 m/s.

Note:  These answers are not exactly as above (off by a few hundredths)--
the discrepancy is due to round-off error.

4.)  Example 2:  A string of length
L is attached at one end to the ceiling and
at the other end to a ball of mass m1.
The ball is positioned as shown in Figure
7.9 and, from that position, allowed to
freefall from rest.  At the bottom of its
arc, the ball strikes a second mass m2
sitting at rest on a frictionless table.
Assuming the ball loses three-quarters of
its mechanical energy as it inelastically
bounces off m2, what will both the ball
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f.b.d. of masses just before
collision:  notice there will
 be no external forces in "x"
direction during collision
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and block's after-collision velocities be (call them v1 and v2 respectively)?

Note 1:  It is customary to term a collision elastic, inelastic, or perfectly
inelastic.  The definition of each follows:

Note 2a:  An elastic collision is one in which mechanical energy is conserved.
This situation never really occurs in nature (though the repulsion between like-
charged electric particles comes very close), but is often assumed for the sake of
mathematical simplification.

Minor Point:  It should be noted that because collisions usually happen very
quickly, the potential energy of the particles involved does not change through the
collision (or if it does, it changes so slightly that it can be ignored).  In other words,
when mechanical energy is said to be conserved through a collision, we are really
saying that the sum of the kinetic energies of all the particles before the collision will
equal the sum of the kinetic energies after the collision.  Due to this, many books
simply define an elastic collision as one in which the total kinetic energy of the
system is conserved through the collision.

Note 2b:  An inelastic collision is
one in which the kinetic energy of the
system (i.e., the kinetic energy of all the
pieces within the system added together)
is not conserved.  In most cases, energy is
"lost" to heat, sound, or, in some cases,
light.  There can also be chemical
changes internal to some part of the
system (example: a piece of exploding
dynamite).

Note 2c:  A perfectly inelastic
collision is one in which energy is not only
not conserved, it's a collision in which the
bodies additionally stick together upon
contact.  One obvious consequence of this
situation: after the collision, everything
is moving with the same velocity.

a.)  Figures 7.10a and 7.10b
show the ball at the bottom of the
arc.  It is moving solely in the x
direction at that point.  As mo-
mentum is always assumed to be
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conserved through a collision, we can equate the x direction momentum of
the ball/block system before and after the strike.  With m1's velocity at the
bottom of the arc equal to vo and m2's velocity equal to zero, we get:

       pbef ,x∑ = paft,x∑ :

 ⇒     m1vo + m2 (0) = - m1v1 + m2v2
     ⇒    m1vo  = - m1v1 + m2v2.

b.)  There are three unknowns in this equation: vo, v1, and v2.  We know

that mechanical energy is not conserved through the collision, but if we ig-
nore air friction we know that mechanical energy will be conserved from
the time the ball begins to fall until just before it strikes the block.  Using
conservation of energy for that part of the motion yields:

m1gh = (1/2)m1vo
2

 ⇒    vo = (2gh)1/2.

c.)  We now have two equations; we need a third.  At this point, the
only other help we can hope for is information about energy loss during the
collision.  If, for instance, we are told that three-quarters of the before-
collision energy is lost, we know there will be one-quarter of the original
kinetic energy left.  In other words, one-quarter of the before-collision kinetic
energy Ebef will equal the after-collision kinetic energy Eaft in the system.
Mathematically, this gives us:

   (1/4) Ebef = Eaft
⇒   (1/4)  [(1/2)m1vo

2 + (1/2)m2(0)2] = (1/2) m1v1
2 + (1/2) m2v2

2.

This gives us our third equation which, though it may be a pain to solve,
allows us to complete the problem.

5.)  Parting shot:  Momentum is a vector.  Its change ( ∆ p) is equal to the
impulse (F ∆ t) received by the body in question.  In cases where a number of
bodies interact with each other providing "internal" impulses to one another, the
momentum of individual pieces might change but the total momentum of all the
pieces in a given direction will always sum to the same amount.  In short, the
total momentum in that direction will be conserved.
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FIGURE 7.10c

Under some circumstances, energy consideration will come in handy in
providing one-more-solvable-equation, but one needs to be careful that energy
conservation is truly justified before using the approach (Translation: know the
criteria for the use of both the conservation of energy and the conservation of
momentum--they are two very different conservation theorems).

G.)  Confusion Be Gone--What is Conserved When?

1.)  In a collision situation, when is mechanical energy conserved?

a.)  Almost never (only when you are told that the collision is elastic).

i.)  This is generally a contrived situation.  It is usually assumed when
physics authors want the student to have access to the conservation of
energy equation (most books don't include the modified conservation of
energy equation, so energy considerations are not generally possible if
mechanical energy isn't assumed to be conserved).  About the closest we can
come to a truly elastic collision is one involving the interaction of magnets.

2.)  In a collision, when is mechanical energy conserved (yes, I'm repeating!)?

a.)  In real life, NEVER!  In physics class, only when you are told that
the collision is elastic (remember, an elastic collision is a contrived
circumstance that exists in the world of physics only to simplify a
situation and make the math doable).

3.)  In a scenario in which a collision has occurred, when
might mechanical energy be conserved?

a.)  Before the actual collision (i.e., if potential energy
has been converted into kinetic energy, or vice versa).

i.)  Example:  Before a collision, if a block slides
down an incline or swings down from a higher position
to a lower position pendulum style, mechanical energy
will be conserved before the collision (assuming there is
no friction or other non-conservative forces).

b.)  After the actual collision (i.e., if kinetic energy has
been converted into potential energy, or vice versa).

i.)  Example:  A block strikes a spring that is attached to a body that
is free to move (versus being pushed up against a rigid wall).  Energy will
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NOT be conserved through the collision (there is sound, heat, and possible
molecular deformation during the hit), but just after the collision, the total
mechanical energy of the whole system will stay conserved (i.e., kinetic
energy will be lost as the spring compresses and spring potential energy
increases) if there is no friction or other non-conservative forces acting.

ii.)  How does MOMENTUM fit into the above example?
Momentum will be conserved through the entire spring collision as long
as the spring is attached to something (a block) that is free to move
during the collision.  In that case, the force the originally sliding block
applies to the spring/block combination will be internal and will equal
the force the spring/block combination applies to the originally sliding
block.  If, on the other hand, the spring/block combination is pushed up
against a rigid structure like a wall, then a large, external, wall force
will be applied to the system that will stop all motion dead, and
momentum will not be conserved even through the collision.

4.)  When is momentum generally not conserved?

a.)  When an external force is applied in a particular direction.

i.)  Example:  For a ball thrown into the air, assuming we ignore
friction, gravity is the only external force acting, and it is in the y
direction.  That means that momentum in that direction will change
with time.  In the x direction, there are no external forces and, hence,
momentum will be conserved.

5.)  When is momentum not conserved through a collision?  That is, when is
the total momentum of a system not the same from the time just before to the
time just after a collision?

a.)  When a BIG external force (hence big impulse Fext ∆ t) is applied.

i.)  Example:  A ball hits a wall.  The time during which the
collision takes place is very small, so ∆ t is small, but the force
generated during the collision is large enough to stop the ball dead.

6.)  When is momentum conserved through a collision?

a.)  It is conserved when (1) the only forces acting are internal (i.e., are
the consequence of the interaction of the pieces of the system), or (2) when
the external forces acting are small so that Fext ∆ t  over the short time
period of the collision is small.
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FIGURE 7.10d

bullet
block spring

i.)  Example for 1:  Whenever unrestrained bodies collide.

ii.)  Example for 2:  Gravity acting during a .01 second collision.

H.)  A Bit of A.P. Nastiness:

1.)  In an effort to confuse the hell out of anyone taking an AP test, the
writers of those little gems have concocted an interesting kind of question
designed to see just how completely you understand energy and momentum
conservation.  The following example will illuminate this bit of cheer.

2.)  A bullet of known mass mb is fired into a block
of known mass mk that sits on a frictionless table.  The
block is, itself, jammed up against (but not rigidly
connected to) an ideal spring which, in turn, is placed
against a wall.  The spring is attached to the wall (see
Figure 7.10d).  The bullet embeds itself in the block.  The
block and bullet push the spring in to some known maximum displacement d
before recoiling back outward.  Assuming the unknown initial velocity of the
bullet is vo and the unknown final velocity of the bullet and block after
separation from the recoil is vr, determine the velocity of the bullet and block just
after the bullet embeds itself but before the spring compresses appreciably.

a.)  This is a nasty question.  Why?  When bright people in high school
or at the university level start out dealing with physics, they have three
things to worry about.  They have to learn the principles, they have to
understand the conceptual side of the principles (i.e., the consequences of
the principles), and they have to cope with the math.

One of many intelligent ways to deal with the math is to become
familiar with the characteristics that are often present when certain types
of problem arise.  If you are looking for the velocity of an object that is
"falling" through a force field for which you happen to know the potential
energy function, try the conservation of energy.  If you are looking for the
velocity of a couple of objects that have undergone a collision, try
conservation of momentum.

This is a collision problem.  You are trying to determine the velocity of
the bullet/block system just after the collision.  Energy is NOT conserved
through the collision--a characteristic that is always true unless you are
told otherwise (i.e., unless you are told it is an elastic collision), so what
approach should you use?  You'd think conservation of momentum.

As the problem is stated, this assumption is a bad one.
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b.)  If you did use the conservation of momentum on this problem, the
resulting equation would look like:

mbvo = (mb + mk)vjust after.

The problem?  There are two unknowns in this expression.  You are looking
for vjust after, but you don't know vo.

c.)  So what to do?  As this is your first real experience with momentum
and energy, and because the most superficially obvious approach isn't going to
do the job, you're up the proverbial creek . . . unless you have the presence of
mind to look at the information that has actually been given in the problem.

d.)  What is that information?  You don't know anything about the
before collision situation, but you do know something about the after
collision situation.  Specifically, you know that the spring is deformed a
maximum distance d.  Maybe that information might help . . .

In fact, what this question is really testing is whether you are
insightful enough to use what you know about the system after the collision
has taken place to solve the problem.

e.)  So let's try it.  Just after the collision has taken place (but before
the spring has depressed appreciably), the bullet and block have become
one, have velocity vjust after and have kinetic energy:

(1/2)(mb+mk)(vjust after)
2.

f.)  As the spring depresses after the collision, the bullet and block slow
down.  The amount of kinetic energy lost by the bullet and block during this part
of the motion is absorbed by the spring in the form of spring potential energy.

g.)  At the spring's maximum deflection, all of the mechanical energy in the
system has converted to spring potential energy.  And because the spring is
ideal, no energy was lost while the spring is being compressed.  That is,
mechanical energy is conserved after the collision.  Remembering that the spring
potential energy function is (1/2)kx2 or, in the case of maximum deflection,
(1/2)kd2, we can use this bit of insight to write out the AFTER-COLLISION
conservation of energy expression as:

     (1/2)(mb+mk)(vjustafter)
2 = (1/2)kd2.

This is nice as we know all the variables except vjust after.
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h.)  So what is the moral of the story?  To do the problem with the
information provided, we have to ignore the tried and true road sign that
suggests that this is a conservation of momentum problem and look into
the middle of the scenario to find the key that will unlock the door.  If
you've never run into a problem that requires you to think in this way, a
problem like this can be a real killer.  If you are prepared for this kind of
twist, it is still a killer . . . but it's doable.

3.)  For the chuckle of it, the next part of a problem like this would
undoubtedly ask, "What is the initial velocity vo of the bullet?"  Given that we
now know vjust after, this is where the conservation of momentum comes in handy.
In fact, the expression that does the job is found in Part H-2b.

4.)  And for complete amusement, the final question would undoubtedly be,
"What is the velocity of the bullet and block after recoil (i.e., after leaving the
spring)?"  Interestingly enough, this problem requires no calculations.  The spring
will lose no mechanical energy as it compresses, then expands outward, so the
mechanical energy of the bullet and block as they leave the spring should be the
same as the mechanical energy of the bullet and block just after the collision but
before the spring is compressed.  (Remember, energy is conserved starting just
after the collision.)  That means the velocity of the bullet and block after recoil will
be the same as the velocity of the bullet and block just after the collision.  That
velocity was the object of the original problem (i.e., the one done in Part H-2g).

I.)  A Little More A.P. Nastiness . . .

1.)  A bullet moving horizontally with velocity vo embeds itself into an
immovable block of wood.  As the bullet moves into the block, it experiences a
retarding force that is proportional to velocity (that is, F = -bv, where b is a
constant).  Assuming very little mechanical energy is lost due to sound or heat
during the impact, how deep will the bullet penetrate before coming to rest?

2.)  The temptation is to try the work/energy theorem on this problem (after
all, energy was mentioned in the problem and little was lost due to the collision).

a.)  The work/energy expression yields:

    

1

2
mv2

2 −
1

2
mv1

2 = F • dr∫

                      = −bvi( ) • dxi + dyj + dzk( )∫
                      = − bv( )dx∫ .
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b.)  Unfortunately, even if we try to substitute v = dx/dt into the
integral, it still isn't going to fall out.  So what next?

3.)  Consider the impulse expression.  You know the initial and final
momentum, so if you could determine the net impulse the bullet experiences
between the time it hits the block and the time it stops, you'd at least have an
expression you might be able to solve.

a.)  Noting that the final momentum is zero (the bullet is at rest at the
end) and the one-dimensional force is equal to -bv, the impulse equation
for this situation is:

  

    

      po + Fdt∫ = pf

⇒ mvo + Fdt∫ = 0

⇒ mvo = − (−bv)dt∫

b.)  Substitute dx/dt for v,  this becomes:

  

mv b
dx
dt

dt

b dx

L
mv

b

o

x

x L

o

= − −

=

⇒ =

∫

∫ =

=

( )

.

       

 

0

Tricky, eh?

J.)  Exotica--The Center of Mass Reference Frame:

1.)  There are times when creative problem solving can make life a lot
easier.  Most physics texts present one such approach using what is called the
center of mass frame-of-reference.

2.)  Even though there may be considerable motion and interaction within
a system during an experiment, you and I normally observe the action from a
frame of reference that is stationary relative to the room in which the experiment
is being performed.  That frame, our normal observation-frame, is called the
laboratory frame-of-reference.
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3.)  It is possible to consider problems from a frame of reference other than
the lab frame.  For instance, you could look at an interaction from the perspective
of the center of mass, almost as though you were sitting at the center of mass
watching the motion of the system's particles from that vantage point.  Doing so
elicits a number of observations:

a.)  Observation 1:  Although the center of mass may move with velocity
vcm relative to the laboratory frame-of-reference, the center of mass is
STATIONARY in the center of mass frame-of-reference.  In other words,
examining a problem from the center of mass's point of view assumes the
center of mass is motionless with all else moving around it.

b.)  Observation 2:  We know that Mvcm = m1v1 + m2v2 + m3v3 + . . ., where
vcm is the velocity of the center of mass relative to the frame of reference in which
one is observing the motion.  As the velocity of the center of mass in the center of
mass frame is zero, the sum of all the momenta of the system as viewed in the
center of mass frame will also be zero (this fact sometimes makes problem
solving from the perspective of the center of mass frame easy).

c.)  Observation 3:  Consider two colliding billiard balls:  Figure 7.11a
shows the lab frame positions of the balls at a number of points-in-time
before and after the collision.  It also shows the position of the center of
mass, relative to the lab-frame, at those times.

Figure 7.11b shows the ball-positions from the center of mass frame-of-
reference.  Notice that in the center of mass frame, the ball's motion is
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linear--another simplification that can make problem solving in the center
of mass frame easier.

d.)  Observation 4:  If we know the center of mass's velocity in the lab
frame (call this vcm) and the velocity of a particle as viewed from the center

of mass frame (call this vpart.rel. to cm), the velocity of the particle in the lab

frame (call this vlab) will be:

vlab = vpart. rel. to cm + vcm.

e.)  Observation 5:  It should be obvious from the sketch that the veloc-
ities observed in the lab frame are greater than the velocities observed in
the center of mass frame.  One consequence: the mechanical energy of the
system as determined in the lab frame will be greater than the mechanical
energy of the system as determined in the center of mass frame.

Note:  It turns out that the total kinetic energy in the lab frame equals the
total kinetic energy of the pieces as measured in the center of mass frame, plus the
kinetic energy of a particle whose mass is the total mass of the system and whose
velocity is the lab frame's center of mass velocity.  Mathematically, this is:

   KElab = KEpieces in cm frame + KEcm.

f.)  Observation 6:  The kinetic energy expression stated above is not
particularly important here, but its consequence is.  You cannot assume
that the energy calculated in the lab frame is the same as the mechanical
energy determined in the center of mass frame.

g.)  With all this information, the problem-solving technique is simple.
If a velocity problem looks difficult in the lab frame:

i.)  Transform to the center of mass frame (that is, look at the
problem from the point of view of the system's center of mass);

ii.)  Determine the velocity of the particle-of-interest as seen in the
center of mass frame;

iii.)  Take the particle's velocity as determined in the center of mass frame
and transform it back into the lab frame using vlab = vpart. rel. to cm + vcm.

iv.)  Depending upon the problem, the technique can work easily or
with great pain.
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4.)  An Example:  Consider the
following one dimensional problem:  A
ball of mass m moving horizontally with
velocity vo strikes a stationary, massive
wall (i.e., the wall is, relative to the ball,
assumed to be infinitely massive).  Upon
collision, the ball rebounds in the horizon-
tal with velocity vo (i.e., mechanical energy
is conserved)--see Figure 7.12a and 7.12b.

The same wall is then made to
move horizontally with velocity vo.  The
same ball is projected horizontally at the
wall with velocity vo (see Figures 7.13).  What is the ball's
velocity after striking and bouncing off of the wall?

a.)  The temptation is to say 2vo, but that would
be a mistake.

b.)  Notice:

i.)  Because the wall is infinitely massive,
the center of mass of the system is the wall.

ii.)  When the wall is stationary, the lab
frame of reference and the center of mass frame of
reference are the same.  That is not true when the
wall is moving (i.e., when the wall moves, the c.
of m. moves with it while you in the lab frame stay stationary).

iii.)  As the center of mass frame is the frame in which the wall is not
moving, and as that situation is the only one we know anything about
as far as energy goes (i.e., in the frame in which the wall is not moving,
the ball's mechanical energy is conserved), and as energy in the lab
frame and energy in the center of mass frame are different, we have to
deal with the problem from the center of mass point of view.

c.)  From the center of mass perspective, the wall is stationary and the
mass m is moving toward the wall with velocity 2vo.  As mechanical energy
is conserved in this frame of reference, the ball will bounce off the wall and
leave with velocity 2vo relative to the wall.
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d.)  But the wall, itself, is moving with velocity vo, relative to the lab

frame.  That means that relative to the lab frame, the BALL is moving
with velocity 2vo (relative to the wall) plus vo (the wall's velocity relative to
the lab frame).  In other words, transforming our solution in the center of
mass frame (2vo) back into the laboratory frame requires us to use:

      vlab = vrel. to cm + vcm.

Noting that this is a one-dimensional situation, we can write:

vlab = 2vo + vo.

e.)  Bottom line:  The ball leaves the moving wall with velocity 3vo,
relative to the lab frame.

f.)  As improbable as this solution might appear, there is an easy way
to experimentally check it.  Consider a fairly massive ball (a tennis ball or
a large superball will do) freefalling from a height h toward a hardwood
floor.  As it does, a much lighter ball (a ping pong ball) follows just above
it.  Assume the tennis ball strikes the floor with velocity vo.  If we further
assume an elastic collision, the tennis ball will bounce off the floor and
return with an initial upward velocity of vo.  Meanwhile, the ping pong ball
will have dropped from approximately the same height and will have a
downward velocity that is close to vo as it nears the floor.  Because the ping
pong ball is trailing the tennis ball, and because the tennis ball will
execute its bounce before colliding with the ping pong ball, we now have a
situation that is close to our "small ball moving with velocity vo hits
massive wall moving with velocity -vo" problem.

In short, if the theory is correct the ping pong ball should collide with
the massive ball, bounce off the massive ball, and leave with a velocity
close to 3vo.  Does it?  Go home and try it.  With three times its pre-colli-
sion velocity, the ping pong ball should have nine times its pre-collision ki-
netic energy (remember, kinetic energy is a function of velocity squared).
That, in turn, means the ping pong ball should fly nine times higher than
its initial height above the floor.

Note:  You will not be tested on the frame of reference changes discussed
in this section.  It was included because it has educational value and because
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approaching such problems can be fun.  It is also a technique that is often used by
physicists in analyzing problems.  I hope you found it amusing!

QUESTIONS

7.1)  Just before striking a ceiling, a .4 kilogram ball is moving 11 m/s. It
strikes the ceiling at a 30o angle relative to the vertical
(see Figure I). Assuming only a small frictional force
acting at the ceiling:

a.)  Is momentum conserved through the
collision:

i.)  In the y direction?  Explain.
ii.)  In the x direction?  Explain.

b.)  What kind of collision is it (i.e., elastic,
inelastic, perfectly inelastic . . . what?)?

c.)  What is the impulse applied to the ceiling by the ball?
d.)  If the average force applied to the ceiling during the collision is

3200 newtons, over what period of time does the collision occur?

7.2)  You have just made the football team.  You are told to get into one of
two tackling lines when you realize you have a choice:  you can either be tackled
by a 60 kilogram player who runs at 10 m/s or by a 120 kilogram player who runs
at 5 m/s.

a.)  Which player has the greater momentum?
b.)  Which player has the greater kinetic energy?
c.)  By whom would you prefer to be hit?  Explain.

7.3)  A .5 kg soccer ball comes down at a 30o angle
relative to the vertical moving at 25 m/s (this is the
same as having a ball freefall approximately 100 feet).
It is headed by a player, leaving the player's head at an
angle of 90o relative to the vertical moving with a
velocity magnitude of 18 m/s.
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a.)  What was the ball's momentum-change off the player's head?
b.)  If the collision takes .08 seconds, what is the force applied to the

player's head (note that this is opposite the force applied to the ball)?

7.4)  Determine the y coordinate of the center
of mass of the inhomogeneous solid (i.e., a solid
whose mass is not uniformly distributed through-
out the form) shown in Figure II.  Assume that the
body's surface density function is ky, where k is a
constant whose magnitude is 1 and whose units
are appropriate to the situation.

7.5)  A 60 kilogram bum stands on an 800
kilogram flatcar that is moving 15 m/s.  The bum
begins to run, finally reaching a speed of 5 m/s
relative to the flat-car.  How fast does the flat-car end up moving if:

a.)  The bum runs in the same direction as that of the flat-car?
b.)  The bum runs opposite the direction of motion of the flat car?
c.)  The bum runs in a direction perpendicular to the direction of

motion of the flat-car?
d.)  For the situation outlined in Part a, compare the system's total kinetic

energy before and after the bum began to run.

7.6)  A cannon shell moving 240 m/s at an angle of 60o with the horizontal
explodes into two pieces.  The first piece, comprised of two-thirds of the shell's
mass, leaves the explosion with initial velocity of 260 m/s in the horizontal (i.e.,
at angle 0o).

a.)  What is the velocity of the second piece?
b.)  Assuming the shell's mass is 30 kilograms, how much chemical

energy was converted to kinetic energy in the explosion?

7.7)  An 880 kilogram car rear-ends a stationary 1000 kilogram car whose
brakes are locked.  The collision is perfectly inelastic.  If the coefficient of friction
between each car's wheels and the pavement is .6, and if the cars slide-with-
friction a distance of 1.2 meters after the collision, what must the first car's
velocity magnitude have been just before the accident?

7.8)  A man of mass 90 kilograms is ice skating out of control.  While
moving at 8 m/s in the x direction, he collides with his 55 kilogram girlfriend who
is moving with velocity 10 m/s at an angle of 120o with the x axis at the time.  If
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the collision is perfectly inelastic, determine the velocity (as a vector) of the
couple after the collision.

7.9)  A spring-gun of mass mg = 2 kilograms uses an ideal spring with a
spring-constant k = 120 nt/m to shoot a ball of mass mb = .04 kilograms out of its
barrel.  At a particular point in time, the cocked gun and ball are moving
backwards over a frictionless table with velocity vo = 5 m/s (the word "backwards" is

intended to mean that when the gun is fired the bullet will leave opposite the
direction of the gun's motion).  Relative to the table, what will the gun's velocity
(vg) and the ball's velocity (vb) be just after firing?  Assume the spring's
compression-distance is x = .15 meters when the gun is cocked.

7.10)  Jane (mass 40
kg) has entered a soap-box
derby.  The course ends by
passing through a mountain
via a tunnel, over a bridge,
then to the finish line (a
sketch--Figure III--is
provided to the right).

Unfortunately, the
bridge has collapsed.
Tarzan, love-sick and
definitely not-too-bright,
sees the danger from above.
Quickly, he makes a few
calculations and realizes
that if he can run fast
enough, he can use the vine Cheetah is playing with to swing down from above
and meet Jane's cart as it comes out of the tunnel.  With the right momentum, he
could stop the cart by colliding with it (again, see Figure III).

a.)  Assume the vine is 19 meters long.  If Jane's cart has a mass of
190 kgs (without Jane) and a speed of 11 m/s out of the tunnel, and if
Tarzan's mass is 90 kg, how fast must Tarzan run "up top" to effect a dead
stop of Jane's cart just as it comes out of the tunnel?  Assume Tarzan does
not bounce off the cart upon collision, that everything stops dead when he
hits the cart, and that the collision occurs directly under the point at which
Tarzan begins his swing.
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b.)  For the amusement of it, what is the tension in the vine just before
Tarzan and the cart collide?

7.11)  NOTE:  This question is for anyone interested in trying a problem
using a center of mass frame of reference.  There will not be a problem like this one
on your next test.

A satellite approaching
a planet at just the right
angle will pick up kinetic
energy from the planet as it
whips around the planet and
exits in the opposite direction
(see Figure IV).  This
interaction can be
approximated as an elastic
collision (i.e., a collision in
which the bodies within the
system change their motion
while mechanical energy is
conserved within the system).

A satellite is observed to
be moving with velocity 7
km/s at a particular distance
d from a planet that is, itself,
moving with velocity 12 km/s.
The satellite sling-shots
around the planet.  What is
the satellite's velocity vs once
it again reaches a distance d
from the planet?
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