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Chapter 3

INTEGRATION

Note:  As was the case in the last chapter, this material is for your
edification only!  You will not be directly tested on its contents.

A.)  The Integral:

1.)  Preliminaries:

a.)  Velocity is defined
as a body's time-rate-of-
change of position.
Mathematically, it is
written as:

        
  
v(t) = d[x(t)]

dt
.

b.)  Consider the
VELOCITY VERSUS
TIME graph shown in
Figure 3.1.

i.)  The distance ∆x traveled during the time interval between
t1 and t2 is v ∆ t = (3 m/s)(4 s) = 12 m (this shouldn't be surprising: it
is the old "distance equals rate times time" formula you learned
when you were a wee one).

ii.)  Notice: the distance traveled (i.e., the change of position
∆ x) is equal to the AREA under the VELOCITY vs. TIME curve.

How so?  The height of the rectangle is v = 3 m/s while the width
is ∆ t = 4 seconds.  As the area of a rectangle is its height times
width, the area is v ∆ t (or ∆ x).

2.)  Assume a body's position function does not change in a linear way
(i.e., a function whose derivative is not a constant).  How do we determine the
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Note that if "dt" is very
small (i.e., a pencil width)
the area of the shaded
rectangle goes to "v(t)dt."

The area under the  curve
  between t   and t   equals
the sum of all the differen-
tial areas between t   and t  .
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body's net displacement during
a large time interval (i.e., this
will be the area under the
VELOCITY vs. TIME curve
during that interval)?

a.)  Assume one-
dimensional motion
and a VELOCITY vs.
TIME graph as shown
in Figure 3.2.

b.)  The distance
traveled during the
time interval between
t1 and t2 equals the
shaded area under the
curve.  As the function
varies continuously,
determining this area
is not as easy as was
the area-calculation in
the previous problem.
To accommodate:

c.)  Consider an
arbitrary time t:

i.)  Place a dif-
ferential time interval
dt about time t (see Figure 3.3).

Note:  This interval should be no thicker than a pencil lead (if that).  It
has been expanded in the sketch for ease of viewing.

ii.)  Call the differential area under the curve bounded by dt the
differential displacement dx.  We want to calculate that area (hence,
determine that displacement).

iii.)  The differential area under the curve over the interval dt is
approximately that of a rectangle (this approximation is made
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          With "dt" very small,
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Area 2 so that the area under the
   curve is approximately equal
  to the area of the rectangle, or
                    "v(t)dt."
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clear in Figure 3.4 to the
right).  Its area (i.e., dx)
equals v(t)dt.  By
definition, v(t) = dx/dt.
As such:

    

dx v t dt

dx t
dt

dt

= [ ]
= 





   

    

( )

( )
.

iv.)  In English, this
equation reads: the dif-
ferential displacement dx
of the body equals the rate
at which its position
changes with time (i.e.,
dx(t)/dt) times the time interval "dt" over which the change occurs.

Note:  Because we chose t to be any arbitrary time, our expression is
good for any time.

d.)  If we executed this area-finding process for all dt's between
times t1 and t2, then added them all up, we end up with the total

displacement of the body (i.e., its net change of position) between times
t1 and t2.

3.)  The temptation is to use a conventional summation sign "∑" to
write out this information in mathematical form. The problem?  A "∑" sign is
used to denote the summing of discrete quantities, not to show the summing of
a continuously varying function.

4.)  When a continuous function is summed, a different sign is used.
Called an integral, the symbol looks like "∫".  With it, we can write:

a.)  The sum of the differential displacements (i.e., the sum of all the
individual dx's) between t1 and t2 equals the net displacement x(t2) - x(t1),

or:

  
dx = x(t2 ) − x(t1)[ ]∫ .
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b.)  The sum of the differential displacements dx between t1 and t2
equals the rate of change of position with time dx/dt times the dif-
ferential time interval dt, all summed over the time interval between t1
and t2.  That is:

  
dx = dx(t)

dt




t1

t2

∫∫ dt .

Note:  Notice how the limits are placed in the integral.

c.)  Putting Parts a and b together, we can write:

    

dx t
dt

dt x t x t

x t

t

t ( )
( ) ( )

( ) .







= −[ ]
= [ ]

∫
1

2

2 1

                   ∆

d.)  The function dx(t)/dt and the function x(t) are obviously related
to one another (one is the derivative of the other).  What is interesting
is that both functions have shown up in our final equation.  Specifically:

i.)  We are GIVEN the time-rate-of-change of the position func-
tion (i.e., dx/dt)--that is the quantity inside the integral on the left
side of the equal sign.

ii.)  We are LOOKING FOR the position function x(t) the change
∆x of which is denoted on the right side of the equal sign.

5.)  Bottom Line:  When you find yourselves with an integral like

           
  

(2t)dt =  ?
t=2

7

∫

you are really looking for a new function (call it x(t)) whose rate of change (i.e.,
whose derivative) is the function inside the integral.  This new function x(t) is
called the anti-derivative of the function inside the integral.

a.)  In the context of our example, it means we are looking for a
function the derivative of which is 2t (that function happens to be
x(t) = t2).
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b.)  Once we know that anti-derivative (i.e., x(t)), we can evaluate it
at the limits to determine how its value changes over that time interval
(i.e., we can determine ∆ x(t)).

c.)  To evaluate a function, the upper limit (t = 7 seconds) is put into
the function (i.e., x(t) = t2 = (7)2 = 49) to determine the function's value
at time t = 7 seconds.  From that the evaluation of the function at t = 2
seconds is subtracted.  In that way, the change of the function over the
time interval--in this case, the net distance traveled between t = 2
seconds and t = 7 seconds--is determined.

d.)  Writing this out formally, we get:

       

    

( ) ( )

) ( )
.

2

7 2
45

2
2

7

2

7

2 2

t dt t tt
=

= −
=

==∫  

               (
               

Note:  The limits about which the integral's solution is to be evaluated
(in this case, t = 2 and t = 7 seconds) are placed as shown above.  Occasionally,

a bracket notation "  t
2[ ]t=2

7
" may be used instead.

B.)  Conclusions and an Example:

1.)  Integration allows us to determine the AREA UNDER A CURVE
over some specified interval.  The solution to an integral is a function the
derivative of which we know.  That is, if we ignore the dt (or dx or whatever the
differential variable happens to be), everything else under the integral sign is
the derivative of the function we are trying to determine.

2.)  Because mathematicians don't attribute physical significance to
differential variables like dt or dx, those variables have no meaning in an
integral aside from specifying the variable over which the integral summation
is to be carried out.  By attributing physical significance to such variables, it is
possible to think through problems that might otherwise be obscure.

3.)  A simple example of this kind of thinking:

a.)  Assume we know the circumference of a circle is 2r, where r is
the circle's radius.  How can we derive an expression for the area of a
circle whose radius is R?
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b.)  Begin by taking a differential
HOOP of radius r and differential
thickness dr.  A sketch of the hoop is
shown in Figure 3.5 to the right.

Note 1:  To make it viewable, the dif-
ferential thickness dr has been rendered
considerably larger than it actually is.

Note 2:  Why take dr instead of dx or
whatever?  The variable r is usually used
when referring to the radial direction in
POLAR and/or SPHERICAL POLAR no-
tation.  Following the convention, the radial distance from the circle's center to
the arbitrarily chosen hoop is called r, and the differential thickness of the hoop
follows as dr.

c.)  If we can determine the differential area of one arbitrarily
chosen hoop, we could do the calculation for all possible differential
hoops.  Having done so, we could then sum up all those little differ-
ential areas to find the total area of the circle.

Put mathematically, if we can derive an expression for the differ-
ential (read this, "small in comparison to the whole") area dA of our
hoop, integrate that expression to sum over all possible hoop areas,
then evaluate that integral's solution between r = 0 to r = R, we will end
up with an expression for the total
area of the circle.

d.)  Executing that operation:

i.)  If dr is tiny, the dif-
ferential area of the hoop is
equal to the circumference of the
hoop (2r) times the hoop's
thickness dr (see Figure 3.6 to
the right).

That is, dA = (2r)dr.

ii.)  Summing yields:
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A = dA = (2πr)dr
r=0

R

∫∫
              = 2π (r)dr

r=0

R

∫

              = 2π r2

2










r=0

R

              = 2π R
2

2





− 0( )









              = πR2.

What fun!

QUESTIONS

As was the case with Chapter 2, there are no questions for this section.
If you understand this chapter's material, fine.  If not, don't panic.  It will be a
while before we do anything too exotic with integrals.

Note 1:  The most important point in this chapter is the idea that
problems can be set up by attributing physical significance to differential
quantities like dx and dt.  Approaching problems in this way allows one to
create differential equations that physically reflect the situations one is trying
to model.

Note 2:  Approaching Calculus with the idea that the dt's and dx's have
significance is particularly useful when one is trying to make sense of a
differential equation.  An astute reader can find within such an expression
meaning that is not at all obvious within a so-called pure math context.
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