Chapter 4

ELEMENTARY DEFINITIONS
 and
 THE KINEMATIC EQUATIONS

A.) Speed:

1.) Average speed $\left(\mathrm{s}_{\text {avg }}\right)$: A scalar quantity that denotes the average distance traversed per unit time (i.e., the average rate at which ground is covered). With units of meters per second, it is mathematically defined as:

$$
\mathrm{S}_{\mathrm{avg}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}},
$$

where Δd is the total-distance-traveled during a time interval Δt.
a.) Example: A running woman covers 100 meters in 15 seconds, then changes direction and hops 30 meters in 10 seconds (see Figure 4.1). What is her average speed for the overall motion?

$$
\begin{aligned}
\mathrm{s}_{\mathrm{avg}} & =\Delta \mathrm{d} / \Delta \mathrm{t} \\
& =(130 \mathrm{~m}) /(25 \mathrm{sec}) \\
& =5.2 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

100 meters in 15 seconds

FIGURE 4.1
Note 1: What this average gives you is the SINGLE CONSTANT SPEED that will move the woman over the required distance (130 meters) in the required time (25 seconds). It does not tell you how fast she is actually traveling at any given instant. She could run the first 80 meters in 10 seconds, then stand panting for 2 seconds, then do the last 20 meters of the first leg in the remaining 3 seconds. Average speed tells you nothing about the actual motion; all it tells you is the single speed that would be required to go the distance at a uniform run in the allocated time.

Note 2: Speed is not a quantity physicists use very much. It is being presented here as a preamble to more interesting and useful variables to come.
2.) Instantaneous speed (s): A measure of an object's distance traveled per unit time (i.e., its rate of travel), measured at a particular point in time.
a.) Example: The running woman in Example 1a is found to be moving with a speed of $8 \mathrm{~m} / \mathrm{s}$ as she passes the 15 meter mark, three tenths of a second into the race. Her instantaneous speed at the 15 meter mark is, therefore, $8 \mathrm{~m} / \mathrm{s}$.
b.) Mathematically, instantaneous speed (referred to simply as speed from here on) is defined as:

$$
\mathrm{s}=\operatorname{limit}_{\Delta \mathrm{t} \Rightarrow 0}(\Delta \mathrm{~d} / \Delta \mathrm{t}) .
$$

Note: Translation: At a particular point in time, an object's instantaneous speed is equal to its average speed calculated over a very tiny time interval (i.e., as Δt approaches zero). Although this is technically a Calculus problem (we are actually looking at the time derivative of the distance function), it will not be written in that form. Again, the idea of speed is useful as a concept only. We will rarely use it as a mathematical entity.

B.) Velocity-Magnitude and Direction:

1.) Average velocity $\left(\mathrm{v}_{\mathrm{avg}}\right)$: A vector quantity that denotes the average displacement (i.e., the net resultant change of position) per unit time over some large time interval. With units of meters per second (normally written as m / s), it is mathematically defined as:

$$
\mathbf{v}_{\mathrm{avg}}=\frac{\Delta \mathbf{r}}{\Delta \mathrm{t}},
$$

where $\Delta \boldsymbol{r}$ is the NET DISPLACEMENT of the object during a time interval Δt. The direction of $\boldsymbol{v}_{\text {avg }}$ is the same as the direction of Δr, (i.e., that of the net displacement).
a.) Example: A woman covers 100 meters in 15 seconds, then changes direction and hops 30 meters in 10 seconds (see Figure 4.2). What is her average velocity for the overall motion?

The magnitude:

$$
\begin{aligned}
\left|\mathbf{v}_{\mathrm{avg}}\right| & =\left|\frac{\Delta \mathbf{r}}{\Delta \mathrm{t}}\right| \\
& =(104.4 \mathrm{~m}) /(25 \mathrm{sec}) \\
& =4.176 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The direction (using trig. and the sketch):
net displacement:
after 25 seconds

100 meters in 15 seconds

$$
\begin{aligned}
\phi & =\tan ^{-1}[(30 \mathrm{~m}) /(100 \mathrm{~m})] \\
& =16.7^{\circ} .
\end{aligned}
$$

FIGURE 4.2

As a vector:

$$
\mathbf{v}_{\mathrm{avg}}=4.176 \mathrm{~m} / \mathrm{s} \angle 16.7^{\circ}
$$

Note 1: This average value gives you the constant number of meters-persecond, moving DIRECTLY from the initial to the final position, required to effect the net displacement in the allotted time. As was the case with average speed, it does not reflect the actual velocity of the woman at any particular instand.

Note 2: Average velocity is not a quantity physicists use very much, but instantaneous velocity is!
2.) Instantaneous velocity (v): A measure of an object's displacement per unit time as measured at a particular point in time.
a.) Mathematically, instantaneous velocity (referred to as velocity from here on) is defined as:

$$
\mathbf{v}=\operatorname{limit}_{\Delta \mathrm{t} \Rightarrow 0}(\Delta \mathbf{r} / \Delta \mathrm{t})
$$

where the direction of Δr is the direction of motion at a given instant. As this is the definition of a derivative, we can write the relationship as:

$$
\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}
$$

b.) Example: A body's position function is $\boldsymbol{r}(t)=\left[\left(7 k_{1} t^{3}\right) \boldsymbol{i}-\left(4 k_{2} / t\right) \boldsymbol{j}\right]$ meters (the k 's are added for the sake of units--we will ignore them from here on--i.e., set their magnitudes at one). What is $\boldsymbol{v}(t)$?

Solution:

$$
\begin{aligned}
\mathbf{v} & =\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}} \\
& =\frac{\mathrm{d}\left[\left(7 \mathrm{t}^{3}\right) \mathbf{i}-(4 / \mathrm{t}) \mathbf{j}\right]}{\mathrm{dt}} \frac{\text { meters }}{\mathrm{sec}} \\
& =\left[\left(21 \mathrm{t}^{2}\right) \mathbf{i}+\left(4 / \mathrm{t}^{2}\right) \mathbf{j}\right] \mathrm{m} / \mathrm{s} .
\end{aligned}
$$

Note: THIS IS IMPORTANT. The sign of the velocity tells you the direction of motion of the body at a particular point in time. That is, if the velocity is $-3 \mathbf{j} \mathrm{~m} / \mathrm{s}$, the body is moving in the $-y$ direction.
3.) Velocity and the POSITION vs. TIME Graph:
a.) Consider the POSITION vs. TIME graph shown in Figure 4.3 to the right. The slope of the tangent to the curve at a time t_{1} gives us the change of position with time at that point (i.e., the velocity at that point). By definition, that slope equals the derivative of the position function $(d x / d t)$ evaluated at t_{1}.
b.) Bottom line on POSITION vs. TIME

FIGURE 4.3 graphs: To get the instantaneous velocity of a body whose POSITION vs. TIME graph is given but whose position $x(t)$ is not explicitly known, draw a tangent to the curve at the time of interest, then determine the slope of that tangent. The slope will numerically equal the velocity of the body at that point in time.

4.)

Displacement and the VELOCITY vs. TIME Graph:
a.) As was discussed in Chapter 3, the area under a Velocity us. Time graph equals the net displacement of a body over the time interval in question (see Figure 4.4).

FIGURE 4.4
b.) In general, if we are given a velocity curve without an explicit function for the velocity (i.e., $v(t)$), we can find the distance traveled (i.e., Δx) by eyeballing the area under the curve over the time interval.

Note: Velocities under the axis (i.e., in the negative region) denote motion in the negative direction. That means a displacement associated with an area found under the axis is associated with negative displacement.
c.) If one knows the velocity function $v(t)$, the area under the curve (i.e., Δx) can be determined by integrating the velocity function over the time interval (i.e., by executing $\left.\int(\mathrm{v}) \mathrm{dt}\right)$.
d.) Example from the graph: Approximating the velocity function that defines the straight-line section of the graph as presented below:

$$
\mathrm{v}(\mathrm{t})=(-.3 \mathrm{t}+8) \mathrm{m} / \mathrm{s},
$$

what is the area under the curve between times $t=23$ seconds and $t=30$ seconds? That is the same as asking, "What is the net displacement of the body during the time interval?"

Note: If our graph is to be believed, the answer to this question had better be zero! How so? The displacement between $t=23$ seconds and $t=26.5$ seconds is positive (that is, the velocity is positive so the body's displacement is in the positive x direction). On the other hand, the displacement between $t=$ 26.5 seconds and $t=30$ seconds is negative. Due to the symmetry of the situation, the two areas had better add up to zero.
i.) Integrating to determine the area under the curve between the times t_{1} and t_{2}, we get:

$$
\begin{aligned}
\Delta \mathrm{x} & =\int_{\mathrm{t}}^{30}(-.3 \mathrm{t}+8) \mathrm{dt} \\
& =\int_{\mathrm{t}=23}^{30}(-.3 \mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}=23}^{30}(8) \mathrm{dt} \\
& =\left[-.3\left(\frac{\mathrm{t}^{2}}{2}\right)+8 \mathrm{t}\right]_{\mathrm{t}=23 \mathrm{sec}}^{30} \\
& =\left[-.3\left(\frac{(30)^{2}}{2}\right)+8(30)\right]-\left[-.3\left(\frac{(23)^{2}}{2}\right)+8(23)\right] \\
& =105-104.65 \\
& =0.35 \\
& \approx 0 .
\end{aligned}
$$

C.) Acceleration-Magnitude and Direction:

1.) Average acceleration $\left(\mathbf{a}_{\mathrm{avg}}\right)$: A vector quantity that denotes the average change-of-velocity per unit time over some large time interval. Its units are meters per second per second (usually written as $\mathrm{m} / \mathrm{s}^{2}$--see Note \#2 below), and its mathematical definition is:

$$
\mathbf{a}_{\mathrm{avg}}=\frac{\Delta \mathbf{v}}{\Delta \mathrm{t}}
$$

where $\Delta \boldsymbol{v}$ is the net change of velocity during a time interval Δt.
The direction of $\boldsymbol{a}_{\text {avg }}$ is the same as that of $\Delta \boldsymbol{v}$.
Note 1: Although it may not be obvious now, the sign of an acceleration value tells us information that is not immediately obvious. Explanation later!

Note 2: (concerning acceleration's units): The fraction (1/3)/3 can be rewritten as $\frac{(1 / 3)}{(3 / 1)}$. Bringing the denominator up into the numerator by flipping it over and multiplying, we get $(1 / 3)(1 / 3)$, or $1 / 3^{2}$. By the same token, as acceleration measures the rate at which velocity changes per unit time, its units are the ratio $(\mathrm{m} / \mathrm{s}) / \mathrm{s}$. Being analogous to $(1 / 3) / 3$, this can be written as $\mathrm{m} / \mathrm{s}^{2}$.
a.) Example: A man has velocity $\boldsymbol{v}_{1}=(3 \mathrm{~m} / \mathrm{s}) \boldsymbol{i}$ when at x_{1}. Three seconds later, he is at x_{2} moving with velocity $\boldsymbol{v}_{2}=(9$ m / s) \boldsymbol{i} (see Figure 4.5). What is his average acceleration?

$$
\begin{aligned}
\mathbf{a}_{\mathrm{avg}} & =\Delta \mathbf{v} / \Delta \mathrm{t} \\
& =\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) /(\Delta \mathrm{t}) \\
& =(9 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}) \mathbf{i} /(3 \mathrm{sec}) \\
& =(2 \mathbf{i}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

FIGURE 4.5
2.) Instantaneous acceleration (a): A measure of an object's change-ofvelocity per unit time at a particular point in time.
a.) Mathematically, instantaneous acceleration (referred to as acceleration from here on) is defined as:

$$
\mathbf{a}=\operatorname{limit}_{\Delta \mathrm{t} \Rightarrow 0}(\Delta \mathbf{v} / \Delta \mathrm{t})
$$

where the direction of $\Delta \boldsymbol{v}$ is the direction of the net force acting on the body at a given instant. As this is the definition of a derivative, we can write the relationship as:

$$
\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{dt}}
$$

b.) Example: If a body's velocity is $\boldsymbol{v}(t)=\left[\left(21 t^{2}\right) \boldsymbol{i}+\left(4 / t^{2}\right) \boldsymbol{j}\right] \mathrm{m} / \mathrm{s}$, (ignoring units-constants) what is the body's acceleration $\boldsymbol{a}(t)$?

Solution:

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathrm{d} \mathbf{v}}{\mathrm{dt}} \\
& =\frac{\mathrm{d}\left[\left(21 \mathrm{t}^{2}\right) \mathbf{i}+\left(4 / \mathrm{t}^{2}\right) \mathbf{j}\right]}{\mathrm{dt}}\left(\frac{\mathrm{~m} / \mathrm{s}}{\mathrm{~s}}\right) \\
& =\left[(42 \mathrm{t}) \mathbf{i}-\left(8 / \mathrm{t}^{3}\right) \mathbf{j}\right] \mathrm{m} / \mathrm{s}^{2} .
\end{aligned}
$$

3.) Acceleration and the VELOCITY vs. TIME Graph:
a.) Consider the

VELOCITY vs. TIME graph shown in Figure 4.6 to the right. The slope of the tangent to the curve at time t_{1} is the change of velocity with time at that point (i.e., the acceleration at that point). By definition, that slope equals the derivative of the velocity function $(d v / d t)$, evaluated at t_{1}.

b.) Bottom line on VELOCITY us. TIME

FIGURE 4.6 graphs: To get the instantaneous acceleration of a body whose VELOCITY vs. TIME graph is given but whose velocity function $v(t)$ is not explicitly known, draw a tangent to the curve at the time of interest, then determine the slope of that tangent. The slope will be numerically equal to the acceleration of the body at that point in time.

Note: If we have an ACCELERATION vs. TIME graph, the area under the graph between times t_{1} and t_{2} equals the velocity change during that time interval, and the slope of the tangent to the graph defines the rate of change of acceleration with time. This latter quantity is called the jerk of the motion (tough to believe, but true).

D.) Sign Significance for VELOCITY and ACCELERATION:

1.) Sign of the VELOCITY vector:
a.) It has already been noted that the direction of the velocity vector is the same as the direction of motion. A quick example follows:
b.) Consider an object moving along the x axis. It is initially found at $x_{3}=3$ meters; three seconds later it is found at $x_{4}=-7$ meters (see Figure 4.7). What is the average velocity of the motion?

Solution:

$$
\begin{aligned}
\mathbf{v}_{\mathrm{avg}} & =\Delta \mathbf{r} / \Delta \mathrm{t} \\
& =\Delta \mathbf{x} / \Delta \mathrm{t} \\
& =\left(\mathrm{x}_{4}-\mathrm{x}_{3}\right) \mathbf{i} / \Delta \mathrm{t} \\
& =[(-7 \mathrm{~m})-(+3 \mathrm{~m})] \mathbf{i} /(3 \mathrm{sec}) \\
& =(-3.33 \mathbf{i}) \mathrm{m} / \mathrm{s} .
\end{aligned}
$$

FIGURE 4.7
Note: It is important to include negative signs when dealing with position variables.
c.) When the body is moving in the $-x$ direction, the direction of the velocity vector is, indeed, in the -idirection.

Note: Even though -30 is smaller than +2 on a number line, the sign of a velocity has nothing to do with magnitude (i.e., how fast you are going)--all it tells you is which way you are going. (To see this: which would you prefer-- to be hit by a car moving with a velocity of $+2 \mathrm{~m} / \mathrm{s}$ or $-30 \mathrm{~m} / \mathrm{s}$?)
2.) Sign of the $A C C E L E R A T I O N$ vector:

Note: Warning! You are about to find that the information wrapped up in the sign of an acceleration quantity is considerably more complicated than the information wrapped up in the sign of a velocity quantity.
a.) A woman finds she is moving in the $+x$ direction with velocity $v_{1}=3$

FIGURE 4.8
m / s. Three seconds later, she is moving with velocity $v_{2}=9 \mathrm{~m} / \mathrm{s}$ (see Figure 4.8 on the previous page). What is her average acceleration?

Note: Because we are working in one dimension only, we will not bother carrying the unit vector \boldsymbol{i} along in the calculation.

$$
\begin{aligned}
\mathbf{a}_{\mathrm{avg}} & =\Delta \mathbf{v} / \Delta \mathrm{t} \\
& =\left(\mathrm{v}_{\text {sec pt }}-\mathrm{v}_{\text {first pt }}\right) /(\Delta \mathrm{t}) \\
& =\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) /(\Delta \mathrm{t}) \\
& =(9 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}) /(3 \mathrm{sec}) \\
& =+2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Observation 1: An individual speeding $u p$ while moving in the $+x d i$ rection has a POSITIVE acceleration.
b.) A woman finds she is moving in the $+x$ direction with velocity $v_{3}=$ $9 \mathrm{~m} / \mathrm{s}$. Three seconds later, she is moving with velocity $v_{4}=3 \mathrm{~m} / \mathrm{s}$ (see Figure 4.9). What is her average acceleration?

$$
\begin{aligned}
\mathbf{a}_{\mathrm{avg}} & =\Delta \mathbf{v} / \Delta \mathrm{t} \\
& =\left(\mathrm{v}_{4}-\mathrm{v}_{3}\right) /(\Delta \mathrm{t}) \\
& =(3 \mathrm{~m} / \mathrm{s}-9 \mathrm{~m} / \mathrm{s}) /(3 \mathrm{sec}) \\
& =-2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

FIGURE 4.9

Observation 2: An individual slowing down while moving in the $+x d i$ rection has a NEGATIVE acceleration.

Note: The combination of Observations 1 and 2 normally leads people to believe that speeding up is associated with positive acceleration (often referred to simply as acceleration) and slowing down is associated with negative acceleration (often called deceleration). THIS IS NOT ALWAYS THE CASE, as will be shown below.
c.) A woman moves in the $-x$ direction with velocity $v_{5}=3 \mathrm{~m} / \mathrm{s}$. Three seconds later, she is found to be moving at velocity $v_{6}=9 \mathrm{~m} / \mathrm{s}$. What is her average acceleration?

Note: THERE IS SOMETHING RADICALLY WRONG WITH THE STATEMENT OF THIS PROBLEM. Can you find the error?

The problem should be stated: A woman finds she is moving in the $-x$ direction with velocity $v_{5}=-3 \mathrm{~m} / \mathrm{s}$. Three seconds later, she is found to be moving at velocity $v_{6}=-9 \mathrm{~m} / \mathrm{s}$ (see Figure 4.10). What is her average acceleration?

Note: The "RADICAL PROBLEM"
 alluded to above has to do with signs. BE CAREFUL WITH YOUR SIGNS; YOU WILL RARELY IF EVER WORK WITH TRUE, SIGNLESS MAGNITUDES. The sign of the velocity of an object moving in the $-x$ direction is negative!

Solving the problem:

$$
\begin{aligned}
\mathbf{a}_{\mathrm{avg}} & =\Delta \mathbf{v} / \Delta \mathrm{t} \\
& =\left(\mathrm{v}_{6}-\mathrm{v}_{5}\right) /(\Delta \mathrm{t}) \\
& =[(-9 \mathrm{~m} / \mathrm{s})-(-3 \mathrm{~m} / \mathrm{s})] /(3 \mathrm{sec}) \\
& =-2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Observation 3: Here we have a NEGATIVE ACCELERATION, but the woman isn't slowing down--she's speeding up.

Likewise, if the woman is moving in the $-x$ direction with velocity $v_{7}=-9$ m / s and, three seconds later, finds herself moving at $v_{8}=-3 \mathrm{~m} / \mathrm{s}$, her acceleration will be calculated as $+2 \mathrm{~m} / \mathrm{s}^{2}$. This is a POSITIVE acceleration associated with a slow-down.
d.) Bottom line:
i.) For $+x$ motion (i.e., positive velocity):

+ avg. acc. $\quad \Rightarrow \quad$ increase of speed
- avg. acc. $\quad \Rightarrow \quad$ decrease of speed.
ii.) For $-x$ motion (i.e., negative velocity)
+ avg. acc. $\quad \Rightarrow \quad$ decrease of speed
- avg. acc. $\quad \Rightarrow \quad$ increase of speed.
e.) Conclusion? When an object's velocity and acceleration have the same sign (i.e., are in the same direction), the body will physically speed up. When an object's velocity and acceleration have different signs, the body will slow down.
i.) In a way, this makes perfect sense. Acceleration comes only when a net force is applied to a body (that is, acceleration and net force are proportional to one another). A positive force (i.e., a net force directed in the positive direction) produces positive acceleration no matter what the velocity is. By the same token, negative force always produces negative acceleration.
ii.) In other words, if a body moving in the $-x$ direction has a positive force applied to it (see Figure 4.11a to the right), we would expect the body to slow down. This is exactly what a POSITIVE ACCELERATION does. Likewise, you would expect the body to speed up if a negative force, hence negative acceleration, were applied (see Figure 4.11b).

iii.) Bottom line: In both cases, our "like-directions-cause-speed-up, unlike-directions-cause-slow-down" observation is reasonable.

E.) The Kinematic Equations:

1.) To this point, we have dealt with general position, velocity, and acceleration functions. A special case occurs when a body is constrained to move with a CONSTANT acceleration.

Note: There are many constant-acceleration systems within nature. As an example: The gravitational freefall of an object near the earth's surface.
2.) With a constant acceleration, there are a number of equations that can be written that make problem-solving much easier. Collectively, these relationships are called the kinematic equations. They are summarized below for one dimensional motion with explanations and derivations to follow:
a.) $\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{v}_{1} \Delta \mathrm{t}+(1 / 2) \mathrm{a}(\Delta \mathrm{t})^{2}$:
i.) This states that after a time period (Δt) of constant acceleration a, an object's coordinate position x_{2} equals:
ii.) Its initial position x_{1} (i.e., its position at the beginning of the time interval--this initial time is usually called t_{1}), plus;
iii.) The change of position $v_{1} \Delta t$ due to the fact that the body has an initial velocity (i.e., v_{1}) at the beginning of the time interval, plus;
iv.) The additional position change (1/2) $\alpha(\Delta t)^{2}$ that occurs due to the body's acceleration.

b.) $v_{2}=v_{1}+a \Delta t$:

i.) This states that a body's velocity v_{2} after an interval Δt of constant acceleration a equals:
ii.) The body's velocity v_{1} (i.e., its velocity at the beginning of the period), plus;
iii.) The increase or decrease of velocity $a \Delta t$ due to the body's acceleration.
c.) $\left(\mathrm{v}_{2}\right)^{2}=\left(\mathrm{v}_{1}\right)^{2}+2 \mathrm{a}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$:
i.) This states that the square of a body's velocity at time t_{2} (i.e., v_{2}) after an interval of constant acceleration a equals:
ii.) The square of the body's velocity v_{1} at the beginning of the time interval (i.e., at t_{1}), plus;
iii.) 2 times the acceleration (a) times the change of position Δx.
d.) $x_{2}=x_{1}+v_{a v g} \Delta t$:
i.) This states that an object's coordinate position x_{2} after a period (Δt) of motion during which the average velocity has been $v_{\text {avg }}$ equals:
ii.) The body's initial position x_{1} (i.e., its position at the start of the time interval at time t_{1}), plus;
iii.) The additional displacement $v_{\text {avg }} \Delta t$ due to the body's motion during the time interval.
e.) $\mathrm{v}_{\mathrm{avg}}=\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) / 2$:
i.) Assuming the velocity function is linear (i.e., the acceleration is a constant), the average velocity $v_{\text {avg }}$ between times t_{1} and t_{2} will simply equal the sum of the end velocities (v_{1} plus v_{2}) divided by two.
2.) Why do we want these equations? There are times when we know, say, a body's final velocity, acceleration, and time of acceleration, and would like to know its initial velocity. We could use Calculus on the problem, but why go to all the bother when we have a kinematic equation $\left(v_{2}=v_{1}+a \Delta t\right)$ that has all the variables we know along with the variable we are trying to determine? In other words, there are circumstances when we can short-cut the Calculus by simply using the CONSTANT ACCELERATION equations that follow from the calculus (you'll see how they follow shortly).

Note concerning the following material: The following derivations are provided so that you will have some clue as to what the variables in the kinematic equations stand for and why they relate to one another as they do. You will be expected to understand the concepts outlined below, but you will not be asked to reproduce the derivations. In other words, skim this material.
3.) Derivation of $v_{2}=v_{1}+a \Delta t$:
a.) Assume a body moves in one-dimensional motion under the influence of a constant acceleration a (as this is a one-dimensional situation, we will drop the unit vector notation). Additionally, assume that:
i.) At some initial point in time t_{1}, the body is positioned at x_{1} and is found to be moving with velocity v_{1}; and
ii.) Later, at some arbitrary time t_{2}, the body is positioned at x_{2} and is found to be moving with velocity v_{2}.
b.) We know the acceleration is the time derivative of the velocity function, which means we can write:

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& \Rightarrow d v=a(d t)
\end{aligned}
$$

c.) This essentially says that a differential ("differential" meaning very small)velocity change $d v$ over a differential time interval $d t$ will equal the constant rate at which the velocity changes (i.e., the acceleration a) times the time interval $d t$ over which the change occurs.

We can sum the velocity changes (i.e., integrate) between times t_{1} and t_{2}. Noting that the acceleration a is a constant and, hence, can be pulled outside the integral, we can write:

$$
\begin{aligned}
\int_{v_{1}}^{v_{2}} d v= & a \int_{t_{1}}^{t_{2}} d t \\
\Rightarrow & \left.v\right|_{v_{1}} ^{v_{2}}=a[t]_{t_{1}}^{t_{2}} \\
& \Rightarrow v_{2}-v_{1}=a\left(t_{2}-t_{1}\right) \\
& \Rightarrow v_{2}=v_{1}+a(\Delta t) \quad \text { (Equation A). }
\end{aligned}
$$

Note 1: It is not unusual to find this expression written in physics books as $v_{2}=v_{1}+a t$, where the Δt has mysteriously become, simply, t. This bit of magic is justified as follows:

If the clock begins at $t_{1}=0$ and proceeds to some arbitrary time $t_{2}=t$, the change in time is $\Delta t=\left(t_{2}-t_{1}\right)=(t-0)=t$. When this is incorporated into our equation, $v_{2}=v_{1}+a \Delta t$ becomes $v_{2}=v_{1}+a t$.

Observation: This is very sloppy notation, using what looks like a particular point in time t in place of the time interval that belongs in the equation. Nevertheless, that is the way most physics books write it.

The moral? Be aware of what symbols mean so as not to be led astray.
Note 2: This equation is often presented as:

$$
\mathrm{a}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\Delta \mathrm{t}}
$$

Note 3: This is the definition of the average acceleration. That makes sense. If the acceleration is constant in a system, the average acceleration and the instantaneous acceleration will be numerically equal.
4.) Derivation of $x_{2}=x_{1}+v_{1} \Delta t+(1 / 2) a(\Delta t)^{2}$:
a.) If we assume our clock starts at t_{1} (i.e., $t_{1}=0$), and if we set t_{2} equal to an arbitrary time t so that $v_{2}=v(t)$, we can rewrite Equation A as:

$$
\mathrm{v}(\mathrm{t})=\mathrm{v}_{1}+\mathrm{at} .
$$

b.) We know that the velocity $v(t)$ is the time derivative of the displacement function $(d x / d t)$, which means we can write:

$$
\mathrm{v}(\mathrm{t})=\frac{\mathrm{dx}}{\mathrm{dt}}
$$

c.) Combining the two equations above we get:

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{1}+\mathrm{at} .
$$

d.) Briefly manipulating (i.e., not showing all the steps) yields:

$$
\begin{aligned}
& \frac{d x}{d t}=v_{1}+a t \\
& \Rightarrow d x=\left(v_{1}+a t\right) d t \\
& \Rightarrow \int_{x_{1}}^{x_{2}} d x=\int_{t=0}^{t}\left(v_{1}+a t\right) d t \\
& =\int_{t=0}^{t}\left(\mathrm{v}_{1}\right) \mathrm{dt}+\int_{\mathrm{t}=0}^{\mathrm{t}}(\mathrm{at}) \mathrm{dt} \\
& \Rightarrow \mathrm{x}_{2}-\mathrm{x}_{1}=\mathrm{v}_{1} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2} \\
& \Rightarrow \quad x_{2}=x_{1}+v_{1} t+\frac{1}{2} a t^{2} .
\end{aligned}
$$

e.) Remembering that the t variable is really a Δt and $x_{2}-x_{1}$ is Δx, this equation has an interesting graphical link. Knowing that the area under a VELOCITY vs. TIME graph is related to the distance traveled Δx during a given time interval, we can determine Δx using
 the geometry of the

FIGURE 4.12 constant acceleration polygon shown in Figure 4.12. Doing so yields an expression that is exactly the same as the kinematics expression derived above.
5.) Derivation of the expression $v_{\text {avg }}=\left(v_{1}+v_{2}\right) / 2$:
a.) Looking at the graph in Figure 4.13 , it can be seen that if the acceleration is constant (i.e., the velocity is a linear function), the average velocity of the body over a time interval Δt defined by the expression $\Delta t=t_{2}-t_{1}$ is

$$
\mathrm{v}_{\mathrm{avg}}=\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}
$$

where v_{1} and v_{2} are the initial and final velocities over the

FIGURE 4.13 interval. This expression is very rarely used but will be useful in a derivation that follows.
6.) Derivation of $\Delta x=v_{\alpha v g} \Delta t$:
a.) This is the old, "distance equals rate times time" equation you learned in the sixth grade with the distance term expressed as Δx and the rate term expressed as $v_{a v g}$. Written in this notation, we get:

$$
\Delta \mathrm{x}=\mathrm{v}_{\mathrm{avg}} \Delta \mathrm{t} .
$$

Note: As is the case with all expressions having $v_{\text {avg }}$ in them, this equation is very rarely used in the context of problem-solving.
7.) Derivation of $v_{2}^{2}=v_{1}^{2}+2 a \Delta x$:
a.) We can eliminate $v_{a v g}$ from $x_{2}=x_{1}+v_{a v g} \Delta t$ using $v_{a v g}=$ $\left(v_{2}+v_{1}\right) / 2$. Doing so yields:

$$
\mathrm{x}_{2}=\mathrm{x}_{1}+\left[\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right) / 2\right] \Delta \mathrm{t}
$$

b.) Using $v_{2}-v_{1}=a \Delta t$, we can solve for Δt, finding:

$$
\Delta \mathrm{t}=\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) / \mathrm{a}
$$

c.) Putting the equations from Parts a and b together, we get:

$$
x_{2}-x_{1}=\left[\left(v_{2}+v_{1}\right) / 2\right]\left[\left(v_{2}-v_{1}\right) / a\right]
$$

d.) Putting $x_{2}-x_{1}=\Delta x$ and manipulating, we can reduce this to:

$$
\mathrm{v}_{2}^{2}=\mathrm{v}_{1}^{2}+2 \mathrm{a} \Delta \mathrm{x} .
$$

8.) A re-statement of the kinematic equations is presented below:

$$
\begin{array}{ll}
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{v}_{1} \Delta \mathrm{t}+(1 / 2) \mathrm{a}(\Delta \mathrm{t})^{2} & \text { (used often) } \\
\mathrm{a}=\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) / \Delta \mathrm{t} \text { or } \mathrm{v}_{2}=\mathrm{v}_{1}+\mathrm{a} \Delta \mathrm{t} & \text { (used often) } \\
\left(\mathrm{v}_{2}\right)^{2}=\left(\mathrm{v}_{1}\right)^{2}+2 \mathrm{a}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) & \text { (used often) } \\
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{v}_{\mathrm{avg}} \Delta \mathrm{t} \quad \text { or } \quad \mathrm{v}_{\mathrm{avg}}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \Delta \mathrm{t} & \text { (rarely used) }
\end{array}
$$

$$
v_{\mathrm{avg}}=\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right) / 2
$$

(rarely used).
Note 1: Be careful about signs. As an example, an object moving from x_{1} $=-3$ meters to $x_{2}=-5$ meters does not have a displacement (i.e., Δx) of 2 meters. Following the math, we get $\Delta x=\left(x_{2}-x_{1}\right)=[(-5)-(-3)]=-2$ meters.

Displacement is a vector; negative displacement means the body is moving to the left. Signs matter! Be careful with them. (The same is true whenever using velocity parameters in the equations!)

Note 2: Be sure your use of the kinematic equations is legitimate. If you are not sure whether the acceleration is constant, don't use them.

F.) The Kinematic Equations--Some One-Liners:

1.) A Porsche whose initial velocity is $20 \mathrm{~m} / \mathrm{s}$ accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$ for three seconds. What is its velocity at the end of that time period?

Solution: We know the initial velocity, the constant acceleration, and the time interval over which the acceleration occurred. The equation that includes the variables we know along with the variable we need is $a=\left(v_{2}-v_{1}\right) / \Delta t$. Using it, we get:
or

$$
\begin{aligned}
\mathrm{a} & =\left(\mathrm{v}_{2}-\quad \mathrm{v}_{1}\right) / \Delta \mathrm{t}, \\
\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) & =\left[\mathrm{v}_{2}-(20 \mathrm{~m} / \mathrm{s})\right] /(3 \mathrm{sec}) \\
& \Rightarrow \mathrm{v}_{2}=35 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

2.) When our Porsche is 20 meters to the left of a stop sign (i.e., on the negative side of an axis placed at the sign), it is moving with velocity of $30 \mathrm{~m} / \mathrm{s}$. If it accelerates at a rate of $-20 \mathrm{~m} / \mathrm{s}^{2}$, how fast will it be going when at $x=-10 \mathrm{~m}$?

Solution: We know the initial and final positions and velocities. The relationship that will do it for us is $\left(v_{2}\right)^{2}=\left(v_{1}\right)^{2}+2 a\left(x_{2}-x_{1}\right)$. Using it yields:

$$
\begin{aligned}
\left(v_{2}\right)^{2}= & \left(v_{1}\right)^{2}+2 \quad \text { a }\left[\begin{array}{ccc}
x_{2} & -x_{1}
\end{array}\right] \\
\left(v_{2}\right)^{2}= & (30 \mathrm{~m})^{2}+2\left(-20 \mathrm{~m} / \mathrm{s}^{2}\right)[(-10 \mathrm{~m}) \\
& \Rightarrow(-20 \mathrm{~m})] \\
& \Rightarrow v_{2}= \pm 22.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note: This kinematic equation doesn't understand how your Porsche is slowing down. One possibility is that you hit the brakes when at $x=-20$ meters
(i.e., 20 meters to the left of the origin) and slide with a positive velocity (i.e., a velocity that moves to the right) through the $x=-10$ meters point. Another possibility is that you put the Porsche into reverse while moving in the positive direction and floor it. (This is a really dumb way to slow a car down, but it will do the trick provided you don't blow your transmission in the process.) In that case, you will slide through the $x=-10$ meters point on your way to a dead stop. The difference is that the car will then begin to move backwards in the negative direction passing through the $x=-10$ meters again but with a negative velocity.

The kinematic relationship you are using can't differentiate between any of these scenarios, so it deals with the problem from a purely mathematical standpoint and solves for the car's two potential velocities (one positive, one negative) at the $x=-10$ meters point.

In short, it is up to you to recognize the physical constraints of the problem and decide which sign is appropriate. Additionally, because there is no time parameter in $\left.\left(v_{2}\right)^{2}=\left(v_{1}\right)^{2}+2 a\left(x_{2}-x_{1}\right)\right) \ldots$ hence no way to eliminate this ambiguity . . . this is the only kinematic relationship that does not give you the for sure correct sign as a part of the velocity term.
3.) In problem 2 above, how long will it take our Porsche to go from $x=$ -20 meters to $x=-10$ meters?

Solution: Given the Note above, you'd expect two possible times to arise. The relationships $\left(x_{2}-x_{1}\right)=v_{1} \Delta t+(1 / 2) a(\Delta t)^{2}$ give us that. Using it yields:

$$
\begin{aligned}
& {\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right]=\mathrm{v}_{1} \Delta \mathrm{t}+(1 / 2) \quad \mathrm{a} \quad(\Delta \mathrm{t})^{2}} \\
& {[(-10 \mathrm{~m})-(-20 \mathrm{~m})]=(30 \mathrm{~m} / \mathrm{s}) \mathrm{t}+.5\left(-20 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{t}^{2}} \\
& \Rightarrow \quad \mathrm{t}=.38 \text { seconds and } 2.62 \text { seconds. }
\end{aligned}
$$

4.) A dragster capable of accelerating at $12 \mathrm{~m} / \mathrm{s}^{2}$ is given a running start at the beginning of a 400 meter race (i.e., it is allowed an initial velocity v_{1}). With this initial velocity, it is able to make its run in 6 seconds. What was v_{1} ?

Solution: We know the acceleration, the distance traveled ($x_{2}-x_{1}$), and the time of travel. To determine the initial velocity:

$$
\begin{aligned}
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) & =\mathrm{v}_{1} \Delta \mathrm{t} \quad+(1 / 2) \quad \mathrm{a} \quad(\Delta \mathrm{t})^{2} \\
(400 \mathrm{~m}-0) & =\mathrm{v}_{1}(6 \mathrm{sec})+(1 / 2)\left(12 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{sec})^{2} \\
& \Rightarrow \mathrm{v}_{1}=30.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5.) A dragster accelerates from rest to $110 \mathrm{~m} / \mathrm{s}$ in 350 meters. What is its acceleration?

Solution: We know the initial and final velocities and the distance traveled $\left(x_{2}-x_{1}\right)$. To get the acceleration, we could use:

$$
\begin{aligned}
\left(\mathrm{v}_{2}\right)^{2} & =\left(\mathrm{v}_{1}\right)^{2}+2 \mathrm{a}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \\
\Rightarrow \quad \mathrm{a} & =\left[\begin{array}{ll}
\left(\mathrm{v}_{2}\right)^{2} & -\left(\mathrm{v}_{1}\right)^{2}
\end{array}\right] /\left[2\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right] \\
& =\left[(110 \mathrm{~m} / \mathrm{s})^{2}-(0)^{2}\right] /[2(350 \mathrm{~m}-0)] \\
& =17.29 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

G.) One More One-Dimensional Kinematics Problem--Freefall:

1.) A ball is thrown downward with an initial velocity of $-2 \mathrm{~m} / \mathrm{s}$. It takes three seconds to hit the ground (see Figure 4.14). We want to determine: a.) How high above the ground was the ball released, and b.) how fast was it moving just before it hit the ground?

Solution: We know the initial velocity, the time of flight, and the acceleration (the acceleration of gravity near the earth's surface is ALWAYS approximated as $-g$, or $-9.8 \mathrm{~m} / \mathrm{s}^{2}$):

$$
\begin{aligned}
& 0 \quad \begin{aligned}
& \text { at } \mathrm{t}_{1}=0, \\
& \downarrow
\end{aligned} \quad \begin{aligned}
\mathrm{y}_{1} & =? \text { and } \\
\mathrm{v}_{1} & =-2 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } \mathrm{t}_{2}=?, \\
& \mathrm{y}_{2}=0 \text { and } \mathrm{v}_{2}=\text { ? } \\
& \text { (note: } \mathrm{v} \text { is } \mathrm{NOT} \text { zero } \\
& \text { just before touch-down) }
\end{aligned}
$$

$$
\begin{aligned}
\text { a.) } & \text { To determine } y_{2}-y_{1}: \\
\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)= & \mathrm{v}_{1} \quad \Delta \mathrm{t} \quad+(1 / 2) \quad \text { a } \quad(\Delta \mathrm{t})^{2} \\
\left(0-\mathrm{y}_{1}\right)= & (-2 \mathrm{~m} / \mathrm{s})(3 \mathrm{sec})+(1 / 2)\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{sec})^{2} \\
= & -50.1 \text { meters } \\
& \Rightarrow \quad \mathrm{y}_{1}=+50.1 \text { meters. }
\end{aligned}
$$

Note 1: Why +50.1 meters instead of -50.1 meters? Because we've placed our coordinate axis so that ground level is $y=0$. If we had put the axis where the ball became free, our final position would have been $y=-50.1$ meters.

Note 2: Notice how helpful a sketch can be in visualizing a problem. Get into the habit of using sketches whenever you can.

Note 3: A temptation might have been to use $\left(v_{2}\right)^{2}=\left(v_{1}\right)^{2}+2 a\left(y_{2}-y_{1}\right)$. That would be a bad move as the velocity at ground level is unknown (no, it is not zero-it is equal to the velocity just before touchdown).
b.) To determine v_{2} : With the information we now have, we could determine the velocity just before touchdown in either of two ways:

$$
\text { The first way: } \quad \begin{aligned}
\left(\mathrm{v}_{2}\right)^{2} & =\left(\mathrm{v}_{1}\right)^{2}+2 \quad \mathrm{a} \quad\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \\
& =(-2 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0 \mathrm{~m}-50.1 \mathrm{~m}) \\
& =986 \mathrm{~m}^{2} / \mathrm{s}^{2} . \\
\Rightarrow \mathrm{v}_{2} & =31.4 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Note 1: As the velocity quantities are squared in this equation, all negative signs are lost in the math and the calculated value of v_{2} will be a magnitude only. As the velocity is actually directed downward, v_{2} as a vector should be written $(31.4 \mathrm{~m} / \mathrm{s})(-j)$, or $(-31.4 \mathrm{~m} / \mathrm{s})(\mathrm{j})$.

Note 2: It is important to notice that the particular kinematic equation used above will always yield VELOCITY MAGNITUDES ONLY.

$$
\text { The second way: } \quad \begin{aligned}
\mathrm{v}_{2} & =\quad \mathrm{v}_{1}+\quad \mathrm{a} \quad \Delta \mathrm{t} \\
& =(-2 \mathrm{~m} / \mathrm{s})+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{sec}) \\
& =-31.4 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Note 3: As this particular kinematic equation does not square its velocity terms, it yields both magnitude and appropriate sign. As a vector, the final solution for v_{2} using this approach is $(-31.4 \mathrm{~m} / \mathrm{s})(\mathrm{j})$.

H.) Kinematics in Two Dimensions--Projectile Motion:

1.) Background: The net acceleration of a body moving in two dimensions can be written as $\boldsymbol{a}=a_{x} \boldsymbol{i}+a_{y} \boldsymbol{j}$, where the acceleration components a_{x} and a_{y} may or may not be the same but are assumed to be constants. A general expression for the body's instantaneous velocity can be written $\boldsymbol{v}=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}$, and a vector defining the body's position can be expressed as $r=x i+y j$.

Having formally defined these quantities, common sense tells us that a net force F_{x} in the x direction (hence an acceleration in the x direction) will only affect a body's motion in the x direction. As F_{x} will not affect the body's motion in the y direction, x and y-type motion must be independent of one another and must, consequently, be treated as separate entities.
2.) With the observation made above, consider a cannon positioned as shown in Figure 4.15. Its muzzle is oriented at a known angle $\theta=30^{\circ}$ above the horizontal, and its muzzle velocity is known to be $v_{1}=100 \mathrm{~m} / \mathrm{s}$ (the muzzle velocity denotes the magnitude of the projectile's velocity as it leaves the can-
 non). If the cannonball be-

FIGURE 4.15 comes free at a known height $y_{1}=2$ meters, and if it lands on a plateau whose height is $y_{2}=80$ meters, determine:

2a.) The time of flight Δt;

2b.) The final horizontal position x_{2} of the ball at touchdown;
2c.) The velocity $\boldsymbol{v}_{\text {top }}$ of the cannonball at the top of its flight;
2d.) The cannonball's maximum height $y_{t o p}$; and
2e.) The velocity \boldsymbol{v}_{2} of the cannonball just before its touch-down on the plateau.

3.) Solutions:

a.) Preliminary TIME OF FLIGHT note: Let's assume you have been sent to a point down-range of the cannon (see Figure 4.16a for your positioning). You have been provided with a special flight-sensingscope that allows you to watch the cannonball's motion as it

FIGURE 4.16a
proceeds on its path (you are obviously far enough away so you won't get hit by the projectile when it comes down). Additionally, let's assume that the device ruins your depth-perception (that is, you can see the ball but you don't get the feeling that it is coming toward you). From your perspective, how will the cannonball's
motion look?

Reflection suggests that the cannonball will appear to rise straight upward, reach some maximum height, stop for a moment, then proceed back down toward the ground (see Figure 4.16b). Further consideration suggests the ball's initial velocity will equal the y component of the ball's muzzle velocity ($v_{1} \sin \theta=100 \sin 30=50 \mathrm{~m} / \mathrm{s}$).

FIGURE 4.16b
From a different perspective, the cannonball's motion will exactly mimic that of a basketball thrown from $y=2$ meters directly upward with velocity $50 \mathrm{~m} / \mathrm{s}$ released just as the cannonball leaves the muzzle (see Figure 4.16c).

We know how to use our kinematic equations to analyze the onedimensional motion of a basketball thrown directly upward; we can use those same equations to determine the time-of-flight Δt required for either the basketball or the

FIGURE 4.16c cannonball.

Specifically:

i.) Both balls begin at $y_{1}=2$ meters;
ii.) Both balls rise, then fall back to $y_{2}=80$ meters;
iii.) The initial velocity upward is $v_{1, y}=v_{1} \sin \theta=(100 \mathrm{~m})\left(\sin 30^{\circ}\right)$ $=+50 \mathrm{~m} / \mathrm{s}$; and
iv.) The touchdown velocity is $v_{2, y}=$?;
v.) Acceleration in the y direction is due to gravity, or $a_{y}=-g=$ $-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$; and
vi.) The time of flight is $\Delta t=$?
b.) To determine Question 2a--Time of Flight: The kinematic equation that will allow us to solve for the time-of-flight Δt, given the initial and final y positions, the y acceleration, and initial y velocity (see Figure 4.17), is:

$$
\begin{aligned}
& \left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)=\quad \mathrm{v}_{1, \mathrm{y}} \quad \Delta \mathrm{t}+(1 / 2) \mathrm{a}_{\mathrm{y}}(\Delta \mathrm{t})^{2} \\
& \left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)=\left(\mathrm{v}_{1} \sin \theta\right) \Delta \mathrm{t}+(1 / 2)(-\mathrm{g})(\Delta \mathrm{t})^{2} \\
& \quad \Rightarrow \quad(80 \mathrm{~m}-2 \mathrm{~m})=(100 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right) \Delta \mathrm{t}+.5\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(\Delta \mathrm{t})^{2} .
\end{aligned}
$$

Replacing Δt with t for simplicity, we get:

$$
4.9 t^{2}-50 t+78=0 .
$$

Using the quadratic formula (the solution for t in $a t^{2}+b t+c=0$ is $t=[-b$ $\left.\left.\pm\left(b^{2}-4 a c\right)^{1 / 2}\right] / 2 a \ldots\right)$, we get

$$
\begin{aligned}
\mathrm{t} & =\left\{-(-50) \pm\left[(-50)^{2}-4(4.9)(78)\right]^{1 / 2}\right\} / 2(4.9) \\
& =1.92 \text { and } 8.28 \text { seconds. }
\end{aligned}
$$

Note: There is nothing wrong with the fact that the quadratic equations yields two solutions to this problem. The ball will be at height $y_{2}=80$ meters twice--once as it moves upward toward its maximum height and once on its way back down. We're interested in the time it takes to come back down to $y_{2}=80$ meters, so we will take the larger time of 8.28 seconds.
c.) Preliminary note to DISTANCE TRAVELED problem: Let us assume you have been placed in a helicopter and stationed high above the cannon range looking down over it. Again, you have the special flight-sensing-scope, and again you have no depth-perception when using it. From this new perspective, how will the cannonball's motion look (assuming you can ignore parallax problems)?

In this case, it will appear to be moving along a straight line in the x direction, and it will appear to be moving with a constant velocity. This makes sense. There are no forces acting in the horizontal which means there will be nothing to accelerate the body in the x direction (we are assuming there is no air-friction or wind in the system). The cannonball's velocity in the x direction will always be the x component of the muzzle velocity $\left(v_{1} \cos \theta=100 \cos 30=86.6 \mathrm{~m} / \mathrm{s}\right)$. In fact, the cannonball's motion will exactly mimic that of a car driving at a constant velocity of $86.6 \mathrm{~m} / \mathrm{s}$ along the side of the range. Using our kinematic equations for the projectile's x-type motion, we know that
i.) $x_{1}=0$;

$$
\text { ii.) } x_{2}=\text { ? }
$$

iii.) The initial velocity will be the x component of the muzzle velocity, or $v_{1, x}=v_{1} \cos \theta=(100 \mathrm{~m})(\cos 30)=+86.6 \mathrm{~m} / \mathrm{s}$; and
iv.) $v_{2, x}=v_{1, x}=86.6 \mathrm{~m} / \mathrm{s}$ (i.e., x velocity doesn't change)
v.) The x direction acceleration will be $a_{x}=0$.
vi.) The time of flight (from Part α) will be $t=8.28$ seconds.
d.) To determine Question 2b--Horizontal Displacement: The kinematic equation we will use is the same one used in the first question, but evaluated for x-type motion instead of y-type motion:

$$
\begin{aligned}
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) & =\quad \mathrm{v}_{1, \mathrm{x}} \Delta \mathrm{t}+(1 / 2) \mathrm{a}_{\mathrm{x}}(\Delta \mathrm{t})^{2} \\
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) & =\left(\mathrm{v}_{1} \cos \theta\right) \Delta \mathrm{t}+(1 / 2) \mathrm{a}_{\mathrm{x}}(\Delta \mathrm{t})^{2} \\
\Rightarrow \quad\left(\mathrm{x}_{2}-0\right) & =(86.6 \mathrm{~m} / \mathrm{s}) \Delta \mathrm{t}+.5(0)(\Delta \mathrm{t})^{2} \\
\Rightarrow \quad \mathrm{x}_{2} & =(86.6 \mathrm{~m} / \mathrm{s}) \quad \Delta \mathrm{t} \\
\Rightarrow \quad \mathrm{x}_{2} & =(86.6 \mathrm{~m} / \mathrm{s})(8.28 \mathrm{sec}) \\
& =717 \text { meters. }
\end{aligned}
$$

Note: How would the approach have differed if the first and second questions had been switched?

The equation $\left(x_{2}-x_{1}\right)=v_{1, x} \Delta t+(1 / 2) a_{x}(\Delta t)^{2}$ would still have worked for the x motion, yielding $x_{2}=v_{1} \cos \theta \Delta t$, but the time of flight Δt would have been unknown. To get Δt, the equation $\left(y_{2}-y_{1}\right)=v_{1, y} \Delta t+(1 / 2) a_{y}(\Delta t)^{2}$ would have
had to have been evaluated for the body's y-motion. In other words, you would have used the same equations, but you would have written them down in the opposite order.
e.) To determine Question 2c--Velocity at Maximum Height (see Figure 4.18): In general, all velocities have components that can be written as $\boldsymbol{v}=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}$. At the top of the flight-path, $\boldsymbol{v}_{\text {top }}=v_{x, t o p} \boldsymbol{i}+$ $v_{y, t o p} \boldsymbol{j}$.

We know that at the cannon-ball's peak:

NOT TO SCALE
i.) The ball will have no

FIGURE 4.18 vertical motion at all (that is what it means to be at the top of the path). Conclusion: $v_{y, t o p}=0$.
ii.) The cannonball's horizontal (x-type) velocity will be as always, hence $v_{x, t o p}=86.6 \mathrm{~m} / \mathrm{s}$.
iii.) Putting it all together, $\boldsymbol{v}_{\text {top }}=(86.6 \mathrm{~m} / \mathrm{s}) \mathbf{i}+0 \mathbf{j}$.
f.) Solution to Question 2d--Maximum Height: The cannonball's distance above the ground (its height) is related solely to its y-type motion. We have already noticed that $v_{y, t o p}=0$ (i.e., the ball stops in the vertical when it reaches the top of its flight). That, coupled with the fact that we know that $a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{y, 1}=+50 \mathrm{~m} / \mathrm{s}$, allows us to use $\left(v_{y, \text { top }}\right)^{2}=\left(v_{1, y}\right)^{2}+2 a_{y}\left(y_{\max }-y_{1}\right)$ to solve for $y_{\max }$. Doing so yields:

$$
\begin{aligned}
\left(\mathrm{v}_{\mathrm{y}, \text { top }}\right)^{2} & =\left(\mathrm{v}_{1, \mathrm{y}}\right)^{2}+2 \quad \mathrm{a}_{\mathrm{y}} \quad\left(\mathrm{y}_{\max }-\mathrm{y}_{1}\right) \\
(0)^{2} & =(50 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\mathrm{y}_{\max }-2 \mathrm{~m}\right) \\
& \Rightarrow \mathrm{y}_{\max }=129.6 \text { meters. }
\end{aligned}
$$

g.) Solution to Question 2e--Velocity Just Before Touch-down: The velocity of the cannonball just before touchdown will have a form $\boldsymbol{v}=v_{2, x} \boldsymbol{i}$ $+v_{2, y} \boldsymbol{j}$ (see Figure 4.19). From all we've said to this point:
i.) It should be obvious that the x component will be the same as al-ways-- $86.6 \mathrm{~m} / \mathrm{s}$.
ii.) The y component of the velocity will require the use of the equation
$\left(v_{2, y}\right)^{2}=\left(v_{1, y}\right)^{2}+2$ $a_{y}\left(y_{2}-y_{1}\right)$
evaluated for y motion between $y_{1}=2$ meters and $y_{2}=80$ meters.
Doing so yields:

$$
\begin{aligned}
&\left(\mathrm{v}_{2, \mathrm{y}}\right)^{2}=\left(\mathrm{v}_{1, \mathrm{y}}\right)^{2}+2 \quad \mathrm{a}_{\mathrm{y}} \quad\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \\
&=(50 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(80 \mathrm{~m}-2 \mathrm{~m}) \\
&=971.2 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& \Rightarrow \mathrm{v}_{2, \mathrm{y}}=31.16 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

iii.) Conclusion: $\boldsymbol{v}_{2}=(86.6 \mathrm{~m} / \mathrm{s}) \boldsymbol{i}+(-31.16 \mathrm{~m} / \mathrm{s}) \boldsymbol{j}$.

Note: The equation used to determine $v_{2, y}$ yields velocity magnitudes only. You have to put the negative sign in manually after noticing that the y motion should be downward at the point of interest (see Figure 2.31).
4.) Bottom line on two-dimensional motion:
a.) Treat each direction as an entity with its own set of kinematic equations;
b.) When asked for "distance traveled in the x direction," think

$$
\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{v}_{1, \mathrm{x}} \Delta \mathrm{t}+(1 / 2) \mathrm{a}_{\mathrm{x}}(\Delta \mathrm{t})^{2}
$$

with $a_{x}=0$. Use this in conjunction with the same equation evaluated in the y direction. The time variable will allow you to link the two equations (it takes the same amount of time to go the horizontal distance as it does to go up, then down to the final vertical position).
c.) When asked to determine maximum height, think vertical motion and the equation

$$
\left(\mathrm{v}_{2, \mathrm{y}}\right)^{2}=\left(\mathrm{v}_{1, \mathrm{y}}\right)^{2}+2 \mathrm{a}_{\mathrm{y}}\left(\mathrm{y}_{\max }-\mathrm{y}_{1}\right)
$$

with the $y_{\max }$ velocity (i.e., $v_{2, y}$) equal to zero.
d.) Be careful not to confuse x-type acceleration with y-type acceleration, especially for freefall problems (one is ZERO while the other is $-g$).

QUESTIONS

Note: Don't get hung up on Question \#4.2. Understanding how to think about graphical information is important, but not as important as knowing the basic definitions and learning how to use the kinematic equations.
4.1) A sprinter runs around a 440 meter circular track in 49 seconds.
a.) What is her average speed?
b.) What is her average velocity?
c.) Can you tell anything about her instantaneous velocity 5 seconds after the start?
4.2) A student turns in the graph shown in Figure I without bothering to label the vertical axis. The graph is related to the motion of a tricycle, but all you know for sure is that at $\mathrm{t}=1$ second the trike is moving with an approximate velocity of $-1 \mathrm{~m} / \mathrm{s}$. Is the graph a position versus time graph, a velocity versus time graph, or an acceleration versus time graph? Explain briefly.

FIGURE I
4.3) Figure II is a velocity versus time graph for the motion of an ant moving in one dimension across the floor. Assuming you don't explicitly know the velocity function:
a.) What is the ant's approximate displacement between times $t=.5$ second and $t=3$ seconds (eyeball it off the graph-this is not a Calculus problem!)?
b.) What is the ant's average

FIGURE II
velocity between times $t=.5$ seconds and $t=3$ seconds? (This is a bit off-the-wall, more of a definition/use-yourhead question; if you don't see it, don't spend a lot of time on it.)
c.) What is the ant's velocity at $t=.5$ seconds? \ldots at $t=3$ seconds?
d.) What is the ant's acceleration at $t=.5$ seconds? . . at $t=3$ seconds?
e.) When is the ant moving in the $+x$ direction?
f.) When is the ant standing still?
g.) When is the ant's acceleration approximately zero?
h.) When is the change of the ant's acceleration zero?
4.4) A body moves under the influence of a velocity function given as:

$$
\mathbf{v}(\mathrm{t})=\left(3 \mathrm{e}^{-1.5 \mathrm{k}} \mathbf{i}-4 \mathrm{k}_{1} \mathrm{t} \mathbf{j}\right) \mathrm{m} / \mathrm{s}
$$

Assuming both k and k_{1} have magnitudes of one and the appropriate units:
a.) Determine the velocity of the body at $t_{1}=2$ seconds.
b.) Determine a general expression for the acceleration of the body as a function of time.
c.) Determine the acceleration of the body at time $t_{1}=2$ seconds.
d.) Could you have used kinematics to do any of the above problems? Explain your response.
e.) Determine a general expression for the position of the body as a function of time. As this will have components, call it $\boldsymbol{r}(t)$. (Hint: Do this in pieces; that is, use $v_{x}(t)$ to determine an expression for $x(t)$, then use $v_{y}(t)$ to do the same for $y(t)$).
f.) Determine the displacement of the body between times $t_{1}=2$ seconds and $t_{2}=3.5$ seconds.
g.) Assuming the body is at $x_{1}=-.1$ meters, $y_{1}=-8$ meters at time $t=$ 2 seconds. Without using the displacement function $r(t)$ derived above, what is its position coordinate at time $t=3.5$ seconds?
h.) For the amusement of it, determine the jerk of the system.
i.) What are the units of k ?
4.5) Bats at Carlsbad Caverns leave the cave at dusk in search of food. When they return at dawn, they fly over the cliff face that supports the cave entrance, fold their arms and legs, then plummet like rocks until a few meters above the floor of the cave entrance where they spread out the skin membranes between their arms and legs and pull out of the dive. Assuming they drop from a height of 100 meters and do not open their leg/wings until they are 3 meters above the floor:
a.) Ignoring air friction, how fast (i.e., the magnitude of their velocity) are they moving by the time they pull out of the freefall?
b.) If their vertical velocity essentially drops to zero as they move from 3 meters to 1 meter above the floor (i.e., during the time period in which they pull out of the freefall), what is their vertical "pull-out" acceleration?
c.) How long does it take them to execute their pull-out?
4.6) A particle moving in one dimension has a position function defined as:

$$
\mathrm{x}(\mathrm{t})=\mathrm{bt}^{4}-\mathrm{ct} .
$$

Assuming $b=6 \mathrm{~m} / \mathrm{s}^{4}$ and $c=2 \mathrm{~m} / \mathrm{s}$:
a.) At what point in time does the particle change its direction along the x axis?
b.) In what direction is the body traveling when its acceleration is $12 \mathrm{~m} / \mathrm{s}^{2}$?
4.7) A stunt-woman freefalls from rest. She is observed to be moving 25 m / s at a particular point in time (call her position at that point in time Point A).
a.) How far will she have fallen 2 seconds after passing Point A ?
b.) How fast will she be moving 2 seconds after passing Point A ?
4.8) One car moving with a constant velocity of $18 \mathrm{~m} / \mathrm{s}$ passes a second car initially moving at $4 \mathrm{~m} / \mathrm{s}$. As it does, the second car begins to accelerate at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$.
a.) How long does it take the second car to catch the first car?
b.) How far do the cars travel during the time interval required for the second car to catch the first car?
c.) What is the second car's velocity as it passes the first car?
d.) What is the second car's average velocity during the period required for it to pass the first car?
e.) How long will it take the second car to reach $100 \mathrm{~m} / \mathrm{s}$?
4.9) A falling rock takes .14 seconds to pass from the top to the bottom of a 1.75 meter tall window in a multi-story building.
a.) What is the velocity of the rock when at the top of the window?
b.) Assuming the rock is given an initial downward velocity of $7 \mathrm{~m} / \mathrm{s}$ when released at the top of the building, what is the distance between the top of the building to the bottom of the window?
c.) If the rock were not given an initial velocity of $-7 \mathrm{~m} / \mathrm{s}$ but instead started from rest, how would its acceleration as it passed by the top of the window have changed from the originally stated problem?
4.10) You are driving a car that can accelerate at $3 \mathrm{~m} / \mathrm{s}^{2}$ (it's a Nash Rambler) and can brake at $3 \mathrm{~m} / \mathrm{s}^{2}$. You approach an intersection that is 18
meters wide. The light turns yellow. It stays yellow for 1.2 seconds before turning red. If you accelerate, you must make it through the intersection before the light turns red to be safe. If you brake, you must stop before reaching the cross-walk-restraining-line to be safe.

Tough as it may be to believe, there is a range of distances between which you will neither be able to successfully accelerate nor brake and still be safe. Assuming you are moving $40 \mathrm{~m} / \mathrm{s}$ (about 80 mph --ouch), and assuming your reaction time is zero (that is, you accelerate or brake just as the light turns yellow), the following will allow you to determine that range.
a.) Pedal to the metal, what is the farthest you can be from the restraining line and still be able to accelerate through the intersection before the light turns red?
b.) Braking like mad, what is the closest you can be to the restraining line and still be able to come to a grinding halt before going over the restraining line? (Note that the slide time does not have to be 1.2 seconds--you can still be sliding after the light turns red just as long as you don't ultimately go over the restraining line.)
c.) In conclusion, what are the you're going to die no matter what limits?
4.11) A 3 -meter-tall elevator accelerates at a rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$ when it's working properly. After a shaky start, it is found to be moving with a velocity of $3.4 \mathrm{~m} / \mathrm{s}$ just as its floor passes a point (call this Point A) 4 meters above the ground. As it passes this point, a bolt in the ceiling of the elevator comes loose and freefalls to the elevator's floor.
a.) Determine the bolt's maximum height above the ground during its freefall.
b.) How long did it take for the bolt to meet the floor?
c.) What was the bolt's net displacement during the freefall?
d.) What was the bolt's velocity just before striking the floor?
4.12) A batter strikes a baseball 1.3 meters above the plate. The ball leaves the bat at an angle of 50° with a velocity of $41 \mathrm{~m} / \mathrm{s}$.
a.) How long will it take for the ball to touch down in the outfield?
b.) How far (horizontally) will the ball travel before touch down?
c.) How high will the ball travel during the flight?
d.) What will the ball's velocity be just before touch down?

