Chapter 3

INTEGRATION

Note: As was the case in the last chapter, this material is for your edification only! You will not be directly tested on its contents.

A.) The Integral:

1.) Preliminaries:
a.) Velocity is defined as a body's time-rate-ofchange of position. Mathematically, it is written as:

$$
\mathrm{v}(\mathrm{t})=\frac{\mathrm{d}[\mathrm{x}(\mathrm{t})]}{\mathrm{dt}}
$$

b.) Consider the VELOCITY VERSUS

TIME graph shown in
FIGURE 3.1 Figure 3.1.
i.) The distance Δx traveled during the time interval between t_{1} and t_{2} is $v \Delta t=(3 \mathrm{~m} / \mathrm{s})(4 \mathrm{~s})=12 \mathrm{~m}$ (this shouldn't be surprising: it is the old "distance equals rate times time" formula you learned when you were a wee one).
ii.) Notice: the distance traveled (i.e., the change of position Δx) is equal to the AREA under the VELOCITY vs. TIME curve.

How so? The height of the rectangle is $v=3 \mathrm{~m} / \mathrm{s}$ while the width is $\Delta t=4$ seconds. As the area of a rectangle is its height times width, the area is $v \Delta t$ (or Δx).
2.) Assume a body's position function does not change in a linear way (i.e., a function whose derivative is not a constant). How do we determine the
body's net displacement during a large time interval (i.e., this will be the area under the VELOCITY us. TIME curve during that interval)?
a.) Assume onedimensional motion and a VELOCITY vs. TIME graph as shown in Figure 3.2.
b.) The distance

FIGURE 3.2 traveled during the time interval between t_{1} and t_{2} equals the shaded area under the curve. As the function varies continuously, determining this area is not as easy as was the area-calculation in the previous problem. To accommodate:
c.) Consider an arbitrary time t :

i.) Place a dif-

FIGURE 3.3 ferential time interval $d t$ about time t (see Figure 3.3).

Note: This interval should be no thicker than a pencil lead (if that). It has been expanded in the sketch for ease of viewing.
ii.) Call the differential area under the curve bounded by $d t$ the differential displacement $d x$. We want to calculate that area (hence, determine that displacement).
iii.) The differential area under the curve over the interval $d t$ is approximately that of a rectangle (this approximation is made
clear in Figure 3.4 to the right). Its area (i.e., $d x$) equals $v(t) d t$. By definition, $v(t)=d x / d t$. As such:

$$
\begin{aligned}
\mathrm{dx} & =[\mathrm{v}(\mathrm{t})] \mathrm{dt} \\
& =\left[\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}\right] \mathrm{dt} .
\end{aligned}
$$

iv.) In English, this equation reads: the differential displacement $d x$ of the body equals the rate at which its position changes with time (i.e., $d x(t) / d t)$ times the time interval " $d t$ " over which the change occurs.

Note: Because we chose t to be any arbitrary time, our expression is good for any time.
d.) If we executed this area-finding process for all $d t$'s between times t_{1} and t_{2}, then added them all up, we end up with the total displacement of the body (i.e., its net change of position) between times t_{1} and t_{2}.
3.) The temptation is to use a conventional summation sign " \sum " to write out this information in mathematical form. The problem? A " \sum " sign is used to denote the summing of discrete quantities, not to show the summing of a continuously varying function.
4.) When a continuous function is summed, a different sign is used. Called an integral, the symbol looks like " \int ". With it, we can write:
a.) The sum of the differential displacements (i.e., the sum of all the individual $d x^{\prime} s$) between t_{1} and t_{2} equals the net displacement $x\left(t_{2}\right)-x\left(t_{1}\right)$, or:

$$
\int \mathrm{dx}=\left[\mathrm{x}\left(\mathrm{t}_{2}\right)-\mathrm{x}\left(\mathrm{t}_{1}\right)\right] .
$$

b.) The sum of the differential displacements $d x$ between t_{1} and t_{2} equals the rate of change of position with time $d x / d t$ times the differential time interval $d t$, all summed over the time interval between t_{1} and t_{2}. That is:

$$
\int \mathrm{dx}=\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}}\left[\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}\right] \mathrm{dt} .
$$

Note: Notice how the limits are placed in the integral.
c.) Putting Parts a and b together, we can write:

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}}\left[\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}\right] \mathrm{dt} & =\left[\mathrm{x}\left(\mathrm{t}_{2}\right)-\mathrm{x}\left(\mathrm{t}_{1}\right)\right] \\
& =\Delta[\mathrm{x}(\mathrm{t})] .
\end{aligned}
$$

d.) The function $d x(t) / d t$ and the function $x(t)$ are obviously related to one another (one is the derivative of the other). What is interesting is that both functions have shown up in our final equation. Specifically:
i.) We are GIVEN the time-rate-of-change of the position function (i.e., $d x / d t$)--that is the quantity inside the integral on the left side of the equal sign.
ii.) We are LOOKING FOR the position function $x(t)$ the change Δx of which is denoted on the right side of the equal sign.
5.) Bottom Line: When you find yourselves with an integral like

$$
\int_{t=2}^{7}(2 t) d t=?
$$

you are really looking for a new function (call it $x(t)$) whose rate of change (i.e., whose derivative) is the function inside the integral. This new function $x(t)$ is called the anti-derivative of the function inside the integral.
a.) In the context of our example, it means we are looking for a function the derivative of which is $2 t$ (that function happens to be $x(t)=t^{2}$).
b.) Once we know that anti-derivative (i.e., $x(t)$), we can evaluate it at the limits to determine how its value changes over that time interval (i.e., we can determine $\Delta x(t)$).
c.) To evaluate a function, the upper limit ($t=7$ seconds $)$ is put into the function (i.e., $x(t)=t^{2}=(7)^{2}=49$) to determine the function's value at time $t=7$ seconds. From that the evaluation of the function at $t=2$ seconds is subtracted. In that way, the change of the function over the time interval--in this case, the net distance traveled between $t=2$ seconds and $t=7$ seconds--is determined.
d.) Writing this out formally, we get:

$$
\begin{aligned}
\int_{t=2}^{7}(2 \mathrm{t}) \mathrm{dt} & =\left.\left(\mathrm{t}^{2}\right)\right|_{\mathrm{t}=2} ^{7} \\
& =\left(7^{2}\right)-\left(2^{2}\right) \\
& =45 .
\end{aligned}
$$

Note: The limits about which the integral's solution is to be evaluated (in this case, $t=2$ and $t=7$ seconds) are placed as shown above. Occasionally, a bracket notation " $\left[\mathrm{t}^{2}\right]_{\mathrm{t}=2}^{7}$ " may be used instead.

B.) Conclusions and an Example:

1.) Integration allows us to determine the AREA UNDER A CURVE over some specified interval. The solution to an integral is a function the derivative of which we know. That is, if we ignore the $d t$ (or $d x$ or whatever the differential variable happens to be), everything else under the integral sign is the derivative of the function we are trying to determine.
2.) Because mathematicians don't attribute physical significance to differential variables like $d t$ or $d x$, those variables have no meaning in an integral aside from specifying the variable over which the integral summation is to be carried out. By attributing physical significance to such variables, it is possible to think through problems that might otherwise be obscure.
3.) A simple example of this kind of thinking:
a.) Assume we know the circumference of a circle is $2 \pi r$, where r is the circle's radius. How can we derive an expression for the area of a circle whose radius is R ?
b.) Begin by taking a differential HOOP of radius r and differential thickness $d r$. A sketch of the hoop is shown in Figure 3.5 to the right.

Note 1: To make it viewable, the differential thickness $d r$ has been rendered considerably larger than it actually is.

Note 2: Why take $d r$ instead of $d x$ or whatever? The variable r is usually used when referring to the radial direction in
hoop of radius "r" and differential thickness "dr"

FIGURE 3.5 POLAR and/or SPHERICAL POLAR notation. Following the convention, the radial distance from the circle's center to the arbitrarily chosen hoop is called r, and the differential thickness of the hoop follows as $d r$.
c.) If we can determine the differential area of one arbitrarily chosen hoop, we could do the calculation for all possible differential hoops. Having done so, we could then sum up all those little differential areas to find the total area of the circle.

Put mathematically, if we can derive an expression for the differential (read this, "small in comparison to the whole") area $d A$ of our hoop, integrate that expression to sum over all possible hoop areas, then evaluate that integral's solution between $r=0$ to $r=R$, we will end up with an expression for the total area of the circle.
d.) Executing that operation:
i.) If $d r$ is tiny, the $d i f$ ferential area of the hoop is equal to the circumference of the hoop ($2 \pi r$) times the hoop's thickness $d r$ (see Figure 3.6 to
hoop broken and laid out--the differential area is the length times width, or $d A=(2 \pi r) d r$.

FIGURE 3.6 the right).

That is, $d A=(2 \pi r) d r$.
ii.) Summing yields:

$$
\begin{aligned}
A=\int d A & =\int_{r=0}^{R}(2 \pi r) d r \\
& =2 \pi \int_{r=0}^{R}(r) d r \\
& =2 \pi\left[\frac{r^{2}}{2}\right]_{r=0}^{R} \\
& =2 \pi\left[\left(\frac{R^{2}}{2}\right)-(0)\right] \\
& =\pi R^{2} .
\end{aligned}
$$

What fun!

QUESTIONS

As was the case with Chapter 2, there are no questions for this section. If you understand this chapter's material, fine. If not, don't panic. It will be a while before we do anything too exotic with integrals.

Note 1: The most important point in this chapter is the idea that problems can be set up by attributing physical significance to differential quantities like $d x$ and $d t$. Approaching problems in this way allows one to create differential equations that physically reflect the situations one is trying to model.

Note 2: Approaching Calculus with the idea that the $d t$'s and $d x$'s have significance is particularly useful when one is trying to make sense of a differential equation. An astute reader can find within such an expression meaning that is not at all obvious within a so-called pure math context.

