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Rotational Motion II -- Conceptual Solutions

1.)  A rotating wheel
is supported by a
fixed rod oriented as
shown.  A force F is
applied to the wheel.
At the moment
depicted in the
sketch:

a.)  In what
direction is the torque
due to F, relative to
the wheel's center?

Solution:
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Formally, torque is defined as the cross product of the applied force F and the distance r
between the point of interest (in this case, the
axis of rotation) and the point at which the
force acts.  That is, torque Γ  = rx F .
Determining the direction of a cross product is
usually done with the right hand rule (though
an easier way will be presented shortly).
With the right hand rule, the length of the
right hand runs along the first vector (r), then
the hand motions into hitch hiker position as
it waves toward the second vector (F).  The
extended right thumb defines the direction of the cross product.  In this case, that will be
directed into the page in the -k direction.  THE EASY WAY TO DO THIS: Once you come
to understand and believe in the right hand rule, note that a force that motivates a body
to rotate clockwise (as viewed from the positive side of the axis of rotation) produces a
negative torque, and a force that motivates a body to rotate counterclockwise produces a
positive torque.  For this problem, the force pushes the wheel clockwise, so its torque will
be negative.

b.)  In what direction is the wheel's resulting angular acceleration?
Solution:  In the world of rotational motion, net torque and angular acceleration are
the counterparts to net force and acceleration.  According to Newton, the net force
acting on a body is proportional to the body's acceleration (note that that means their
directions are the same).  Running a parallel for the rotational world, the net torque
acting on a body is proportional to the body's angular acceleration (that means their
directions are the same).  As there are no other torques acting on the system except
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that of F, we can conclude that the direction of the angular acceleration will be the
same as the direction of the torque produced by F (i.e., in the -k direction).

c.)  In what direction is the wheel's angular momentum?
Solution:  The angular momentum vector is equal to L  = I ω .  As such, the direction of
the angular momentum vector will always be the same as the direction of the angular
velocity vector ω .  The easiest way to determine the unit vector attached to ω  is to
remember that the unit vector will always be perpendicular to the plane in which the
rotation occurs (for our situation, that direction will be along the z-axis).  Further, ω
will be positive if the rotation is counterclockwise (as viewed from the positive side of
the axis) and negative if the rotation is clockwise.  In short, looking from the side of our
disk, the angular velocity, hence, angular momentum vector, will be straight up in the
+k direction.

Note:  Although this next question has a seemingly perverse result, its weirdness
will be addressed at the end of the chapter.  For now, view it as an exercise in the use
of the right hand rule coupled with a bit of thinking about the rotational version of
both Newton's Laws and momentum.

2.)  The rotating wheel shown is supported
by a gimbaled rod (that is, the rod cannot
physically translate but it can rotate about
its end in any direction).  Ignore gravity (i.e.,
think of this as being an experiment done in
the weightlessness of space).  A force F is
applied to the wheel/rod system for just a
moment as shown in the sketch.

a.)  In what direction is the resulting
torque about the gimbaled end?

Solution:  Torque is rxF, where r is a
vector that extends from the axis of
rotation to the point where the force acts.  In this case, that vector goes from the
gimbaled end vertically up to F.  If you do the right hand rule on this, your thumb will
point into the page.  That is the direction of the torque due to F about the end.  Note:
Just as a force that makes the magnitude of a body's acceleration increase or decrease
must be directed along the line of the body's velocity vector, a torque that makes the
magnitude of a body's angular velocity increase or decrease must be directed along the
line of the body's angular velocity vector.  IN THE CASE ALLUDED TO IN THIS
QUESTION, the direction of the torque (into the page) and the direction of the wheel's
angular velocity ω  (up the axis in the +k direction) ARE NOT THE SAME.  That
means the torque provided by F will not affect the magnitude of the angular velocity of
the wheel.  What will it affect?  You'll see shortly.

b.)  In what direction is the system's resulting angular acceleration?
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Solution:  The direction of the angular acceleration will be the same as the direction of
the net torque on the system.  According to Part a, that's into the page.

c.)  Assuming the angular velocity starts out in the +k direction (i.e., the wheel is
rotating counterclockwise as viewed from above), what is the system's angular
momentum vector going to do due to the application of F?

Solution:  This is where things get strange.  The direction of the angular momentum
vector is the same as the direction of the angular velocity of the wheel.  In this case,
that is up the rod in the +k direction.  Just as the translational version of Newton's
Second Law maintains that the force on an object is equal to its change of momentum
with time, the rotational version of Newton's Second Law maintains that the torque on
a body must equal the change of a body's angular momentum with time.  That is, Γ  =

∆ (Iω )/ ∆ t.  As was noted in Part a, pushing on the rod surely isn't going to change the
MAGNITUDE of the wheel's already existent angular momentum, so it must change
the DIRECTION of the wheel's angular momentum.  In other words, applying the force
as shown in this case will make the wheel's axis (i.e., the rod) lurch into the page.
Why?  Because that's the direction the new angular momentum vector has to go,
relative to the old angular momentum, so that the CHANGE of the angular
momentum vector is in the same direction as the external torque.  Now that's weird ...
but, in fact, that's what's happening.  (If you have ever played with a TOP, you've
probably noticed
that it circles--its
a x i s  c h a n g e s
direction as shown
in the sketch.
This precession is
d u e  t o  t h e
phenomenon
alluded to above.
Gravity acting at
the center of mass
produces a torque
about the fixed
end of the TOP.
The direction of
that torque is
perpendicular to the angular momentum vector, so the change of angular momentum
motivates the top's axis to circle).

3.)  Can an object that is not translating have kinetic energy?
Solution:  The blade of a table saw does not translate, but it can definitely do damage to
you.  Rotational kinetic energy is the energy associated with rotational motion.

4.)  A meterstick sitting on a frictionless surface has a force F applied
at its center of mass.  The same force is then applied to an identical
meterstick halfway between its center of mass and its end (see
sketch).
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a.)  In the second situation, why might the phrase "the stick's acceleration due to
the force F" be somewhat misleading?

Solution:  Examining the first stick, F is applied at the stick's center of mass, there is
no rotation, and the acceleration a = F/m will be applicable to every point on the stick.
But because the force on the second stick is not applied at the center of mass, that stick
will not only accelerate translationally, it will additionally rotate about its center of
mass .  That means each point on the stick will have a different translational
acceleration.  There is only one part of that stick that accelerates at F/m--the stick's
center of mass--so the phrase should have been "the acceleration of the stick's center of
mass due to F."

b.)  In the second situation, the phrase the stick's acceleration due to F is
misleading whereas the phrase the stick's angular acceleration due to F is NOT
misleading.  How so?

Solution:  This is most easily seen by examining the idea of angular velocity, then
extrapolating to the idea of angular acceleration.  The angular velocity of an object
about its center of mass will be the same as the angular velocity about ANY POINT
ON THE OBJECT.  That is, if you sit at the center of mass and count the number of
radians the object sweeps through as it rotates about you in a given time interval, the
number you'll come up with will be the same as the number you'll come up with if you
do the same process while sitting at any other point on the object.  (That's why
angular parameters are so nice.)  The same can be said about an object's angular
acceleration.  If you know the angular acceleration relative to one point on the body
(say, relative to the center of mass), you know the angular acceleration relative to any
point on the body.

c.)  Will the acceleration of each stick's center of mass be different in the two
situations?  If so, how so?

Solution:  Just because there is rotation in one case and no rotation in the other
doesn't mean the translational version of Newton's Second Law (i.e., Fnet,x = max) is

no longer valid.  The translational acceleration of either stick's center of mass will still
equal the total force F acting on the stick in the x direction divided by the stick's mass,
and that number will be the same in both cases.

d.)  Will the stick's angular acceleration about its center of mass be different in
the two situations?   If so, how so?

Solution:  There is no angular acceleration for the first stick because there is no torque
being applied to that stick about its center of mass (a force acting through a point will
not produce a torque about that point).  As there is a torque on the second stick, the
angular accelerations will be "different."

e.)  Will the velocity of each stick's center of mass be different?  If so, how so?
Solution:  Because the acceleration of each stick's center of mass will be the same, the
velocity change will be the same and the two objects will parallel one another as far as
velocity in the x direction goes.  (Note:  Whenever you see the word velocity alone, the word
refers to translational velocity.  If you want to designate angular velocity, you have to do
just that by using the word angular or rotational in front of the velocity term.)
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f.)  Will the angular velocity about the stick's center of mass be different in the
two situations?  If so, how so?

Solution:  Because there is a torque in the second case and no torque in the first case,
the second case will have an angular acceleration, hence angular velocity, associated
with its motion whereas the first won't.

g.)  Assume the force in both cases acts over a small displacement d.  How does
the work done in each case compare?

Solution:  This is tricky.  By the definition of work, if the force
acts over the same distance d in both cases, the same amount
of work is done on both systems.  On the other hand, as the
first case is solely translational while the second case is both
translational and rotational, it would seem more energy would
be required to support the second case.  To add to the
confusion, we also have to contend with the fact that the center
of mass accelerations must be the same in both cases
(remember, N.S.L. doesn't cease to exist just because there's
rotation in the system--a net force on a body in a particular
direction, no matter where the force is applied to the body in that
direction, is going to accelerate the body's center of mass by an
amount equal to F/m ), so it looks like the same amount of
energy is being pumped into both systems when clearly we need
more energy in one system than the other.  So what's going on?
The key lies in a subtlety of geometry.  Because the force is
applied at the center of mass in the first case, the distance the
force is applied and the distance the center of mass actually
moves are the same (see sketch).  Also, it will take, maybe, t
seconds to execute this motion.  Because the force is applied at a
point other than the center of mass in the second case, the
distance the force is applied and the distance the center of mass
actually moves are NOT THE SAME (see second sketch).  In
fact, the center of mass will travel less distance in that second
case.  Additionally, as the center of mass accelerations are the
same in both cases, the time of acceleration in that second case
will be less than the time of acceleration in the first case (this
makes sense if you think about it--the force in the first case is fighting the entire
inertia of the mass as it motivates that entire mass forward; the force in the second
case is motivating some mass forward while some of the mass rotates backwards--the
net effect is that the point at which the force is applied in the second case will shoot
forward and reach d quicker, so the time of motion will be less).  Bottom line:  The
amount of work done in both cases will be the same, but because the times of
acceleration are different, the center of mass velocities (hence, the translational kinetic
energies) will differ.  That energy discrepancy is accounted for in the second case as
rotational kinetic energy.

h.)  Assume the force in both cases acts over a small center of mass
displacement d (say, 2 centimeters).  How does the work done in each case
compare?
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dSolution:  This is reminiscent of Part g.  If the center of mass
velocities of the two objects are going to parallel one another,
the work needed to change each stick's translational kinetic
energy must be the same.  But if work is also needed to change
rotational velocity, which happens to be the case in the second
situation, then still more energy must be pumped into that
system.  In other words, the force F must do more work on the
second stick than it does on the first stick.  This may seem
strange, given the fact that the center of masses move the same
distance, but it isn't.  Think about it.  Assume the force on the
second stick is applied at point P.  As that stick rotates, does
the stick's center of mass or point P move farther?  Point P
physically moves farther than the center of mass does.  That
means the force acting at that point acts over a larger distance
than was the case with the first meterstick.  It is the work done
by the force acting over that extra distance that powers the
rotation.

5.)  Why does a homogeneous ball released from rest roll
downhill?  That is, what is going on that motivates it to roll?
(Hint:  No, it's not just that there is a force acting!  There are all sorts of situations
in which forces act and rolling does not occur.)

Solution:  What motivates objects to roll is torque.  In the case of the ball, you can either
look at the torque relative to the center of mass (in that case, the torque will be produced by
the friction between the ball and the incline) or the torque relative to the point of contact
with the incline (in that case, the torque will be produced by gravity acting at the body's
center of mass).  In all cases, rolling doesn't happen unless there is a net torque acting on
the object.

6.)  A spinning ice skater with his arms stretched outward has kinetic energy,
angular velocity, and angular momentum.  If the skater pulls his arms in, which of
those quantities will be conserved?  For the quantities that aren't conserved, how
will they change (i.e., go up, go down, what?)?  Explain.  (Hint:  I would suggest you
begin by thinking about the angular momentum.)

Solution:  As the guy pulls his arms in, there is no torque about his axis of rotation (the
muscular force he applies to himself is along a line through his axis of rotation, so it
produces no torque about that axis).  As a consequence, ANGULAR MOMENTUM must be
CONSERVED.  In this case, though, the moment of inertia decreases as he pulls his arms
in (his overall mass is getting closer to his axis of rotation diminishing his rotational
inertia).  As the constant angular momentum L is a function of moment of inertia I and
angular velocity ω , a decrease in moment of inertia means an INCREASE in ANGULAR
VELOCITY.  In other words, as anyone who has ever watched an ice skating exhibition
knows, when the arms come in, the rotation speeds up.  In short, while L remains the
same, I decreases and ω  increases proportionally.  As for kinetic energy, that is a function
of angular velocity squared (i.e., KErot = .5Iω 2).  So although I goes down, ω  goes up

proportionally and is squared.  The net effect is that his ROTATIONAL KINETIC ENERGY
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will INCREASE.  (Where does the energy come from?  His muscles provide it by burning
chemical energy inside his body.)

7.)  An object rotates with some angular velocity.  The angular velocity is halved.  By
how much does the rotational kinetic energy change?

Solution:  Rotational kinetic energy is equal to KErot = .5Iω 2, so halving ω  drops the

kinetic energy by a factor of 4.

8.)  If you give a roll of relatively firm toilet paper an initial push on a
flat, horizontal, hardwood floor, it may not slow down and come to a
rest as expected but, instead, pick up speed.  How so?

Solution:  This is a fun one.  As the roll lays down more and more t.p., its center of mass
lowers.  As the center of mass drops, gravitational potential energy is converted into kinetic
energy and the body continues to roll on.

9.)  A meterstick of mass m sits on a frictionless surface.  A hockey
puck of mass 2m strikes the meterstick perpendicularly at the
stick's center of mass (call this case A).  A second puck strikes an
identical meterstick in the same way on an identical frictionless
surface, but does so halfway between the stick's center of mass and
its end (call this case B).

upper part of
 stick moves
  BACKWARDS
   after collision

contact point

a.)  Is the average force of contact going to be different in the two cases?  If so, how
so?

Solution:  The temptation is to think that because the collision velocities are the same,
the average contact forces will be the same.  It turns out that that isn't the case.
First, some observations:  To begin with, because the mass of the puck is double the
mass of the meterstick, it is safe to assume that when the collision occurs, the puck
will not rebound but will, instead, continue moving in its original direction with
diminished speed.  This will be true in both cases.  It is also safe to assume that the
contact point on the meterstick will leave the puck with a velocity that is greater than
that of the puck (i.e., the two will separate . . . in a way, that is the only way it can
be).  It should also be noted that the force of contact will not be constant over time
(that is the reason the question alludes to average force).  At first brush, the force will
be slight, growing as the impact deepens (remember, a collision
between two solid objects typically occurs over a period of,
maybe, several hundredths of a second).  The key to untangling
this question is to note that if the meterstick is easily motivated
to its separation speed, the force will not have the time required
to grow to the same extent that it would if the meterstick had
been more inert (i.e., more difficult to motivate to separation
speed).  So what's happening in each case?  In case B, the puck
hits the meterstick away from the stick's center of mass. That
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means the stick both rotates and translates.  As for translation, part of the stick will
accelerate out away from the puck while the upper section of the stick will lag behind
having rotated around the center of mass (see the sketch).  As such, the effective inertia
of the stick will be less than if the entire stick was required to accelerate uniformly as
would be the situation in case A.  As for the rotation, it will be relatively easy to
motivate the meterstick into rotational motion (the moment of inertia for a rod or stick
is (1/12)mL2, where L = 1 meter for a meterstick and, hence, I = m/12--this will be
small in comparison to the meterstick's translational inertia m).  In short, the net
inertia (rotational and translational) that must be overcome to make the meterstick
separate from the puck will be relatively small in case B.  In case A, on the other hand,
the puck hits the meterstick dead center.  There is no rotation, but the force of the
collision has to overcome the entire inertia of the meterstick in motivating it away from
the puck.  Why?  Because the meterstick will have to uniformly accelerate along its
entire length.   In other words, the stick will put up more resistance to changing its
motion than would be the situation in case B and, as a consequence, will absorb more
force before separation occurs.  In fact, the farther out from the stick's center of mass,
the less the average contact force will be.

b.)  Is the puck's after-collision velocity going to be different in the two cases?  If
so, how so?

Solution:  There are two ways to do this.  Both make use of the fact that in Part a
above, we concluded that the average contact force on the puck AND the time of contact
was smaller in case B than in case A.  With the average contact force on the puck being
less in  case B, the average acceleration will also be less in case B.  And if that
acceleration occurs over a smaller time, then the net change of puck velocity will be less
and, hence, the final puck velocity will be greater in case B than in case A.  The other
option is to note that with the average contact force and time of contact both being
smaller in case B, the impulse applied to the puck in case B will be smaller and, hence,
so will its momentum change.  With both systems having the same initial momentum
(i.e., 2mv), that means case B's final velocity will be closer to its initial velocity than
will be the situation in case A, and its final velocity will be larger.

c.)  Is the puck's after-collision angular velocity (relative to the stick's center of
mass) going to be different in the two cases?  If so, how so?

Solution:  You don't tend to think of a translating puck as having angular velocity
about some point, but it will as long as the line of its motion doesn't pass through that
point.  In this case, the angular velocity of the puck about the stick's center of mass in
case A will be zero because the line of that puck's motion will pass through the stick's
center of mass.  In the case B, though, the puck's angular velocity about the stick's
center of mass will be ω  = v/(.25 meters).  So what is the after-collision angular velocity
dependent upon?  The torque applied to the puck about the stick's center of mass.  The
torque in the first situation will be zero (again, you are dealing with a force that acts
through the stick's center of mass) whereas the torque on the second puck will be non-
zero.  With the two torques being different, the angular accelerations about each center
of mass will differ and, as a consequence, the final angular velocities about each center
of mass will be different.
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at center of mass10.)  A meterstick of mass m is pinned at its center of mass on a

frictionless surface.  A puck whose mass is 10m strikes and sticks
to the meterstick at the .33 meter mark (i.e., .17 meters from the
pin).  Call this case A.  A second meterstick experiences exactly the
same situation except that its puck strikes and sticks at its end.
Call this case B.

a.)  Is energy conserved through either collision?
Solution:  Energy is practically never conserved during a collision
(it's close, maybe, when you're talking about charged subatomic particles interacting
with one another, but in the real world, at least some energy in a collision is given up
as heat or sound or in the rearrangement of material we call deformation).  As such,
energy would not be conserved in this collision (note: to add a little extra twist, some
physics problems maintain that a collision is elastic . . . meaning energy is supposed
to be conserved--this is always a contrived situation).

b.)  In which case will the final angular speed be larger, and by how much?
Solution:  This isn't an intuitively obvious question (well, the question may be but the
answer isn't).  At first glance, I'd say the greater angular velocity would belong to case
B.  It turns out that that isn't right.  To see this, think about the puck for a second.
Being a point mass, it's moment of inertia is I = mr2.  The fact that I is proportional
to r2 means that the farther out you go, the greater the puck's resistance to changing
its angular motion.  The torque applied to the puck when it hits a distance r meters
from the pin will be rF (this is the magnitude of rxF when r and F are perpendicular
to one another).  The rotational version of Newton's Second Law states that Γ  = Iα ,
or rF = (mr2) α , so evidently the relationship between r and α  is α  = (F/m)(1/r).
With the angular acceleration and r being inversely related, the farther a given force is
applied from the pin, the smaller the angular acceleration.  So what does all this
mean?  It means we can expect that the angular acceleration will be less the farther
out the hit occurs and, as a consequence, the angular velocity will be less the farther
out the hit occurs.  Does this make sense?  It does if the forces are the same.  Are they?
Not if you believe the arguments that were made in the preceding problem--Problem
9a.  So how do we proceed from here?   Enter the conservation of angular momentum
(the crowd gasps).  We will do the analysis in pieces by closely examining case B.
Observe:  1.)  The meterstick begins with no angular momentum (it isn't initially
moving at all).  2.)  The puck has initial angular momentum, relative to the center of
mass (remember, an object moving in a straight line has angular momentum unless
its line of travel passes through the reference point).  3.)  The torque on the puck due
to the collision is internal to the system (that is, it's due to the puck's interaction with
the meterstick), and the torque on the meterstick due to the collision is also internal
to the system.  4.)  The pin force provides no torque to the system about the pin, so
all of the torques acting in the system are internal.  5.)  Angular momentum is
conserved when all the torques on a system are internal.  6.)  The system's initial
angular momentum is all wrapped up in the angular momentum of the puck.  That
quantity is mvd , where d  is the distance between the collision point and the
meterstick's center of mass.  6.)  Noting that ω  is the system's final angular velocity,
the system's final angular momentum is the sum of Ipuckω  (equal to (mpuckd2)ω  =
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(10md2)ω ) and Imeterstickω  (equal to [(1/12)mmeterstickLmeterstick
2] ω ). With L = 1

meter for the meterstick's length, and noting that 1/12 = .0833, this last term
becomes .0833mω .  Putting it all together by equating the initial and final angular
momenta yields a relationship between ω  and the impact distance d in terms of the
initial puck velocity v.  Specifically, the relationship becomes mvd = 10md2 ω  +

.0833mω .  Solving yields ω  = [10d/(10d2 + .0833)]v.  Substituting d = .17 meters
yields an angular velocity of 4.57v.  Substituting d = .5 meters yields an angular
velocity of 1.94v.  Great jumping huzzahs! The hit farther out produces the smaller
angular velocity, just as predicted with all the hand waving.

11.)  A rotating ice skater has 100 joules of rotational kinetic energy.  The skater
increases her moment of inertia by a factor of 2 (i.e., she extends her hugely muscular
arms outward).  How will her rotational speed change?

Solution:  As there are no external torques acting, angular momentum must be conserved.
That means the product of the moment of inertia I and angular velocity ω  will never
change.  Be that the case, if I increases by a factor of 2, ω  must decrease by a factor of 2.

12.)  It is easier to balance on a moving bicycle than on a stationary one.  Why?
Solution:  If your weight is off-center while sitting on a stationary bicycle, the bike will rotate
about the ground and come crashing down.  If you do the same thing on a moving bicycle, it
will take a considerably greater off-set to make the bike go down.  Why?  A rotating wheel has
angular momentum directed along its axle.  Changing the direction of that angular momentum
vector--something that would have to happen if the bike were to fall over--requires a sizable
torque.  But unless you tilt the bike considerably, no such torque is available.  In other words,
when you off-set your weight just a bit, the wheel's angular momentum fights the change of
axis orientation allowing you time to re-set your weight appropriately.

13.)  A disk lying face-up spins without translation on a
frictionless surface.  At its center of mass, its angular velocity
about an axis perpendicular to its face is measured and found
to equal N.  Its angular momentum at that point is measured
to be M.

a.)  Is there any other point P on the disk where the angular velocity about P is
equal to N?  Explain.

Solution:  Assume you are sitting in a chair just above the center of mass of the disk (if
you'd like, think of the disk as a huge merry go round).  Assume also that the chair's
position is oriented in a fixed direction (to do this on the merry go round, you would
need a chair that was fixed so that it didn't rotate with the merry go round).  The
disk's angular velocity in this case tells you the number of radians you will observe
the disk sweep through per unit time as it moves around underneath you.  In most
cases, angular velocity quantities are quoted relative to the axis of rotation, which is
usually through the mass's center of mass.  But if you were hovering above some point
other than the center of mass (you'd have to be moving with the disk to do this, but
assume you could), sitting in your fixed-direction chair, how many radians of the disk
would sweep under you per unit time.  The answer is the same number of radians per
second as you would have observed while sitting over the center of mass.  This makes
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perfect sense if you notice the following: no matter where you are located on the disk,
it will always take the same amount of time for the entire disk to rotate around
underneath you once (i.e., through 2 radians).  As such, the angular velocity relative
to any point on the disk will be the same as the angular velocity about any other point
on the disk.

b.)  Is there any other point P on the disk where the angular momentum about P
is equal to M?  Explain.

Solution:  You might think that because the angular velocity about any point on a
rotating object is the same as about any other point, the angular momentum--an
angular velocity related quantity--would also be the same.  The problem is that
angular momentum is not only associated with angular velocity, it is also associated
with moment of inertia.  As the moment of inertia is going to increase as one gets
farther away from the center of mass, the angular momentum is also going to increase.
By how much?  The moment of inertia is generally a function of r2, so you would expect
the angular momentum to increase as the square of the distance between the point
and the disk's center.

14.)  A string threaded through a hole in a frictionless table is
attached to a puck.  The puck is set in motion so that it circles
around the hole.  The string is pulled, decreasing the puck's
radius of motion.  When this happens, the puck's angular velocity increases.  Explain
this using the idea of:

a.) Angular momentum.
Solution:  Because there are no external torques acting on the puck about the hole (in
fact, there are no torques acting at all as the tension is along the line of r), angular
momentum will be conserved.  As the radius of the circling puck diminishes, the
puck's moment of inertia I = mr2 also diminishes.  For angular momentum (i.e., I ω ) to
remain constant, therefore, ω  must increase.

b.)  Energy.
Solution:  By pulling the string down through the hole, you are doing work (F.d) on the
puck.  The energy must show itself somehow.  It does so with an increase in the
puck's rotational kinetic energy (.5Iω 2).  With the moment of inertia diminishing (r is
getting smaller), this energy increase shows itself as an increase in the angular
velocity of the puck.

15.)  When a star supernovas, it blows its outer cover outward and its core inward.
For moderately large stars (several solar masses), the implosion can produce a
structure that is so dense that one solar mass's worth of material would fit into a
sphere of radius less than 10 miles.  All stars rotate, so what would you expect the
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rotational speed of the core of a typical star to do when and if the star supernovaed?
Explain using appropriate conservation principles.

Solution:  As there are no external torques being applied during a supernova, the star's
angular momentum will be conserved.  If its mass is compressed into a very small ball, its
moment of inertia will drop precipitously.  To keep the angular momentum constant, its
angular velocity must go up as much as the moment of inertia goes down.  Stars that do
this, called neutron stars or pulsars, typically have rotational speed upwards of 60
revolutions per second (think about it--an object that is 10 miles across rotating 60 times
every second . . . ).  Pretty amazing.

16.)  A cube and a ball of equal mass and approximately
equal size are d units apart on a very slightly frictional
incline plane (frictional enough for the ball to grab traction
but not frictional enough to take discernible amounts of
energy out of the system).  By the time the ball gets to the
bottom of the ramp, will the distance d be larger, smaller,
or the same as it was at the beginning of the run?  Use
conservation principles to explain.

Solution:  This is most easily seen by looking at the system from the perspective of energy.
If both bodies drop a distance h in the same amount of time (i.e., if d remains the same
throughout), the total kinetic energy should be the same for both at the end of the drop
(remember, friction isn't removing a discernible amount of energy from the system).
Unfortunately, there are two ways kinetic energy can show itself, as translational kinetic
energy and as rotational kinetic energy.  The block's kinetic energy is all translational.
The ball's kinetic energy is part translational, part rotational.  In other words, the block is
going to pick up more translational kinetic energy than will the ball and, hence, will pick
up more translational velocity than will the ball.  In short, d should diminish with time.

17.)  Assume global warming is a reality.  How will the period of the earth's rotation
change as the Arctic ice caps melt?

Solution:  In the last chapter, we concluded that if the Arctic ice cap melts, the released
water would flow outward away from the axis of rotation (i.e., toward the earth's equator)
and the earth's moment of inertia I about its axis of rotation would increase.  As angular
momentum (L  = I ω ) would be conserved in this operation (there are no external torques
acting on the system), an increase of the earth's moment of inertia would elicit a decrease
in the earth's angular velocity.

18.)  A point mass m moving along a circular path of
radius r passes a second point mass m moving in the x
direction (see sketch).  Is it possible for the two objects
to have the same angular momentum and, if so, what
conditions must be met for this to happen?
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Solution:  Let's start with the easy stuff.  The mass that is circling
about the origin clearly has an angular momentum associated with its
motion.  There are two ways to determine the magnitude of that
angular momentum.  The first is to deal solely with rotational
parameters.  In that case, L = I ω .  Remembering that the moment of
inertia for a point mass is mr2, and noting that the angular velocity ω
is related to the magnitude of the instantaneous velocity by ω  = vc/r

(I'm obviously defining the magnitude of the circling mass's velocity to be vc), we can write

L = I ω  = (mr2)(vc/r) = mrvc.  As a quick review, the second way to do this is to determine

the magnitude of the cross product of rxp.  Noting that the line of r and the line of the

momentum mvc are perpendicular, that operation yields L = r(mvc) sin 90o = mrvc . . . and

isn't that nice.  We get the same result both ways.  Now for the fun part.  Because people
don't intuitively associate angular properties with bodies moving in straight-line motion,
one of the more obscure ideas students run into in dealing with the world of angular
motion is the idea that a body moving in a straight line can have angular momentum.  The
reason I've included this problem is because there is a sane, conceptually appealing reason
for concluding that this must be so.  To see it,
all you need is the right perspective.  That's
what I'm about to give you.  But first, a small
but important digression.  Remember back
when we talked about projectile motion.  In
those discussions, it was pointed out that two
dimensional motion is really nothing more
than x - type  motion and y - type  motion
happening independently to the same body at the same time (see sketch).  So when you
attacked a projectile problem, how did you proceed?  You wrote out an equation that had
to do with the x motion (remember, with no friction, ax = 0) completely ignoring what was

happening in the y direction where the
acceleration was ay = -9.8 m/s2.  You could

do this kind of selective thinking because
the two directions were independent of one
another.

Well, we are about to do a similar thing
here.  Instead of thinking of the x-directed
motion as straight-line motion (you might
want to look at the sketch now), I want you
to think of it as a combination of two
independent bits of motion--radial motion
(i.e., motion along a radial vector that ex-
tends from the origin to the mass) and
tangential motion (i.e., motion that is
tangent to a circle upon which the mass
resides at a particular point in time).  This rather strange combination is shown in the
sketch (note that the tangential component of the mass's momentum mvt and the radial

component of the mass's momentum mvr vectorially add together to equal the mass's total

momentum mv).  As bizarre as it may seem (to reiterate), what the sketch is suggesting is
that you can think about straight-line motion as a combination of radial and tangential
components of motion that are happening at the same time (just as projectile motion can
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be thought of x-type and y-type motion independently happening at the same time).  Once
you've bent your mind around this idea, it's not too big a jump to see that there is really
no difference, at least instantaneously, between the tangential component of the x-directed
momentum (i.e., mvt) and the momentum of the circling mass mvc.  Their magnitudes may

or may not be the same, but their directions are, at least instantaneously, parallel to one
another.

If you are willing to accept this proposition--that x-directed straight-line motion can be
viewed as having a circular (i.e., angular) component to it--then it is not at all difficult to
see how that same motion might have angular momentum attributed to it.  And in fact,
that is exactly the case.  The x-directed motion has an angular momentum whose
magnitude is equal to the magnitude of rxp = rx(mv).  Noting that the component of mv
perpendicular to r is mvt = mv sin θ  (see sketch), the evaluation of the cross product using

line of mv

y

001 2

r2
r  sin    1 10 r  sin    2 20

        shortest distance b
 (i.e., perpendicular distance) 
between origin and line of mv

r1

x
L = mvb

the perpendicular component approach becomes
L = rpt = r(mvt) = r(mv sin θ ) = rm(v sin θ ).

(Note that this was EASY to compute
mathematically--you could have mindlessly,
mechanically done it whether you understood
the concepts being discussed here or not--the
reason you've been slogging through all of this
hand waving is because mindless calculations
are just that, mindless--the trick is to un-
derstand why the moves are legitimate).  When
we compare that (i.e., rm(v sin θ )) to the circling
mass's angular momentum (i.e., mrvc), it

becomes obvious that when vc = vt = v sin θ ,

the two angular momenta will be the same.  Oh, and there is one more interesting bit of
whimsy that should be noted.  No matter what r happens to be at a given instant, r sin θ
will ALWAYS equal the distance labeled as b  in the sketch (note that b is the
perpendicular distance--read this shortest distance--between the point about which you are
taking the angular momentum--in this case, that would be the origin of our coordinate
axis--and the line of mv).  Put a little differently, no matter what r and θ  are, it will
always be
true that r
sin θ  = b
(i .e. ,  that
perpendicula
r distance)
and Lpuck =

r(mv sin θ ) =
mv(r sin θ ) =
mvb.
Bottom line:
The magnitude of the angular momentum of any object moving in straight line motion will
equal the momentum mv of the object times the shortest distance b between the line of the
momentum vector and the point about which the momentum is being taken.

19.)  Two experiments are done involving a puck sliding over a frictionless surface
and striking a meterstick at its end.  In the first case, the puck stays motionless
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after the hit (that is, the puck hits and, as a
consequence of the contact, loses all of its kinetic
energy).  In the second case, the puck sticks to the
meterstick.  If you wanted to derive an expression for,
say, the angular velocity of the meterstick after the
collision, there would be one major difference in the way
you would set the two problems up.  What might that
difference be?

Solution:  Finding the angular velocity of the meterstick
after the collision is essentially an angular momentum
problem (all the torques during the collision are internal
to the system, so angular momentum through the
collision will be conserved).  In the first case, the
meterstick will not end up attached to the puck and, as
a consequence, will rotate about its own center of mass
after the collision.  For that problem, it would be wise to
do everything relative to the meterstick's center of mass
(that is, calculate the initial angular momentum rxp for
the puck relative to the meterstick's mass center, etc.).
In the case of the puck sticking to the meterstick, the
meterstick's final rotation will be about the center of mass of the meterstick/puck system.
In that case, it would be wise to determine the new center of mass and do the entire
problem relative to that point.  The sketches highlight the points of importance.
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