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FIGURE 14.1b
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Chapter 14

CAPACITORS IN AC AND DC CIRCUITS

So far, all we have discussed have been electrical elements in which the
voltage across the element is proportional to the current through the element (i.e.,
elements like the resistor that obey Ohm's Law).  There are electrical elements
that do not follow this pattern.  One of these elements is the capacitor--a critter
that has very different characteristics when found in an AC circuit as opposed to a
DC circuit.  This chapter is devoted to that lowly creature.

A.)  Capacitors in General:

1.)  The circuit symbol for the capacitor
(see Figures 14.1a and 14.1b) evokes a feeling for
what a capacitor really is.  Physically, it is no
more than two plates (the symbol depicts the
side view) that do not touch (there is normally
insulation placed between the two plates to
insure no contact).  In other words, a capacitor in
a circuit technically effects a break in the circuit.

Note:  Although there are AC capacitors
made to take high voltage at either terminal, DC capacitors have definite high
and low voltage sides.  When a designer of circuitry wants to specify a DC
capacitor, he or she uses the symbol shown in Figure 14.1b.  The straight side of
that symbol is designated the high voltage side (the positive terminal) while the
curved side is designated the low voltage side.  We will use either symbol in DC
situations.

2.)  A circuit element that does not allow charge to freely flow through it
probably sounds like a fairly useless device.  In fact, capacitors do allow current to
flow in the circuit under the right conditions.

3.)  Consider a circuit in which there is an initially uncharged capacitor, a
DC power supply, a resistor, and an initially open switch (this is commonly called
an RC circuit).

a.)  When the switch is first closed, neither plate has charge on it.  This
means there is no voltage difference between the two.  As the right-hand
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     electrical potential configuration
for RC circuit at time t = 0 (plus a hair)

FIGURE 14.2a
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plate is connected to the ground
terminal of the battery, both plates
must have an initial electrical
potential of zero (see Figure 14.2a).

b.)  Just after the switch is
closed, a voltage difference exists
across the resistor (again, see Figure
14.2a) and, hence, current flows
through the circuit.  (Remember, the
voltage across a resistor is
proportional to the current through
it--if the voltage is relatively large,
the current will be relatively large, if
the voltage is relatively small, the current will be relatively small.)

c.)  As time proceeds, positive charge accumulates on the capacitor's left
plate (this is looking at the circuit from a conventional current perspective
in which positive charge moves).

d.)  As it does, two things happen:

i.)  Electrostatic repulsion from the positive charge accumulated on
the left plate forces an equal amount of positive charge off the right
plate.  That leaves the right plate electrically negative.

Note:  The amount of negative charge on the right plate is always equal to
the amount of positive charge on the left plate.  That means that current appears
to be passing through a capacitor even though the capacitor's plates are not
connected.

ii.)  The second consequence is that the left plate's voltage begins to
increase and a voltage difference begins to form across the capacitor's
plates.

e.)  As the voltage of the capacitor's left plate increases, the voltage on
the resistor's low voltage side also begins to increase (that point and the
capacitor's left plate are the same point).  This decreases the voltage
difference across the resistor.

f.)  Figure 14.2b (next page) shows the voltage distribution around the
circuit midway through the capacitor's charge-up cycle.  This, in turn,
decreases the current in the circuit.
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electrical potential configuration for RC circuit
    at some arbitrary time after switch closed

FIGURE 14.2b
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 voltage difference across
capacitor plates increasing

voltage drop across
resistor decreasing

g.)  Figure 14.3
(below) shows the
Current vs. Time graph
for a circuit in which a
capacitor is charging.

h.)  In looking back
at Figure 14.2b, it should
be obvious that current
will flow until the
voltage of the capacitor's
left plate equals the
voltage of the power
supply's high voltage
terminal and the voltage

current

time

FIGURE 14.3

difference across the resistor is zero.  Put
another way, once the voltage across the
capacitor equals the voltage across the power
supply, current ceases.

Note 1:  In a little different light, current will
flow until the left plate holds as much charge as it
can, given the size of the power source to which it is
attached.

voltage distribution a long time after
                                                  switch is closed

FIGURE 14.4

switch closed
   for a time

V=0
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Note 2:  Does this analysis
hold in theory if we switch the
positions of the capacitor and
resistor?  Figure 14.4 shows the
situation along with the circuit's
voltage distribution after the switch
has been closed for a long time.
Notice that the voltage drop across
the capacitor is still equal to the
voltage across the power supply
when the current in the circuit along
with the voltage across the resistor
goes to zero.
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FIGURE 14.5
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     energy in the form of an
electric field between its plates

4.)  Bottom Line:

a.)  A capacitor stores
charge and, in doing so,
stores energy in the form
of an electric field between
its plates (see Figure 14.5).

b.)  If a capacitor has
Q's worth of positive
charge on one plate, it
must by its very nature
have Q's worth of negative
charge on its other plate.

c.)   If the magnitude
of the charge on ONE
PLATE is Q when the
magnitude of the voltage
drop across the capacitor's plates is Vc, then the capacitance of the
capacitor is defined as:

  

C = Q/Vc.

i.)  Put another way, the magnitude of the voltage Vc across the
plates of a capacitor is proportional to the charge Q on one plate.  The
proportionality constant is called the capacitance C, and the
relationship between the variables is:

Q = CVc.

d.)  By the definition of capacitance (i.e., C = Q/V), the MKS unit is
coulombs per volt.  The name given to this unit is the farad.

One farad is an enormous amount of capacitance.  It is common to use
capacitor values that are much smaller.  The following are the ranges most
often encountered (you should know not only their prefixes and definitions
but also their symbols):

i.)  A millifarad is symbolized as mf and is equal to 10-3 farads;

ii.)  A microfarad is symbolized as µ f (sometimes Mf) and is equal
to 10-6 farads;
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iii.)  A nanofarad is symbolized as nf and is equal to 10-9 farads;

iv.)  A picofarad is symbolized as pf and is equal to 10-12 farads.

5.)  Example of a Capacitor In Action:  Con-
sider the camera-flash circuit shown in Figure 14.6.

a.)  The switch is initially connected in the
down position so that the capacitor is hooked
across the power supply.  This allows the
capacitor's plates to charge up.

b.)  When the flash is activated, the switch
flips to the up position.  The capacitor
discharges across the resistor (i.e., charge
flows from one plate to the other, passing
through the resistor/lightbulb in the process)
with the large, momentary charge-flow
lighting the flashbulb.

c.)  Once fired, the switch automatically flips down allowing the
capacitor to once again charge itself off the power supply.

B.)  Equivalent Capacitance of Parallel and Series Combinations:

1.)  The Equivalent Capacitance for Capacitors in Series:

a.)  Just as current is common for
all resistors connected in series,
charge accumulation on capacitor
plates is the common quantity for
capacitors in series.

i.)  Examining Figure 14.7,
the positive charge electrically
forced off the right plate of the
first capacitor must go some-
where.  Where?  It accumulates
on the left plate of the second
capacitor.
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ii.)  Conclusion:  The amount of charge associated with each series
capacitor must be the same.

b.)  At a given instant, the sum of the voltage drops across the three
capacitors must equal the voltage drop across the power supply, or:

       Vo = V1 + V2 + V3 + . . .

c.)  As the voltage across a capacitor is related to the charge on and
capacitance of a capacitor (V = Q/C), we can write:

       Vo     =   V1   +   V2   +   V3   + . . .
      Q/Ceq = Q/C1 + Q/C2 + Q/C3 + . . .

d.)  With the Q's canceling nicely, we end up with:

   1/Ceq = 1/C1 + 1/C2 + 1/C3.

e.)  In other words, the equivalent capacitance for a series combination
of capacitors has the same mathematical form as that of a parallel
combination for resistors.

2.)  The Equivalent Capacitance for Capacitors in Parallel:

a.)  Just as voltage is common for all resistors connected in parallel,
voltage across capacitor plates is the common quantity for capacitors in
parallel (see Figure 14.8).

b.)  Over time, the charge that accumulates on
the various capacitors has to equal the total charge
Qo drawn from the power supply, or:

        Qo = Q1 + Q2 + Q3 + . . .

As each capacitor's charge is related to the voltage
across its plates by Q = CV, we can write:

   Qo    =   Q1   +   Q2   +   Q3   + . . .

CeqVo = C1Vo + C2Vo + C3Vo + . . .

With the Vo's canceling nicely, we end up with:

         Ceq = C1 + C2 + C3.
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DC version of an RC circuit

FIGURE 14.9

  switch closes
at t = 0 seconds

R
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c.)  In other words, the equivalent capacitance for a parallel
combination of capacitors has the same mathematical form as that of the
series combination for resistors.

C.)  The Current Characteristics of a Charging Capacitor in a DC Circuit:

1.)  Because there is no charge on the plates of an uncharged capacitor, a
capacitor will initially provide no resistance to charge flow in an RC circuit.

a.)  This means all of the initial voltage drop in the circuit is across the
resistor, which means the initial current io in the circuit is

Vo = ioR,
or

 io = Vo/R.

2.)  As the capacitor charges up, it will become increasingly more difficult
for additional charge to be forced onto the capacitor's plates.  As such, the current
in the circuit will decrease.

a.)  We would like to derive an expression for the current in a DC-RC
circuit as a function of time, but we really don't need the derivation to get
at the good stuff.  All we need now are the basics.

b.)  Figure 14.9 shows the circuit.
Remembering that the voltage drop
across a capacitor will be q/C, we can
use Kirchoff's Laws to write:

Vo - (qplate/C) - iR = 0,

where qplate is the charge on the
capacitor and i is the conventional
current in the circuit.

c.)  Noticing that the rate at
which charge flows onto the capacitor
plates (i.e., dqplate/dt) is, in this case,
equal to the charge flow in the circuit
(i.e., the current i, or dqflow/dt), we can divide through by R and re-rewrite
this as:
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FIGURE 14.10
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Minor Note:  If the capacitor had been discharging, dqplate/dt would be
NEGATIVE and the qflow/qplate relationship would be i = dqflow/dt = -dqplate/dt.  If
this bit of whimsy is missed, you will end up with mush for a solution.

d.)  This differential equation essentially states that we are looking for
a function qplate such that when we take its derivative (i.e., dqplate/dt) and
add to it a constant times itself (i.e., (1/RC)qplate), we will always get the
same number (in this case, Vo/R).

e.)  Bottom line #1:  Solving our differential equation yields a solution
that defines how much charge there will be on the capacitor as a
function of time.  That function is

  q flow (t) = Qmax (1− e
− t

RC ),

where Qmax = CVo.

f.)  Bottom line #2:  The
function that defines the
current in the circuit as a
function of time is the
derivative of our qflow
function, or

  i(t) = ioe
− t

RC,

where the initial current io
in the circuit is io = Vo/R.

g.)  See Figure 14.10.
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3.)  The graph of the current as a function of time for a charging capacitor
visually points out several important things.

a.)  Initially, the current through an RC circuit in which the capacitor
is initially uncharged is at a maximum.  That is, the capacitor initially acts
like it is a short (i.e., not even there).  It isn't until charge begins to
accumulate that charge flow begins to diminish.

b.)  The graph identifies a particular point in time that has been
deemed important.  It is the amount of time associated with what is called
one time constant.

i.)  One time constant is defined as τ  = RC, where the symbol τ  is a
lower case tau.

ii.)  Putting one time constant into our current expression (i.e., letting
t = RC) yields:

i = ioe-RC/RC

= io(e-1)
= .37io.

iii.)  Bottom line:  One time constant is the amount of time it takes
the circuit's current to diminish to 37% of its initial value.

iv.)  It is also the amount of time it takes for the capacitor to charge
up to 63% of its initial charge (to see this, put one time constant in the
charge expression).

c.)  What does this tell us?  It tells us that if we multiply the value of
the capacitance and resistance together (i.e., RC ), the number we end up
with will:

i.)  Have the units of seconds (this has to be the case if the exponent
is to be unitless);

ii.)  Be the amount of time required for the capacitor to charge to
63% of its maximum; and

iii.)  Be the amount of time required for the current to drop to 37% of
its maximum.
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FIGURE 14.11

Note 1:  In doing the math, the time interval 2t will give us approximately
87% charge-up for the capacitor and a current that will have dropped to
approximately 13% of its initial value.

Note 2:  The charge/discharge characteristics of a capacitor in an RC circuit
are symmetric.  That is, the time it takes to charge a capacitor to 63% of its
maximum is the same amount of time required for the charged capacitor to
discharge 63% of its charge (leaving 37% on the cap).

d.)  Why is t important?  It would be idiotic to build a camera flash
using a resistor and capacitor whose time constant was, say, ten seconds.
Waiting twenty seconds for 87% of your charge to dump through the
resistor would never do.  A system's time constant is a very useful quantity
to know.

D.)  Dielectrics:

1.)  Consider the situation in which a
piece of insulating material, called a
dielectric, is placed between the plates of the
capacitor (see Figure 14.11).  The capacitor
is charged, then isolated (that is, once
charged it is disconnected from the power
supply).  What must be true?

a.)  Let Eo be the electric field
without the dielectric between the
capacitor's plates.

b.)  When the insulator is placed
between the plates, the surface of the
insulator facing the positive plate of
the capacitor will experience a Van
der Waal-type charge separation that
makes that face appear negative.  A similar effect will be found on the other
face making it appear positive.
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   charge induced on dielectric
 creates reverse electric field:
net effect--E      and V decrease
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c.)  The charge separation in the
dielectric creates a second electric field
Ed between the plates (again, see Figure
14.12) in the opposite direction of Eo.
Although Ed is considerably smaller than
Eo, the effect is to decrease the net electric

field between the plates.

d.)  As the electric field between the
plates is proportional to the voltage
difference across the plates, decreasing
the electric field by inserting the
dielectric effectively decreases the voltage
across the plates.

e.)  We know that C = Q/Vc.  If the
charge on the plates stays the same while
the voltage across the plates goes down,
the capacitance C increases.

f.)  Bottom Line:  Inserting a dielectric between the plates of a capacitor
INCREASES THE CAPACITANCE.

g.)  If the ratio of the capacitance with dielectric to capacitance without
dielectric is defined as the dielectric constant κ d (i.e., the dielectric constant

for a material is simply a number that tells you how much the capacitance
of an air-filled capacitor will be boosted when the dielectric is placed
between its plates), we can write

         Cd =   κ d Cw/o.

2.)  Dielectrics used in conjunction with capacitors are useful for three
reasons:

a.)  As explained above, the presence of a dielectric between a
capacitor's plates inherently increases the capacitance of the capacitor.

b.)  A piece of insulating material (a dielectric) placed between the
plates acts like a gap-jumping barrier for electricity.  That means much
larger voltages, hence much larger electric fields, can be dealt with using a
capacitor that would not otherwise have been able to handle the situation.
Put another way, more charge can be stored on the plates without fear of
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FIGURE 14.13
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breakdown that would otherwise have been the case (breakdown occurs
when the electric field between the plates is so large that charge leaps the
gap--once breakdown is achieved in a dielectric-filled capacitor, the
capacitor is ruined).

c.)  Due to their insulating properties, dielectrics allow plates to be
brought very close to one another.  As the capacitance is inversely pro-
portional to the distance d between the plates, this allows for both the
miniaturization of capacitors as well as the increasing of a capacitor's
capacitance per unit of plate area.

3.)  It is possible to derive an expression for the capacitance of a parallel
plate capacitor in terms of its geometric parameters (i.e., its plate area, the
distance between its plates, etc.).  It requires the use of the definition of
capacitance (i.e., C = q/Vc), the relationship between a voltage difference and the
electric field that is set up as a consequence of the charge on the plates (i.e., ∆V =
-∫E.dr), the fact that ∆V = (V- - V+) = - Vc, and the electric field function for
charged parallel plates.

Sound nasty?  It is.
Fortunately for you, all

you need is the bottom line.
Sooo . . .

a.)  Assuming the
distance between the
plates is d meters (see
Figure 14.13), the area of
one plate is Ao square

meters, and the dielectric
constant of the dielectric
between the plates is   κ d ,
the capacitance of a
parallel plate capacitor is

  
C = κ dε o

A o

d
,

where   ε o  is called the permittivity of free space and is numerically equal to

8.85x10-12 farads/meter.
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Note:  Coaxial cables are used in industry for TV and VCR hook-ups.  A
dielectric-filled coaxial cable with inside radius R1 and outside radius R2 has a
capacitance per unit length of

  

C

L
=

2πκ dε o

ln
R2

R1











.

E.)  Energy Stored in a Capacitor:

1.)  Work must be done to charge a capacitor.  The energy associated with
that work is stored as electrical potential energy in the electric field created
between the capacitor's plates.  In other words, we can determine the amount of
energy stored in a capacitor by determining the amount of work required to
charge the capacitor.  Because you have been deprived of some of the more
interesting (translation: diabolic) derivations, I'll let you see how this plays out
mathematically.

a.)  To be as general as possible, assume a capacitor of capacitance C
initially has charge q on its high voltage plate and -q on its low voltage
plate.  If the voltage across the plates is initially Vc, how much work must
be done to add an additional dq's worth of charge to the positive plate?

b.)  The amount of work we are looking for will equal the amount of
work required to move the charge dq from one plate to the other (that is
effectively what is happening as electrostatic repulsion pushes dq's worth
of positive charge off the capacitor's low voltage plate).

c.)  The relationship between the differential work dW done on the
differential charge dq as it moves through a potential difference (V- - V+) =

-Vc is:

          dW/dq = -∆V
 = +Vc.

d.)  Remembering that Vc = q/C, where q is the charge already on the
plates, we can rewrite this as:

    dW = (Vc)dq
= (q/C)dq.
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FIGURE 14.14
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e.)  The total amount of energy required to place a net charge Q on the
capacitor's plates will be the sum (i.e., integral) of all the differential work
quantities evaluated from q = 0 to q = Q.  Doing that operation yields:
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f.)  As Q = CVc, the work expression can be re-written as:

     
  
W = 1

2
CVc

2.

This is the amount of ENERGY wrapped up in a capacitor whose
capacitance is C and across whose plates a voltage Vc is impressed.

2.)  What's interesting about all of this is that if we are clever, we might be
able to charge up a capacitor, then discharge it through a motor making the motor
run.  Attach the motor to wheels and we have a robot (OK, a very simple robot,
but a robot nevertheless).

F.)  Capacitors in AC Circuits:

1.)  So far, all we have dealt with have been capacitors as they act in DC
circuits.  They charge up.  When given the chance, they
discharge.

In AC circuits, capacitors are constantly charging
up and discharging.  This makes for some very fun
times.

2.)  Consider the RC circuit shown in Figure
14.14.  Unless it is "leaky," the capacitor in the circuit
will have no resistor-like resistance inherent within it.
As such, we will assume there is no ir voltage drop
across the capacitor.
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Though there is, in theory, no resistor-like resistance to charge flow
associated with the capacitor, capacitors do have a frequency-dependent resistive
nature.  Not obvious?  Consider the following:

a.)  The voltage drop across a capacitor is defined as:

VC = q/C,

where q is the magnitude of charge on one capacitor plate and C is the
capacitor's capacitance.

b.)  To make the evaluation easier later on, let's assume the power
supply's voltage is characterized as a sine function (a cosine function would
also work--it would just be a little messier to deal with).  With that as-
sumption, a Kirchoff's Loop Equation for this circuit (see Figure 14.14)
becomes:

- q/C - iR + Vo sin (2 νt) = 0.

Manipulating, we get:

q/C + iR = Vo sin (2 νt),

where q is a time varying quantity in the expression (we could denote it q(t)
but, for simplicity, we will leave it as presented).

c.)  Though you will never have to derive this on a test, we need an
expression for the resistive nature of the capacitor.  To do this:

i.)  Assume the resistor-like resistance in the circuit is negligible
(i.e., that R = 0).  In that case, Kirchoff's Law becomes:

q/C  = Vo sin (2 νt)
     ⇒     q  = CVo sin (2 νt).

ii.)  Remembering that i = dq/dt, we can write:
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low frequency voltage

FIGURE 14.15
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i =
dq
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  =
d CV o sin(2πνt)[ ]

dt

  = CV o (2πν) cos(2πνt)

  =
V o cos(2πνt)

1

2πνC







               (Equation B).

3.)  Ohm's Law maintains that the current through an element must equal
the voltage across the element divided by a quantity that reflects the resistive
nature of the element.  In the above expression, the voltage across the element is
Vocos(2ν t).  That means the resistive nature of the capacitor must be 1/(2ν C).

a.)  In fact, this is the frequency-dependent resistive nature of a
capacitor.  It is called the capacitive reactance, its symbol is XC, and its
units are ohms.  Summarizing, we can write:

     
    
XC = 1

2πνC
   (ohms),

where the capacitance C must be written in terms of farads (versus leaving
it in microfarads or whatever).

4.)  Does the frequency-dependent expression for the resistive nature of a
capacitor (i.e., its capacitive reactance) make sense?  Consider:

a.)  Assume the voltage of a power supply runs at low frequency.

i.)  Examining the low fre-
quency signal shown in Figure
14.15, it is evident that the sig-
nal is changing very slowly and
that there is a respectable
amount of charge on the capaci-
tor a fair portion of the time.  In
other words, the capacitor has
plenty of time to charge up and,
on the average, the voltage (q/C)
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high frequency voltage

FIGURE 14.16

 the current charges and discharges
   the cap so fast that the capacitor's
   voltage, on average, goes to zero
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across the capacitor is relatively large.

ii.)  Because the capacitor's voltage is relatively large on average,
the voltage across the resistor will be relatively small.  This implies a
small current in the circuit.

b.)  Bottom line #1:  The current in an RC circuit will be relatively
small (i.e., edging toward a readable zero) when a low frequency signal
passes through the circuit.  That means we would expect the capacitive
reactance (the resistive nature of the capacitor) to be large at low
frequencies.  This is exactly what our expression predicts (i.e., when ν   is
small, XC = 1/(2ν C) is large).

c.)  Assume the voltage of a power supply now runs at high frequency.

i.)  Examining the high
frequency signal shown in
Figure 14.16, it is evident that
the signal is changing very fast.
There are not great spans of
time during which the capacitor
is charged, hence there are not
great spans of time during which
the voltage across the capacitor
is high.  In fact, the voltage (on
the average) is low (remember,
the time average of a high
frequency sine wave is zero even over relatively small time intervals).

ii.)  A small voltage across the capacitor (on average) means a large
voltage across the resistor.  This implies a large current in the circuit.

d.)  Bottom line #2:  The current in an RC circuit will be relatively large
when a high frequency signal passes through the circuit.  That means we
would expect the capacitive reactance to be small at high frequencies.  This
is exactly what our expression predicts (i.e., when ν   is large, XC is small).

e.)  Summary:  A capacitor in an AC circuit passes high frequency
signals while damping out low frequency signals.  As such, capacitors are
sometimes referred to as high pass filters.
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voltage across a capacitor in an AC circuit

t

the capacitor's voltage (top graph) LAGS
   the circuit's current by a quarter cycle

FIGURE 14.18

 the slope   V/   t is maximum,  so
   the current (   q /   t) is maximum
     at this point in time

current in the circuit

V   = q/CC

FIGURE 14.17

(  q/  t)

 the slope   V/   t is zero,  so
   the current (   q /   t) is also
    zero at this point in time

5.)  The second point to note about the time dependent current expression
we derived above is its form.  By assuming a power supply voltage that is
proportional to sin (2ν t), and assuming that the net resistance in the circuit is
zero, we find that the circuit's current is proportional to cos (2ν t).  Examining
the graph of these two functions allows us to conclude that in this situation the
voltage across the capacitor lags the current through the capacitor (i.e., the
circuit's current) by /2 radians.

Does this make sense?

a.)  The voltage across a
capacitor is proportional to the
charge on the capacitor (i.e.,
VC = q/C).  Figure 14.17
depicts a graphical
representation of this.

b.)  Current is defined as
the amount of charge that
passes a particular point per
unit time (i.e., i = dq/dt).

c.)  The slope of the capaci-
tor's voltage function is

dVC/dt = (1/C)(dq/dt)
= i/C.

d.)  In other words, a
graph of the slope of the
capacitor's voltage function
gives us a modified current
function.  Figure 14.18 shows
this.

e.)  In comparing the graphs, it is evident that the voltage across the
capacitor LAGS the current in the circuit by one quarter of a cycle, or /2
radians.

Big Note:  This /2 phase shift exists ONLY if there is no resistor-like
resistance in the circuit.  As there will never be a case in which there is absolutely
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no resistor-like resistance in a circuit, the phase shift in a real RC circuit will
never be /2.  Calculating what it actually is in a given case is something we may
do later, but not now.
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QUESTIONS & PROBLEMS
  

14.1)  You have a power supply whose low voltage "ground"
terminal is attached to a resistor whose resistance is R = 104

ohms.  The resistor is attached to a plate (we'll call it plate B)
which is next to, but not connected to, a second plate (we'll call it
plate A).  Reiterating, THERE IS NO CONNECTION between
plate A and plate B.  There is, additionally, no initial charge on
either of the plates.  Attached to Plate A is a switch.  On the
other side of the switch is the high voltage "hot" terminal of the
power supply.  A sketch of the situation is shown.  At t = 0, the switch is closed.

a.)  Current initially flows between the high voltage terminal and Plate
A.  Why?  That is, what's going on?

b.)  Current initially flows from Plate B through the resistor, and back
to the ground of the power supply.  Why?  That is, what's going on?

c.)  What is the two-plate device called?
d.)  After a while, there is a voltage V = 10 volts across the plates.  At

that point in time, there is 10-10 coulombs of charge on plate A.  The ratio of
the charge to voltage is 10-9.

i.)  How much charge is on Plate B?
ii.)  What is this ratio called?

iii.)  At some later point in time, the voltage across the plates is
doubled.  What is the ratio of charge to voltage in that case?  Explain.

14.2)  What do capacitors (often referred to as caps) generally
do in DC circuits?  Give an example.

14.3)  A 10-6 farad capacitor is in series with a 104 ohm resistor,
a battery whose voltage is Vo = 100 volts, and a switch.  Assume the
capacitor is initially uncharged and the switch is thrown at t = 0.

a.)  The capacitance value tells you something that is
always true no matter what the voltage across the capacitor
happens to be.  What does it tell you?

b.)  What is the initial current in the circuit?
c.)  What is the circuit's current after a long period of time?
d.)  How much charge will the  capacitor hold when fully charged?
e.)  How much energy is wrapped up in the capacitor when fully

charged?
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f.)  Where is the energy stored in the capacitor?
g.)  You are told that the time constant for the system is 10-2 seconds.

i.)  What does that tell you about the system?
ii.)  How much charge will be associated with the capacitor after at

time equal to one time constant?
iii.)  Where will the charge alluded to in Part g-ii be found?

h.)  After a very long time, the switch is opened.  What happens to the
capacitor?  Will it hold its charge forever?

i.)  At t = 1 second, the current is i1.  At t = 2 seconds, the current is i2.
At t = 4 seconds, the current is i4, and at t = 8 seconds, the current is i8.  Is
i2/i1 going to give you the same ratio as i8/i4?

14.4)  Can you have capacitance if you have only one plate?

14.5)  You have a series combination of capacitors.
a.)  What happens to the equivalent capacitance when you add another

capacitor?
b.)  What is common to all the capacitors in the series combination?

14.6)  You have a parallel combination of capacitors.
a.)  What happens to the equivalent capacitance when you add another

capacitor?
b.)  What is common to all the capacitors in the

parallel combination?

14.7) You charge up two single capacitors that are in
parallel.  You disconnect the battery.  What happens to
the current in the system when you do this?

14.8)  You charge up two unequal capacitors that
are in series.  You disconnect the battery by opening
S1, then reconnect the two capacitors by closing S2.

a.)  What happens to the current in the
system when you do this?

b.)  Out of curiosity, why was the resistor
included in the circuit?

c.)  What kind of circuit do you have after
both switches are thrown?  That is, what
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kind of relationship will exist between the capacitors after the throw?

14.9)  You use a battery whose voltage is Vo to charge
up a capacitor C.  When fully charged, there is q's worth of
charge on the cap.  You then disconnect the capacitor from
the battery and reconnect it to a second uncharged
capacitor whose capacitance is 2C (in the sketch, this
disconnection, then reconnection, is done with the switch).
After the switch is thrown:

a.)  Before the charge on C can redistribute,
what is the voltage across the second capacitor?

b.)   How will the charge redistribute itself?
That is, how much charge ends up on the second capacitor?

14.10)  You charge up a parallel plate capacitor that has air between its
plates.  Once charged, you disconnect it from the battery, then insert a piece of
plastic (an insulator) between the plates.  The amount of charge on the capacitor
does not change (being disconnected from the circuit, it has no place to go), but the
voltage across the capacitor does change.

a.)  What is the insulator usually called in these situations?
b.)  How and why does the voltage change (up, down, what?)?
c.)  What happens to the capacitance of the capacitor?
d.)  What happens to the energy content of the capacitor?  If it goes

up, from whence did the new energy come?  If it goes down, where did it
go?

14.11) You have a parallel plate capacitor with air between its plates hooked
up to a power supply whose voltage is Vo.  Without disconnecting the battery, you
carefully insert a piece of plastic between the plates.

a.)  What happens to the voltage across the capacitor?
b.)  What happens to the capacitor's capacitance?
c.)  What happens to the charge on the capacitor's plates?

14.12)  Between the plates of one air-filled capacitor, you
insert a dielectric whose dielectric constant is k and whose
thickness is half the plate separation.  Between the plates of a
second cap, you insert a piece of metal whose thickness is also
half the plate separation.  (Both situations look like the sketch.)
After some nasty Calculus, the capacitance expression for the

dielectric situation is found to be 
  
C = 2ε o

A

d







2k

1+ k






.
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FIGURE I
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FIGURE II

a.)  Which modified capacitor will end up with the greater capacitance?
b.)  What is the ratio of the two capacitances?

14.13)  You have a capacitor in series with a switch, a resistor, and a power
supply.  At t = 0, you throw the switch and current begins to flow.

a.)  For the amusement of it, draw the circuit.
b.)  If the capacitor had been half as big, how would current flow?  That

is, would the cap have charged faster or slower?  Justify your response.

14.14)  Assuming
there is no charge ini-
tially on any capacitor,
answer all the following
questions for the capaci-
tor circuit in sketch a.
When done, repeat the
process for the circuit
shown in sketch b:

a.)  Determine
the initial current in the circuit when the switch is first thrown.

b.)  A long time after the switch is thrown (i.e., by the time the caps are
charged up fully), how much charge is there on each plate?

c.)  What is the voltage across the 6 µ f capacitor when fully charged?
d.)  How much energy does the 6 µ f capacitor hold when completely

charged?
e.)  Determine the RC circuit's time constant.  What does this

information tell you?
f.)  How much charge is there on the 6 µ f capacitor after a time in-

terval equal to one time constant passes?

14.15)  Three identical capacitors are connected in several ways as shown in
Figure II.
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FIGURE III

a.)  Order the combinations from the smallest equivalent capacitance to
the largest; and

b.)  Which combination has the potential of storing the most energy?

14.16)  A parallel plate capacitor is connected to a 20 volt power supply.  Once
charged to its maximum possible Q, the capacitor's plates are separated by a
factor of four (that is, the distance between the plates is quadrupled) while the
capacitor is kept hooked to the power supply.  As a consequence of this change in
geometry:

a.)  How will the capacitor's capacitance change?
b.)  How will the charge on the capacitor change?
c.)  How will the energy stored in the capacitor change?
d.)  If a dielectric (κ d = 1.6) had been placed between the plates of the

original setup, what would the new capacitance have been?

14.17)  Determine:
a.)  The equivalent capacitance of the

circuit shown in Figure III.
b.)  Assuming each capacitor's capacitance

is 25 mf, how much energy can this system
store if it is hooked across a 120 volt battery?

14.18)  The capacitors in the circuit shown in

120 volts

20

switch closes
      at t=0

12   f

FIGURE IV

i
1

i
2

i
3

30

6   f

Figure IV are initially uncharged.  At t = 0,
the switch is closed.  Knowing the resistor and
capacitor values:

a.)  Determine all three initial cur-
rents in the circuit (i.e., the currents
just after the switch is closed).

b.)  Determine all three currents in
the circuit after a long period of time
(i.e., at the theoretical point t = ∞).

c.)  Without solving them, write out
the equations you would need to solve if
you wanted to determine the currents in the circuit at any arbitrary point
in time.  Be sure you are complete.

d.)  Determine the total charge the 6 mf capacitor will accumulate (i.e.,
the amount of charge on its plates at t = ∞).

e.)  Once totally charged, how much energy do the capacitors hold?
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f.)  After a very long time (i.e., long after the capacitors have fully
charged), the switch is opened.  How long will it take for the two capacitors
to dump 87% of their charge across the 30 Ω resistor?

14.19)  An AC voltage source is found to produce a 12 volt peak to peak signal
at 2500 hertz.

a.)  Characterize this voltage as a sine function.
b.)  Determine the RMS voltage of the source.
c.)  It is found that when a capacitor and resistor are placed across the

source as characterized above, an ammeter in the circuit reads 1.2 amps.
What is the maximum current drawn from the source?

14.20)  An RC circuit is hooked across an AC power supply.  Which of the
following statements are true (there can be more than one)?  Explain each
response.

a.)  The RMS voltage across the resistor is the same as the average
voltage across the resistor.

b.)  The RMS voltage across the resistor is equal to R times the RMS
current through the resistor.

c.)  The RMS voltage across the resistor will be very large if the
capacitive reactance is very large.

d.)  The RMS current in the circuit will be very large if the capacitive
reactance is very small.

e.)  A decrease in frequency will increase the voltage across the
capacitor.

f.)  An increase in the capacitance will increase the current in the
circuit for a given frequency.

g.)  A decrease in frequency will increase the voltage across the
resistor.

14.21)  Why won't a capacitor allow low frequency AC current to flow through
it?

14.22) What is the measure of a capacitor's net resistive nature?  That is,
what is it called, what are its units, and how is it calculated?
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