
Energy

29

Energy -- Conceptual Solutions

1.)  A net force accelerates a body.  If you multiply that force by the distance over
which it is applied, what will that quantity tell you?

Solution:  When a net force is applied over a distance, the product of the force component in
the direction of motion times the distance over which the force acts gives you what is called
the work done by the force over the distance.  Its significance is that it is related to the
amount of velocity change that occurs due to the application of that force over that distance.
The relationship, called the work energy theorem (a bit of a misnomer, but that's life), is
Wnet = .5mvf

2 - .5mvo
2, where the .5mv2 term is called kinetic energy.  In short, the product

alluded to in the question (net force times distance) tells you by how much the body's
kinetic energy changes due to the application of the force.

2.)  A net force F stops a car in distance d.  In terms of F, how much force must be
applied to stop the car in the same distance if its velocity is tripled?

Solution:  Using the definition of work (i.e., F.d ) and building upon the comments in

Problem 1, we can write F.d = .5m( ∆ v)2.  In this case, the final velocity is zero.  Clearly,
the left hand side of this equation is proportional to the velocity squared.  With d constant
and F proportional to v2, increasing v by a factor of three increases F by a factor of three
squared, or nine.

3.)  An object of mass m moving with speed v comes to rest over a given distance d
due to the effects of friction.  What do you know about the average frictional force
involved (i.e., how large must it have been)?

Solution:  Using the idea of the work/energy theorem, assuming that the only force acting to
stop the object is friction and remembering that the final velocity is zero, we can write fk

.d

= 0 - .5mvo
2.  The work done by friction will be negative (the angle between f and d is

180o, so the cosine in the dot product is -1) and the frictional force will equal .5mvo
2/d.

4.)  Two masses, m and 2m, both freefall from rest.  Ignoring friction, which has the
greater speed after falling a given distance?  Which has more work done to it by
gravity over that distance?  Is there something to explain here?  If so, do so.

Solution:  As you probably know, all objects accelerate gravitationally at the same rate in a
vacuum (i.e., without frictional effects).  The answer to the first question, therefore, is that
both will have the same speed after falling a given distance.  As for the work done, the
gravitational force on the mass m will be mg while the gravitational force on the mass 2m
will be 2mg.  But the distances traveled are the same for both masses, so gravity will do
twice as much work on the 2m mass as it does on the m mass.  Is this weird?  Not really.
Being more massive (read this more inert), it should take more energy to get the larger mass
moving.  As it happens, the kinetic energy change is going to be twice as big for the 2m
mass, so there must be twice the work done.  Note:  If you look at the expression that
relates force and velocity--the work/energy theorem--this situation yields a work quantity of
mgd and a change of kinetic energy quantity of .5mvf

2 - 0.  Putting it together yields mgd =

.5mvf
2.  Notice that the masses cancel (this would also be the case if you wrote out this
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relationship for the 2m situation).  In other words, assuming the body starts from rest, the
only variable that affects the final velocity is the square root of the fall distance.  In a
frictionless situation, the mass has nothing to do with velocity . . . which is exactly what we
acknowledged at the start of this little discussion.

5.)  A car slows from 40 m/s to 20 m/s, then from  20 m/s to 0 m/s.  In which instance
(if any) was more energy pulled out of the system?  Reversing the question, going
from zero to 20 m/s requires more, the same, or less energy than is required to go
from 20 m/s to 40 m/s?  Explain.

Solution:  The work, hence energy, required to accelerate a car from zero to 20 m/s will be
less than the work required to accelerate the car from 20 m/s to 40 m/s.  Why?  Because
according to the  work/energy theorem, work is not linearly related to velocity, it is related
to the square of the velocity.  Specifically, for the zero to 20 m/s situation, the work/energy
expression yields Wnet = .5m(20)2 - .5m(0)2 = 200m joules.  For the 20 to 40 m/s situation,

the work/energy expression yields Wnet = .5m(40)2 - .5m(20)2 = 600m joules.  Clearly it

takes more energy to accelerate a vehicle that is already moving than it does to accelerate
one that starts from rest.  Likewise, one must take more energy out of a fast moving car to
slow it down by 20 m/s than it does to slow a slow moving car down by 20 m/s.

6.)  A force is applied to an object initially at rest.  The force acts over a distance d
taking the object up to a speed v.

a.)  If the distance had been halved but the force remained the same, how would
the final velocity have changed (if at all)?

 Solution:  Halving the distance while keeping the force constant would have halved the
work being done (remember, work is F.d).  Because work is related to velocity squared,
one would expect the velocity to decrease . . . but not by half.  If the original work had been
Worig, doing the math for the new situation yields Worig/2 = .5mvnew

2.  We know that

Worig = .5mv2, so we can substitute that in for Worig in the first expression re-writing it as

(.5mv2)/2 = .5mvnew
2.  Canceling appropriately leaves us with (1/2)1/2v = vnew, or vnew =

.707v.

b.)  If, instead, the force had been halved with the distance remaining unchanged, how
would the final velocity have changed (if at all)?

Solution:  As was the case in Part a, the work quantity would still halve and vnew would

still equal .707v.

7.)  What is the ONE AND ONLY thing potential energy functions do for you?
Solution:  A potential energy function is a derived quantity that is attached to a specific
conservative force.  The one and only thing it allows you to determine is the amount of work
that that force does as a body moves from one point to another in the force's field.  To get
that work quantity, all you have to do is evaluate the potential energy function at the
beginning and ending points, then take minus the difference between the two.  That is,
Wdone by cons. force fld. = - ∆ U, where U is the symbol most often used to denote potential

energy.  Note that in the conservation of energy expression, you have what appears to be
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single potential energy quantities, not differences.  If you look back at the way the
conservation of energy equation was derived, though, you will find that in the beginning of
the derivation those potential energy quantities were introduced to determine the amount
of work conservative forces in the system did as the body went from the initial to the final
point.  That is, they were introduced as potential energy differences.

8.)  An ideal spring is compressed a distance x.  How much more force would be
required to compress it a distance 2x?  How much more energy would be required to
execute this compression?

Solution:  The relationship between force and displacement of an ideal spring is linear, so if
you double the displacement, you have to double the force.  The potential energy function for
an ideal spring, on the other hand, is a function of the square of the displacement (U =

.5kx2, where k is the spring constant and x is measured from the spring's equilibrium
position).  As such, doubling the displacement will require four times the energy.

9.)  A mass moving with speed v strikes an ideal spring, compressing the spring a
distance x before coming to rest.  In terms of v, how fast would the mass have to be
moving to compress the spring a distance 2x?

Solution:  You are converting kinetic energy, a function that depends on the velocity
squared, into spring potential energy, a function that depends on the displacement squared.
In other words, as both are squared quantities, the relationship between the displacement
and velocity here is linear (they are both of the same order--both squared in the defining
expression) and depressing the spring a distance 2x would require a velocity of 2v.

10.)  A simple pendulum (a mass attached to a string) is pulled back to an angle θ
and released.  Ignore friction.

a.)  If the mass is doubled, what will happen to the velocity at the bottom of the
arc?

Solution:  This is back to the what falls faster in a vacuum, a cannonball or a feather
question.  Because the gravitational force motivating the mass to move has to
overcome the inertia of the body, doubling the mass doubles the gravitational force
but also doubles the inertia . . . and you get no net difference between the two
situations.  Put another way, the velocity of the "falling" bob is not dependent upon
the size of the bob's mass.

b.)  If the length of the pendulum arm is doubled,
how will the velocity at the bottom of the arc change?

Solution:  Doubling the length of the pendulum arm
will increase the fall distance of the bob as it swings
down.  How much is the increase?  The sketch shows
how much the bob "falls" in general.  Noting that the
bob starts from rest and assuming that the
gravitational potential energy is zero at the bottom of
the arc, the work/energy theorem (or the conservation
of energy expression--both will yield the same
relationship) yields Wgrav = - ∆ U = -[0 - mg(L - L

cosθ ) = .5mv2 - 0, or mg(L - L cosθ ) = .5mv2.  This



32

top flips when rotated

could also be written as mgL(1 - cosθ ) = .5mv2   In other words, the arm length L is
proportional to the square of the velocity.  Doubling the length of the arm, therefore,
means the velocity increases by (2)1/2.

c.)  Is there any acceleration at the bottom of the arc?  If so, how much and in
what direction?

Solution:  This is a bit of a tricky question.  When the bob is at the bottom of its arc,
there are no forces acting in the horizontal.  With no horizontal acceleration acting at
that point, it is the bob's motion alone that allows it to continue on through the
bottom of the arc and out again.  In the vertical, it is not uncommon for people to
think that because there is no motion in that direction, there must be no acceleration.
Unfortunately, that is not true as the body is following a curved path.  That is to say,
there must be some non-zero force and, hence, acceleration to motivate it out of
straight-line motion.  Indeed, tension and gravity exist in opposition at that point,
but the two don't add to zero.  They combine to act as a centripetal force equal to T -
mg.  In most cases, we don't know what the tension T is, but there is a clever way
around that problem.  Specifically, the centripetal force IS EQUAL TO mv2/r
(remember, the centripetal acceleration is equal to v2/r, where r is the radius of the
motion).  Therefore, if we can determine v at the bottom of the arc, we can determine
the center seeking acceleration.  Fortunately for us, the conservation of energy
expression coupled with the gravitational potential energy function gives us an easy
way to determine the velocity of a body that has "fallen" in a gravitational field.

d.)  How much work does tension do as the bob moves from the initial point to
the bottom of the arc?

Solution:  In this case, tension is always at right angles to the motion.  That means it
does no work on the system at any point in time.

e.)  How much work does gravity do as the bob moves from the initial point to
the bottom of the arc?

Solution:  Trying to do this using F .d would be a huge pain in the arse.  Why?
Because the angle between the direction of motion and gravity would be constantly
changing (in fact, if you tried to do this calculation you'd have to use the integral form
of the work equation).  Fortunately for you, all you have to do is determine the vertical
distance the bob falls from its initial point to the bottom of the arc (for those of you
who are shaky on such things, that distance is shown in the sketch attached to Part
b), then use the gravitational potential energy function and the fact that Wgrav =

- ∆ Ugrav (remember, the only way you will ever use a potential energy function is to

determine how much work its force field does as the body goes from one point to
another in the field).

11.)  There is a toy on the market--a top--that, when
spun, flips itself over (see sketch).  What is the top really
doing as it moves from the one state to the other state?

Solution:  In general, systems in nature tend to migrate to
states of least energy.  By flipping over, the top's center of
mass lowers thereby decreasing its gravitational potential
energy.
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brick12.)  A brick is held above the edge of a table.  Suzy
Q looks at the brick, deduces that if it were to fall it
would land ON the table, and calculates the brick's
gravitational potential energy with that in mind.
In doing so, she comes up with a number N1.  Big
Jack, who happens to have terrible eyesight and
has left his glasses at home, looks at the brick and
decides that if it falls, it will land on the ground.
He keeps that in mind as he calculates the brick's
gravitational potential energy coming up with a
number N2.  Which potential energy quantity is
correct?  Explain.

Solution:  In most cases, the zero potential energy level associated with a force function is
defined as the position at which the force is zero.  In Newton's GENERAL expression for
gravity, for instance, that place is at infinity (you haven't run into this situation, yet).  For
a spring, it's at the spring's equilibrium position.  When you are dealing with gravity close
to the surface of the earth, the problem is that there is no place it's zero--to a good
approximation, gravity is a constant near the earth's surface.  That means two things.
First, the near-earth gravitational potential energy function is linear (i.e., U = mgy . . . no
big deal).  And second, there is no preferred position at which the gravitational potential
energy must be zero.  ANY POINT WILL DO.  There's nothing wrong with this.
Remember, a potential energy function evaluated at a particular point means nothing.  It
isn't until you subtract it from the evaluation of the function at some other point that it
takes on significance.  What significance?  Minus the difference in the evaluations tells you
how much work the force field does as a body goes from the one point to the other.  As
differences are all that matter, and as the function is linear for near-earth gravity, you can
define the zero level to be anywhere you want and the function will still be able to do for
you what it is supposed to do.  In short, taking either the tabletop or floor to be the zero
potential energy level will work just fine as long as you stick with your chosen zero level
throughout the problem.

13.)  For a spring system, it is very obvious when there is no potential energy
wrapped up in the position of the spring.  For a gravitational situation near the
surface of the earth, that isn't the case.  What is the telltale difference between the
two situations?

Solution:  As outlined in Question 12, gravitational force near the earth is constant and,
hence, has no preferred zero level.  As such, gravitational potential energy can be zeroed
anywhere.  A spring applies a force that is related to how much the spring is elongated or
compressed (the relationship is F = -kx, where k is the spring's spring constant and x is the
spring's displacement).  At equilibrium, there is no displacement and, hence, no force, so
the spring's potential energy is zero there.

14.)  Is it possible for:

a.)  Potential energy to be negative?  If yes, give an everyday example.
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Solution:  If, in Question 12, you had made the zero level of the gravitational potential
energy function be at the tabletop, any object below that point would have had a negative
potential energy (think about the potential energy expression for near earth gravity--it is
mgy, where the y variable denotes the vertical distance between the point and the zero
level--if you are below the zero level, y will be negative).  Also, there are potential energy
functions that, due to their defined zero point, are inherently negative (when far from the
earth, the gravitational function is an example).  That's OK.  Remember, it is minus the
difference in the evaluation of the potential energy function that tells you how much work
is being done by the field as you go from one point to another.  As long as that is true, it
doesn't matter what the sign of the actual function is.

b.)  Kinetic energy to be negative?  If yes, give an everyday example.
Solution:  Kinetic energy is a function of mass (something that is never negative) and
the magnitude of the velocity squared (something else that is never negative).  In
short, kinetic energy is never negative.

c.)  Work quantity to be negative?  If yes, give an everyday example.
Solution:  If a force opposes the motion of a body, it will do negative work (the angle

between the force and displacement will be greater than 90o, so the cosine part of the
dot product will yield a negative number).  Though it isn't always the case, sliding
friction usually does negative work taking energy out of a system.

d.)  Power to be negative?  If yes, give an everyday example.
Solution:  Power is just work per unit time.  If work can be negative, so can power.
What does negative power mean?  It tells you how much energy is being pulled out of
the system per unit time.  Though it probably isn't obvious, the power rating on a
light bulb could be a negative number as it tells you how much electrical energy
(joules) is converted (i.e., pulled out of the electrical system) to heat and light per
second.  This joules per second quantity is called a watt.

15.)  The units of power could be which of the following (more than one are possible)?
a.)  Joules/sec.

Solution:  Power is defined as work per unit time, so at the very least you would
expect joules/second to do the job.

b.)  Watts/sec.
Solution:  Watts is the name for the units of power, so watts/second isn't a power
quantity.

c.)  Kg.m2/s3.
Solution:  A joule is a nt.m which, in turn, is a (kg.m/second2)(m), or (kg.m2/second2).
Dividing this by seconds yields a perfectly good representation of power units.

d.)  Nt.m/s.
Solution:  As was pointed out in Part c, a joule/second is really a nt.m/s, so this one
works (no pun intended . . . sorta).
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16.)  Work is to energy as force is to (velocity).  How so?
Solution:  The idea is that doing work can potentially alter the energy content of a system
whereas applying a force can potentially alter the velocity of a body.  This may be obscure,
but that's life (it was designed to make you think about relationships).

17.)  The potential energy function associated with a spring force of -kx is .5kx2.
What would you expect the potential energy function for a force of -kx5 to be?  How
would you derive such a function?

Solution:  The pattern seems to be to raise the exponent by one and create a coefficient
equal to the inverse of that number.  In other words, the pattern suggests that the
function would be (1/6)kx6 (and, in fact, that's what it is).  Noting that the force is equal to
zero at x = 0 (hence, setting the potential energy function equal to zero at that point), the
formal derivation of that quantity requires that you solve the expression U(x) - U(x=0) =
∫F.dr evaluated from x = 0 to x, where dr becomes dx after the dot product has been done.

18.)  A vehicle moves in the +x direction.  The net force applied to
the vehicle is shown to the right along with a second graph.
What might that second graph depict?

Solution:  In one dimension, the net force applied to a moving
object is directly proportional to the work that force does on the
object.  In fact, because the displacement is in the +x direction and
the force is negative (see the graph), we know that the net work is
negative (the force and displacement directions are opposite one
another).  Net work is related to the change of the body's kinetic
energy, a quantity that is, itself, related to velocity squared.  As the
unknown quantity seems to be decreasing as long as the force acts, and as the quantity is
doing so as a quadratic, my guess is that the unknown function is that of the velocity of
the vehicle.

19.)  A force is applied to an object for some period of time t.  During that time it
does W's worth of work.  If the time of contact remains the same but the force is
doubled, what will the ratio of the work quantities be?

Solution:  The temptation is to assume that if the force doubles, the work will double.  The
problem is that as the acceleration doubles (this follows from doubling the force), the distance
traveled will change in time t.  In other words, we actually have to do the work calculation for
both situations and see how things turn out.  Assuming F and d are in the same direction
and we start from rest, we can combine the definition of work, N.S.L., and kinematics to
write W1 = Fd1 = [ma1][.5a1t2] (the substitution for the d1 term came from the kinematics

relationship d = vot + .5at2 with vo = 0).  Noting that if the force doubles, the acceleration

doubles so that a 2  = 2a1 , we can write up the new situation as W 2 = F2d 2  =

[m(2a1)][.5(2a1)t2] = 4[ma1][.5a1t2].  Taking the ratio of the two work calculations yields 1:4.

20.)  Assume you have a constant force F = (12 newtons)i that does work on a moving
object as the object travels a distance d = (2 meters)i in time t = 3 seconds.
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a.)  At what rate is energy being pumped into the system?
Solution:  The total amount of energy that F imparts to the object over the distance d
is just equal to the amount of work F does during the trip.  The rate of energy flow,
then, is that total amount of work done divided by the time it took to do the deed.  In
other words, the quantity we want is equal to W/t.  Using our definition of work, this
becomes W/t = F.d/t = [(12 nts)(2 meters)cos 0o]/(3 seconds) = 8 joules/second.

b.)  What is the name given to the quantity you derived in Part a?
Solution:  A measure of rate of energy change (i.e., how quickly energy is being pumped
into or out of a system) is called power.  Power can be determined for a single force, on
average, over a large period of time (that was the case in Part a), for a single force as
manifested at a particular point in time (this is instantaneous power), or for the net
force acting on a system.  In most cases, you sorta have to look closely to see if you are
being asked to determine an average or not.  The key to look for is whether the
information you are given happens over a long period of time or not (if it is a long
period of time, we are talking average).  In most cases, you will be determining an
average.

c.)  Come up with four different ways to express the quantity named in Part b.
Solution:  The cheap response is to write W/t (this is really weak, but it's also correct).
As work is defined as F.d, this can be expanded yielding W/t = F.d/t = (Fd cosθ )/t.
Note that you are really determining the average power over the time t during which
the object moves a distance d.  Another possibility is to note that an object that
travels a distance d in time t has some average velocity (call it v).  Manipulating, we
can rewrite our original expressions as W/t = F.d/t = F.v.  This little gem is nice
because it relates the power provided by a constant force F to an object moving with
constant velocity v.  If the force happens to be changing, the power function simply
becomes a function of time.  The most exotic of the expressions for power (exotic in the
sense that you don't see it used much) comes from the work/energy theorem.
Remembering that the net work provided to a body equals the body's change of kinetic

energy, we can write Wnet/t = ∆ (.5mv2)/t.  This obviously refers to the total power

being provided to a system, not the power associated with a particular force in the
system.  In any case, there are your four ways.  Note:  When you are doing power
problems, remember what you are dealing with.  Power is the measure of the rate at
which energy is put into or taken out of a system.

d.)  In the MKS system, what are the units for this quantity and what are the
units called?

Solution:  The units for work per unit time are joules per second.  In the MKS system,
this quantity is called a watt.

21.)  The graph shows the force F applied to an
object that moves with a constant velocity of .5 m/s
in the -i direction.  Assuming F is oriented along the
x axis:
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a.)  What can you say about the other forces that act in the system?
Solution:  If F is changing but the velocity is constant, the other forces in the system must
vectorially add to -F.  In that way, the net force will be zero and the change of kinetic
energy (work/energy theorem) will be zero.

b.)  How much power does F provide to the object between t = 1 second and t = 7
seconds?

Solution:  With the velocity constant, the body moves in one direction (the -i direction)
and one direction only.  While the force is in the positive direction, therefore, it
provides negative work to the body.  While in the negative direction, it provides
positive work to the body.  Between t = 1 second and t = 7 seconds, it spends as much
time doing the one as the other.  As such, it makes sense that its average work will
be zero during that interval and, hence, the average power from F will also be zero.
Put a little differently, whatever energy F takes out of the system between t = 1
second and t = 4 seconds, it puts back into the system between t = 4 seconds and t = 7
seconds.

c.)  After t = 4 seconds, F's direction changes.  What does that say about the
power associated with F from then on?

Solution:  Given the fact that the direction of motion doesn't change at t = 4 seconds, F
will switch from taking energy out of the system to putting energy into the system at
that point.  Note that just because F is negative after t = 4 seconds doesn't mean it is
taking energy from the system.  The WORK F does determine what the power is
doing.  After t = 4 seconds, the work done by F is positive.  As a consequence, energy is
being transferred into the system by F from then on.

d.).  How much power, on average, does F provide between t = 1 second and t = 4
seconds?

Solution:  There are all sorts of ways we can do this.  Noting that the magnitude of

the average force over that interval is ∆ F/2 = (7 nt)/(2) = 3.5 joules, we could write
Pavg = Favg

.v = (3.5 j)(.5 m/s)cos 180o = -1.75 watts.  Another possibility would be to

note that with a constant velocity of .5 m/s, the body would travel 1.5 meters in three
seconds.  With that we could write Pavg = Favg

.d/t = [(3.5 j)(1.5 m)cos 180o]/(3 sec) =

-1.75 watts.

e.)  As an interesting twist, given that the average power provided to the system
between t = 4 seconds and t = 7 seconds is +1.75 watts, how much work does the force
do during that period of time?

Solution:  If Pavg = W/t for the interval, then W = Pavgt = (1.75 j/s)(3 s) = 5.25 joules of

work.

22.)  Let's assume that a car engine provides a constant amount of power.  The car
accelerates from zero to 30 m/s.  Is the car's acceleration constant?

Solution:  The power provided by a net force F being applied to a car traveling at a given
velocity is F.v.  If we assume the force is in the direction of motion (a good assumption if
the car's speed is increasing), how does constant power affect this relationship?  Using
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N.S.L., we can rewrite the magnitude of the force as ma, where a is the acceleration of the
vehicle and m is its mass.  Doing the dot product, then substituting ma in for F yields a
power relationship that states F.v = (ma)v = constant.  The only way the power can
remain constant as the velocity increases is if the acceleration decreases.  This isn't too
weird.  It takes a lot more energy to increase the kinetic energy of a body some amount at
high velocity than it does to increase the kinetic energy that same amount at low velocity.
If the rate of energy transfer is the same throughout, one would expect the velocity change
(acceleration) to happen more slowly as the velocity gets bigger.

23.)  A group of students were asked the following question: "In the real world, what
does the power requirement do as you double a car's velocity?"  Assuming a
reasonable answer was expected, what information is missing in the set-up?  That is,
what additional information would the students have needed to answer sensibly?

Solution:  In cars, power output tells us how many joules per second (or horsepower as the
case may be) must be burned to keep the car moving at a given speed.  There are several
ways to express this power relationship:  W/t or F.d/t or F.v or ∆ (.5mv2)/ ∆ t (it should be
evident to you how each of these relationships follows from one another).  The F .v
expression might nudge people into believing that doubling the velocity would require a
doubling of the power requirement.  The problem is that in the real world, it takes more
force to maintain a higher velocity (a car traveling at higher velocity will have more road
and air friction to contend with).  How much more force?  That's the problem.  We don't
know.

24.)  In his younger days, George boasted he could do a million joules of work.
Gertrude, his betrothed, wasn't impressed.  Why do you suppose she wasn't moved?

Solution:  A million joules of work is impressive, but not if you take an entire lifetime to do
it.  Power yields the amount of work done per unit time.  George's power rating is what
Gertrude should be interested in.

25.)  Three identical springs are attached at the ceiling.  A bar of
mass m is hooked to the group.  If the new system's equilibrium
position is d units below the springs' unstretched lengths, what
must the spring constant be for each spring?  Use energy considerations to
dismantle this problem.

Solution:  This was Problem 27 in the N.S.L. chapter.  This time we are going to look at it
from the perspective of energy.  What makes this problem interesting is that if you try to
mindlessly plug and chug, you will get the wrong answer.  That is, if you say that the
spring potential energy when the bar is at the new equilibrium position is equal to the
gravitational potential energy when the bar was at the unextended position, you will write
3[(1/2)kd2] = mgd, or k = (2/3)mg/k.  This isn't what we got when we untangled the
situation using N.S.L., so we have a problem.

What you need to realize is that in this case, you have to set up a single problem,
then think conceptually.  The problem I'd consider is as follows.

Assume the bar starts out d units above the new equilibrium position (i.e., in the
position the bar was in as it was being hooked to the springs).  From that position,
assume the bar is released.  The bar will accelerate down toward the new equilibrium
position d units below the start point, move through that the new equilibrium position
continuing on until it gets d units below the new equilibrium position, then begin back up
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toward the new equilibrium position.  In other words, it will oscillate with amplitude d
about the new equilibrium position.

For that scenario, how much energy do the springs have at the start point?
They have none as they are not elongated at all.
How much gravitational potential energy will the bar have at the start point?
Taking the new equilibrium position to be the zero gravitional potential energy point,

there will be mgd's worth.
All of this means we start out with mgd's worth of potential energy in the system.
Once the bar has fallen to the new equilibrium position, the bar has zero

gravitational potential energy (that was where we defined the zero point to be for
gravitational PE), the springs will each have (1/2)kd2's worth of potential energy, and the
bar will have KINETIC ENERGY in the amount (1/2)mv2, where v is the maximum
velocity the bar will ever have (the velocity of any oscillating object is always maximum
when it moves through its equilibrium position).

The maximum velocity of a vibrating system is equal to ω A, where ω  = (knet/m)1/2

and the amplitude of the motion in this case is A = d.
The net, effective spring constant of three identical springs "in parallel," so to speak,

is knet = 3k, (remember, k is the spring constant for each spring--this is what we are

looking for).
Putting everything together, we can write v = ω A = (3k/m)1/2d, and with this we can

write the conservation energy expression as:

 mgd = (1/2)m[(3k/m)1/2d]2 + 3[(1/2)kd2.

Solving for k yields (lo and behold) k = mg/3d, the very answer we got in the N.S.L.
chapter.

The reason this problem was included, and the moral of the story, is that simply
because things like potential energy zero levels have generally accepted working definitions,
there are time when you have to use your head above and beyond the classical definitions.
In those cases, you have to be conceptually thoughtful and just a little bit clever.


